// SPDX-License-Identifier: GPL-2.0+ /* * Copyright (C) 2014 Gateworks Corporation * Author: Tim Harvey */ #include #include #include #include #include #include #include #include #include #if defined(CONFIG_MX6_DDRCAL) static void reset_read_data_fifos(void) { struct mmdc_p_regs *mmdc0 = (struct mmdc_p_regs *)MMDC_P0_BASE_ADDR; /* Reset data FIFOs twice. */ setbits_le32(&mmdc0->mpdgctrl0, 1 << 31); wait_for_bit_le32(&mmdc0->mpdgctrl0, 1 << 31, 0, 100, 0); setbits_le32(&mmdc0->mpdgctrl0, 1 << 31); wait_for_bit_le32(&mmdc0->mpdgctrl0, 1 << 31, 0, 100, 0); } static void precharge_all(const bool cs0_enable, const bool cs1_enable) { struct mmdc_p_regs *mmdc0 = (struct mmdc_p_regs *)MMDC_P0_BASE_ADDR; /* * Issue the Precharge-All command to the DDR device for both * chip selects. Note, CON_REQ bit should also remain set. If * only using one chip select, then precharge only the desired * chip select. */ if (cs0_enable) { /* CS0 */ writel(0x04008050, &mmdc0->mdscr); wait_for_bit_le32(&mmdc0->mdscr, 1 << 14, 1, 100, 0); } if (cs1_enable) { /* CS1 */ writel(0x04008058, &mmdc0->mdscr); wait_for_bit_le32(&mmdc0->mdscr, 1 << 14, 1, 100, 0); } } static void force_delay_measurement(int bus_size) { struct mmdc_p_regs *mmdc0 = (struct mmdc_p_regs *)MMDC_P0_BASE_ADDR; struct mmdc_p_regs *mmdc1 = (struct mmdc_p_regs *)MMDC_P1_BASE_ADDR; writel(0x800, &mmdc0->mpmur0); if (bus_size == 0x2) writel(0x800, &mmdc1->mpmur0); } static void modify_dg_result(u32 *reg_st0, u32 *reg_st1, u32 *reg_ctrl) { u32 dg_tmp_val, dg_dl_abs_offset, dg_hc_del, val_ctrl; /* * DQS gating absolute offset should be modified from reflecting * (HW_DG_LOWx + HW_DG_UPx)/2 to reflecting (HW_DG_UPx - 0x80) */ val_ctrl = readl(reg_ctrl); val_ctrl &= 0xf0000000; dg_tmp_val = ((readl(reg_st0) & 0x07ff0000) >> 16) - 0xc0; dg_dl_abs_offset = dg_tmp_val & 0x7f; dg_hc_del = (dg_tmp_val & 0x780) << 1; val_ctrl |= dg_dl_abs_offset + dg_hc_del; dg_tmp_val = ((readl(reg_st1) & 0x07ff0000) >> 16) - 0xc0; dg_dl_abs_offset = dg_tmp_val & 0x7f; dg_hc_del = (dg_tmp_val & 0x780) << 1; val_ctrl |= (dg_dl_abs_offset + dg_hc_del) << 16; writel(val_ctrl, reg_ctrl); } static void correct_mpwldectr_result(void *reg) { /* Limit is 200/256 of CK, which is WL_HC_DELx | 0x48. */ const unsigned int limit = 0x148; u32 val = readl(reg); u32 old = val; if ((val & 0x17f) > limit) val &= 0xffff << 16; if (((val >> 16) & 0x17f) > limit) val &= 0xffff; if (old != val) writel(val, reg); } int mmdc_do_write_level_calibration(struct mx6_ddr_sysinfo const *sysinfo) { struct mmdc_p_regs *mmdc0 = (struct mmdc_p_regs *)MMDC_P0_BASE_ADDR; struct mmdc_p_regs *mmdc1 = (struct mmdc_p_regs *)MMDC_P1_BASE_ADDR; u32 esdmisc_val, zq_val; u32 errors = 0; u32 ldectrl[4] = {0}; u32 ddr_mr1 = 0x4; u32 rwalat_max; /* * Stash old values in case calibration fails, * we need to restore them */ ldectrl[0] = readl(&mmdc0->mpwldectrl0); ldectrl[1] = readl(&mmdc0->mpwldectrl1); if (sysinfo->dsize == 2) { ldectrl[2] = readl(&mmdc1->mpwldectrl0); ldectrl[3] = readl(&mmdc1->mpwldectrl1); } /* disable DDR logic power down timer */ clrbits_le32(&mmdc0->mdpdc, 0xff00); /* disable Adopt power down timer */ setbits_le32(&mmdc0->mapsr, 0x1); debug("Starting write leveling calibration.\n"); /* * 2. disable auto refresh and ZQ calibration * before proceeding with Write Leveling calibration */ esdmisc_val = readl(&mmdc0->mdref); writel(0x0000C000, &mmdc0->mdref); zq_val = readl(&mmdc0->mpzqhwctrl); writel(zq_val & ~0x3, &mmdc0->mpzqhwctrl); /* 3. increase walat and ralat to maximum */ rwalat_max = (1 << 6) | (1 << 7) | (1 << 8) | (1 << 16) | (1 << 17); setbits_le32(&mmdc0->mdmisc, rwalat_max); if (sysinfo->dsize == 2) setbits_le32(&mmdc1->mdmisc, rwalat_max); /* * 4 & 5. Configure the external DDR device to enter write-leveling * mode through Load Mode Register command. * Register setting: * Bits[31:16] MR1 value (0x0080 write leveling enable) * Bit[9] set WL_EN to enable MMDC DQS output * Bits[6:4] set CMD bits for Load Mode Register programming * Bits[2:0] set CMD_BA to 0x1 for DDR MR1 programming */ writel(0x00808231, &mmdc0->mdscr); /* 6. Activate automatic calibration by setting MPWLGCR[HW_WL_EN] */ writel(0x00000001, &mmdc0->mpwlgcr); /* * 7. Upon completion of this process the MMDC de-asserts * the MPWLGCR[HW_WL_EN] */ wait_for_bit_le32(&mmdc0->mpwlgcr, 1 << 0, 0, 100, 0); /* * 8. check for any errors: check both PHYs for x64 configuration, * if x32, check only PHY0 */ if (readl(&mmdc0->mpwlgcr) & 0x00000F00) errors |= 1; if (sysinfo->dsize == 2) if (readl(&mmdc1->mpwlgcr) & 0x00000F00) errors |= 2; debug("Ending write leveling calibration. Error mask: 0x%x\n", errors); /* check to see if cal failed */ if ((readl(&mmdc0->mpwldectrl0) == 0x001F001F) && (readl(&mmdc0->mpwldectrl1) == 0x001F001F) && ((sysinfo->dsize < 2) || ((readl(&mmdc1->mpwldectrl0) == 0x001F001F) && (readl(&mmdc1->mpwldectrl1) == 0x001F001F)))) { debug("Cal seems to have soft-failed due to memory not supporting write leveling on all channels. Restoring original write leveling values.\n"); writel(ldectrl[0], &mmdc0->mpwldectrl0); writel(ldectrl[1], &mmdc0->mpwldectrl1); if (sysinfo->dsize == 2) { writel(ldectrl[2], &mmdc1->mpwldectrl0); writel(ldectrl[3], &mmdc1->mpwldectrl1); } errors |= 4; } correct_mpwldectr_result(&mmdc0->mpwldectrl0); correct_mpwldectr_result(&mmdc0->mpwldectrl1); if (sysinfo->dsize == 2) { correct_mpwldectr_result(&mmdc1->mpwldectrl0); correct_mpwldectr_result(&mmdc1->mpwldectrl1); } /* * User should issue MRS command to exit write leveling mode * through Load Mode Register command * Register setting: * Bits[31:16] MR1 value "ddr_mr1" value from initialization * Bit[9] clear WL_EN to disable MMDC DQS output * Bits[6:4] set CMD bits for Load Mode Register programming * Bits[2:0] set CMD_BA to 0x1 for DDR MR1 programming */ writel((ddr_mr1 << 16) + 0x8031, &mmdc0->mdscr); /* re-enable auto refresh and zq cal */ writel(esdmisc_val, &mmdc0->mdref); writel(zq_val, &mmdc0->mpzqhwctrl); debug("\tMMDC_MPWLDECTRL0 after write level cal: 0x%08x\n", readl(&mmdc0->mpwldectrl0)); debug("\tMMDC_MPWLDECTRL1 after write level cal: 0x%08x\n", readl(&mmdc0->mpwldectrl1)); if (sysinfo->dsize == 2) { debug("\tMMDC_MPWLDECTRL0 after write level cal: 0x%08x\n", readl(&mmdc1->mpwldectrl0)); debug("\tMMDC_MPWLDECTRL1 after write level cal: 0x%08x\n", readl(&mmdc1->mpwldectrl1)); } /* We must force a readback of these values, to get them to stick */ readl(&mmdc0->mpwldectrl0); readl(&mmdc0->mpwldectrl1); if (sysinfo->dsize == 2) { readl(&mmdc1->mpwldectrl0); readl(&mmdc1->mpwldectrl1); } /* enable DDR logic power down timer: */ setbits_le32(&mmdc0->mdpdc, 0x00005500); /* Enable Adopt power down timer: */ clrbits_le32(&mmdc0->mapsr, 0x1); /* Clear CON_REQ */ writel(0, &mmdc0->mdscr); return errors; } static void mmdc_set_sdqs(bool set) { struct mx6dq_iomux_ddr_regs *mx6dq_ddr_iomux = (struct mx6dq_iomux_ddr_regs *)MX6DQ_IOM_DDR_BASE; struct mx6sx_iomux_ddr_regs *mx6sx_ddr_iomux = (struct mx6sx_iomux_ddr_regs *)MX6SX_IOM_DDR_BASE; int i, sdqs_cnt; u32 sdqs; if (is_mx6sx()) { sdqs = (u32)(&mx6sx_ddr_iomux->dram_sdqs0); sdqs_cnt = 2; } else { /* MX6DQ */ sdqs = (u32)(&mx6dq_ddr_iomux->dram_sdqs0); sdqs_cnt = 8; } for (i = 0; i < sdqs_cnt; i++) { if (set) setbits_le32(sdqs + (4 * i), 0x7000); else clrbits_le32(sdqs + (4 * i), 0x7000); } } int mmdc_do_dqs_calibration(struct mx6_ddr_sysinfo const *sysinfo) { struct mmdc_p_regs *mmdc0 = (struct mmdc_p_regs *)MMDC_P0_BASE_ADDR; struct mmdc_p_regs *mmdc1 = (struct mmdc_p_regs *)MMDC_P1_BASE_ADDR; bool cs0_enable; bool cs1_enable; bool cs0_enable_initial; bool cs1_enable_initial; u32 esdmisc_val; u32 temp_ref; u32 pddword = 0x00ffff00; /* best so far, place into MPPDCMPR1 */ u32 errors = 0; u32 initdelay = 0x40404040; /* check to see which chip selects are enabled */ cs0_enable_initial = readl(&mmdc0->mdctl) & 0x80000000; cs1_enable_initial = readl(&mmdc0->mdctl) & 0x40000000; /* disable DDR logic power down timer: */ clrbits_le32(&mmdc0->mdpdc, 0xff00); /* disable Adopt power down timer: */ setbits_le32(&mmdc0->mapsr, 0x1); /* set DQS pull ups */ mmdc_set_sdqs(true); /* Save old RALAT and WALAT values */ esdmisc_val = readl(&mmdc0->mdmisc); setbits_le32(&mmdc0->mdmisc, (1 << 6) | (1 << 7) | (1 << 8) | (1 << 16) | (1 << 17)); /* Disable auto refresh before proceeding with calibration */ temp_ref = readl(&mmdc0->mdref); writel(0x0000c000, &mmdc0->mdref); /* * Per the ref manual, issue one refresh cycle MDSCR[CMD]= 0x2, * this also sets the CON_REQ bit. */ if (cs0_enable_initial) writel(0x00008020, &mmdc0->mdscr); if (cs1_enable_initial) writel(0x00008028, &mmdc0->mdscr); /* poll to make sure the con_ack bit was asserted */ wait_for_bit_le32(&mmdc0->mdscr, 1 << 14, 1, 100, 0); /* * Check MDMISC register CALIB_PER_CS to see which CS calibration * is targeted to (under normal cases, it should be cleared * as this is the default value, indicating calibration is directed * to CS0). * Disable the other chip select not being target for calibration * to avoid any potential issues. This will get re-enabled at end * of calibration. */ if ((readl(&mmdc0->mdmisc) & 0x00100000) == 0) clrbits_le32(&mmdc0->mdctl, 1 << 30); /* clear SDE_1 */ else clrbits_le32(&mmdc0->mdctl, 1 << 31); /* clear SDE_0 */ /* * Check to see which chip selects are now enabled for * the remainder of the calibration. */ cs0_enable = readl(&mmdc0->mdctl) & 0x80000000; cs1_enable = readl(&mmdc0->mdctl) & 0x40000000; precharge_all(cs0_enable, cs1_enable); /* Write the pre-defined value into MPPDCMPR1 */ writel(pddword, &mmdc0->mppdcmpr1); /* * Issue a write access to the external DDR device by setting * the bit SW_DUMMY_WR (bit 0) in the MPSWDAR0 and then poll * this bit until it clears to indicate completion of the write access. */ setbits_le32(&mmdc0->mpswdar0, 1); wait_for_bit_le32(&mmdc0->mpswdar0, 1 << 0, 0, 100, 0); /* Set the RD_DL_ABS# bits to their default values * (will be calibrated later in the read delay-line calibration). * Both PHYs for x64 configuration, if x32, do only PHY0. */ writel(initdelay, &mmdc0->mprddlctl); if (sysinfo->dsize == 0x2) writel(initdelay, &mmdc1->mprddlctl); /* Force a measurment, for previous delay setup to take effect. */ force_delay_measurement(sysinfo->dsize); /* * *************************** * Read DQS Gating calibration * *************************** */ debug("Starting Read DQS Gating calibration.\n"); /* * Reset the read data FIFOs (two resets); only need to issue reset * to PHY0 since in x64 mode, the reset will also go to PHY1. */ reset_read_data_fifos(); /* * Start the automatic read DQS gating calibration process by * asserting MPDGCTRL0[HW_DG_EN] and MPDGCTRL0[DG_CMP_CYC] * and then poll MPDGCTRL0[HW_DG_EN]] until this bit clears * to indicate completion. * Also, ensure that MPDGCTRL0[HW_DG_ERR] is clear to indicate * no errors were seen during calibration. */ /* * Set bit 30: chooses option to wait 32 cycles instead of * 16 before comparing read data. */ setbits_le32(&mmdc0->mpdgctrl0, 1 << 30); if (sysinfo->dsize == 2) setbits_le32(&mmdc1->mpdgctrl0, 1 << 30); /* Set bit 28 to start automatic read DQS gating calibration */ setbits_le32(&mmdc0->mpdgctrl0, 5 << 28); /* Poll for completion. MPDGCTRL0[HW_DG_EN] should be 0 */ wait_for_bit_le32(&mmdc0->mpdgctrl0, 1 << 28, 0, 100, 0); /* * Check to see if any errors were encountered during calibration * (check MPDGCTRL0[HW_DG_ERR]). * Check both PHYs for x64 configuration, if x32, check only PHY0. */ if (readl(&mmdc0->mpdgctrl0) & 0x00001000) errors |= 1; if ((sysinfo->dsize == 0x2) && (readl(&mmdc1->mpdgctrl0) & 0x00001000)) errors |= 2; /* now disable mpdgctrl0[DG_CMP_CYC] */ clrbits_le32(&mmdc0->mpdgctrl0, 1 << 30); if (sysinfo->dsize == 2) clrbits_le32(&mmdc1->mpdgctrl0, 1 << 30); /* * DQS gating absolute offset should be modified from * reflecting (HW_DG_LOWx + HW_DG_UPx)/2 to * reflecting (HW_DG_UPx - 0x80) */ modify_dg_result(&mmdc0->mpdghwst0, &mmdc0->mpdghwst1, &mmdc0->mpdgctrl0); modify_dg_result(&mmdc0->mpdghwst2, &mmdc0->mpdghwst3, &mmdc0->mpdgctrl1); if (sysinfo->dsize == 0x2) { modify_dg_result(&mmdc1->mpdghwst0, &mmdc1->mpdghwst1, &mmdc1->mpdgctrl0); modify_dg_result(&mmdc1->mpdghwst2, &mmdc1->mpdghwst3, &mmdc1->mpdgctrl1); } debug("Ending Read DQS Gating calibration. Error mask: 0x%x\n", errors); /* * ********************** * Read Delay calibration * ********************** */ debug("Starting Read Delay calibration.\n"); reset_read_data_fifos(); /* * 4. Issue the Precharge-All command to the DDR device for both * chip selects. If only using one chip select, then precharge * only the desired chip select. */ precharge_all(cs0_enable, cs1_enable); /* * 9. Read delay-line calibration * Start the automatic read calibration process by asserting * MPRDDLHWCTL[HW_RD_DL_EN]. */ writel(0x00000030, &mmdc0->mprddlhwctl); /* * 10. poll for completion * MMDC indicates that the write data calibration had finished by * setting MPRDDLHWCTL[HW_RD_DL_EN] = 0. Also, ensure that * no error bits were set. */ wait_for_bit_le32(&mmdc0->mprddlhwctl, 1 << 4, 0, 100, 0); /* check both PHYs for x64 configuration, if x32, check only PHY0 */ if (readl(&mmdc0->mprddlhwctl) & 0x0000000f) errors |= 4; if ((sysinfo->dsize == 0x2) && (readl(&mmdc1->mprddlhwctl) & 0x0000000f)) errors |= 8; debug("Ending Read Delay calibration. Error mask: 0x%x\n", errors); /* * *********************** * Write Delay Calibration * *********************** */ debug("Starting Write Delay calibration.\n"); reset_read_data_fifos(); /* * 4. Issue the Precharge-All command to the DDR device for both * chip selects. If only using one chip select, then precharge * only the desired chip select. */ precharge_all(cs0_enable, cs1_enable); /* * 8. Set the WR_DL_ABS# bits to their default values. * Both PHYs for x64 configuration, if x32, do only PHY0. */ writel(initdelay, &mmdc0->mpwrdlctl); if (sysinfo->dsize == 0x2) writel(initdelay, &mmdc1->mpwrdlctl); /* * XXX This isn't in the manual. Force a measurement, * for previous delay setup to effect. */ force_delay_measurement(sysinfo->dsize); /* * 9. 10. Start the automatic write calibration process * by asserting MPWRDLHWCTL0[HW_WR_DL_EN]. */ writel(0x00000030, &mmdc0->mpwrdlhwctl); /* * Poll for completion. * MMDC indicates that the write data calibration had finished * by setting MPWRDLHWCTL[HW_WR_DL_EN] = 0. * Also, ensure that no error bits were set. */ wait_for_bit_le32(&mmdc0->mpwrdlhwctl, 1 << 4, 0, 100, 0); /* Check both PHYs for x64 configuration, if x32, check only PHY0 */ if (readl(&mmdc0->mpwrdlhwctl) & 0x0000000f) errors |= 16; if ((sysinfo->dsize == 0x2) && (readl(&mmdc1->mpwrdlhwctl) & 0x0000000f)) errors |= 32; debug("Ending Write Delay calibration. Error mask: 0x%x\n", errors); reset_read_data_fifos(); /* Enable DDR logic power down timer */ setbits_le32(&mmdc0->mdpdc, 0x00005500); /* Enable Adopt power down timer */ clrbits_le32(&mmdc0->mapsr, 0x1); /* Restore MDMISC value (RALAT, WALAT) to MMDCP1 */ writel(esdmisc_val, &mmdc0->mdmisc); /* Clear DQS pull ups */ mmdc_set_sdqs(false); /* Re-enable SDE (chip selects) if they were set initially */ if (cs1_enable_initial) /* Set SDE_1 */ setbits_le32(&mmdc0->mdctl, 1 << 30); if (cs0_enable_initial) /* Set SDE_0 */ setbits_le32(&mmdc0->mdctl, 1 << 31); /* Re-enable to auto refresh */ writel(temp_ref, &mmdc0->mdref); /* Clear the MDSCR (including the con_req bit) */ writel(0x0, &mmdc0->mdscr); /* CS0 */ /* Poll to make sure the con_ack bit is clear */ wait_for_bit_le32(&mmdc0->mdscr, 1 << 14, 0, 100, 0); /* * Print out the registers that were updated as a result * of the calibration process. */ debug("MMDC registers updated from calibration\n"); debug("Read DQS gating calibration:\n"); debug("\tMPDGCTRL0 PHY0 = 0x%08x\n", readl(&mmdc0->mpdgctrl0)); debug("\tMPDGCTRL1 PHY0 = 0x%08x\n", readl(&mmdc0->mpdgctrl1)); if (sysinfo->dsize == 2) { debug("\tMPDGCTRL0 PHY1 = 0x%08x\n", readl(&mmdc1->mpdgctrl0)); debug("\tMPDGCTRL1 PHY1 = 0x%08x\n", readl(&mmdc1->mpdgctrl1)); } debug("Read calibration:\n"); debug("\tMPRDDLCTL PHY0 = 0x%08x\n", readl(&mmdc0->mprddlctl)); if (sysinfo->dsize == 2) debug("\tMPRDDLCTL PHY1 = 0x%08x\n", readl(&mmdc1->mprddlctl)); debug("Write calibration:\n"); debug("\tMPWRDLCTL PHY0 = 0x%08x\n", readl(&mmdc0->mpwrdlctl)); if (sysinfo->dsize == 2) debug("\tMPWRDLCTL PHY1 = 0x%08x\n", readl(&mmdc1->mpwrdlctl)); /* * Registers below are for debugging purposes. These print out * the upper and lower boundaries captured during * read DQS gating calibration. */ debug("Status registers bounds for read DQS gating:\n"); debug("\tMPDGHWST0 PHY0 = 0x%08x\n", readl(&mmdc0->mpdghwst0)); debug("\tMPDGHWST1 PHY0 = 0x%08x\n", readl(&mmdc0->mpdghwst1)); debug("\tMPDGHWST2 PHY0 = 0x%08x\n", readl(&mmdc0->mpdghwst2)); debug("\tMPDGHWST3 PHY0 = 0x%08x\n", readl(&mmdc0->mpdghwst3)); if (sysinfo->dsize == 2) { debug("\tMPDGHWST0 PHY1 = 0x%08x\n", readl(&mmdc1->mpdghwst0)); debug("\tMPDGHWST1 PHY1 = 0x%08x\n", readl(&mmdc1->mpdghwst1)); debug("\tMPDGHWST2 PHY1 = 0x%08x\n", readl(&mmdc1->mpdghwst2)); debug("\tMPDGHWST3 PHY1 = 0x%08x\n", readl(&mmdc1->mpdghwst3)); } debug("Final do_dqs_calibration error mask: 0x%x\n", errors); return errors; } #endif #if defined(CONFIG_MX6SX) /* Configure MX6SX mmdc iomux */ void mx6sx_dram_iocfg(unsigned width, const struct mx6sx_iomux_ddr_regs *ddr, const struct mx6sx_iomux_grp_regs *grp) { struct mx6sx_iomux_ddr_regs *mx6_ddr_iomux; struct mx6sx_iomux_grp_regs *mx6_grp_iomux; mx6_ddr_iomux = (struct mx6sx_iomux_ddr_regs *)MX6SX_IOM_DDR_BASE; mx6_grp_iomux = (struct mx6sx_iomux_grp_regs *)MX6SX_IOM_GRP_BASE; /* DDR IO TYPE */ writel(grp->grp_ddr_type, &mx6_grp_iomux->grp_ddr_type); writel(grp->grp_ddrpke, &mx6_grp_iomux->grp_ddrpke); /* CLOCK */ writel(ddr->dram_sdclk_0, &mx6_ddr_iomux->dram_sdclk_0); /* ADDRESS */ writel(ddr->dram_cas, &mx6_ddr_iomux->dram_cas); writel(ddr->dram_ras, &mx6_ddr_iomux->dram_ras); writel(grp->grp_addds, &mx6_grp_iomux->grp_addds); /* Control */ writel(ddr->dram_reset, &mx6_ddr_iomux->dram_reset); writel(ddr->dram_sdba2, &mx6_ddr_iomux->dram_sdba2); writel(ddr->dram_sdcke0, &mx6_ddr_iomux->dram_sdcke0); writel(ddr->dram_sdcke1, &mx6_ddr_iomux->dram_sdcke1); writel(ddr->dram_odt0, &mx6_ddr_iomux->dram_odt0); writel(ddr->dram_odt1, &mx6_ddr_iomux->dram_odt1); writel(grp->grp_ctlds, &mx6_grp_iomux->grp_ctlds); /* Data Strobes */ writel(grp->grp_ddrmode_ctl, &mx6_grp_iomux->grp_ddrmode_ctl); writel(ddr->dram_sdqs0, &mx6_ddr_iomux->dram_sdqs0); writel(ddr->dram_sdqs1, &mx6_ddr_iomux->dram_sdqs1); if (width >= 32) { writel(ddr->dram_sdqs2, &mx6_ddr_iomux->dram_sdqs2); writel(ddr->dram_sdqs3, &mx6_ddr_iomux->dram_sdqs3); } /* Data */ writel(grp->grp_ddrmode, &mx6_grp_iomux->grp_ddrmode); writel(grp->grp_b0ds, &mx6_grp_iomux->grp_b0ds); writel(grp->grp_b1ds, &mx6_grp_iomux->grp_b1ds); if (width >= 32) { writel(grp->grp_b2ds, &mx6_grp_iomux->grp_b2ds); writel(grp->grp_b3ds, &mx6_grp_iomux->grp_b3ds); } writel(ddr->dram_dqm0, &mx6_ddr_iomux->dram_dqm0); writel(ddr->dram_dqm1, &mx6_ddr_iomux->dram_dqm1); if (width >= 32) { writel(ddr->dram_dqm2, &mx6_ddr_iomux->dram_dqm2); writel(ddr->dram_dqm3, &mx6_ddr_iomux->dram_dqm3); } } #endif #if defined(CONFIG_MX6UL) || defined(CONFIG_MX6ULL) void mx6ul_dram_iocfg(unsigned width, const struct mx6ul_iomux_ddr_regs *ddr, const struct mx6ul_iomux_grp_regs *grp) { struct mx6ul_iomux_ddr_regs *mx6_ddr_iomux; struct mx6ul_iomux_grp_regs *mx6_grp_iomux; mx6_ddr_iomux = (struct mx6ul_iomux_ddr_regs *)MX6UL_IOM_DDR_BASE; mx6_grp_iomux = (struct mx6ul_iomux_grp_regs *)MX6UL_IOM_GRP_BASE; /* DDR IO TYPE */ writel(grp->grp_ddr_type, &mx6_grp_iomux->grp_ddr_type); writel(grp->grp_ddrpke, &mx6_grp_iomux->grp_ddrpke); /* CLOCK */ writel(ddr->dram_sdclk_0, &mx6_ddr_iomux->dram_sdclk_0); /* ADDRESS */ writel(ddr->dram_cas, &mx6_ddr_iomux->dram_cas); writel(ddr->dram_ras, &mx6_ddr_iomux->dram_ras); writel(grp->grp_addds, &mx6_grp_iomux->grp_addds); /* Control */ writel(ddr->dram_reset, &mx6_ddr_iomux->dram_reset); writel(ddr->dram_sdba2, &mx6_ddr_iomux->dram_sdba2); writel(ddr->dram_odt0, &mx6_ddr_iomux->dram_odt0); writel(ddr->dram_odt1, &mx6_ddr_iomux->dram_odt1); writel(grp->grp_ctlds, &mx6_grp_iomux->grp_ctlds); /* Data Strobes */ writel(grp->grp_ddrmode_ctl, &mx6_grp_iomux->grp_ddrmode_ctl); writel(ddr->dram_sdqs0, &mx6_ddr_iomux->dram_sdqs0); writel(ddr->dram_sdqs1, &mx6_ddr_iomux->dram_sdqs1); /* Data */ writel(grp->grp_ddrmode, &mx6_grp_iomux->grp_ddrmode); writel(grp->grp_b0ds, &mx6_grp_iomux->grp_b0ds); writel(grp->grp_b1ds, &mx6_grp_iomux->grp_b1ds); writel(ddr->dram_dqm0, &mx6_ddr_iomux->dram_dqm0); writel(ddr->dram_dqm1, &mx6_ddr_iomux->dram_dqm1); } #endif #if defined(CONFIG_MX6SL) void mx6sl_dram_iocfg(unsigned width, const struct mx6sl_iomux_ddr_regs *ddr, const struct mx6sl_iomux_grp_regs *grp) { struct mx6sl_iomux_ddr_regs *mx6_ddr_iomux; struct mx6sl_iomux_grp_regs *mx6_grp_iomux; mx6_ddr_iomux = (struct mx6sl_iomux_ddr_regs *)MX6SL_IOM_DDR_BASE; mx6_grp_iomux = (struct mx6sl_iomux_grp_regs *)MX6SL_IOM_GRP_BASE; /* DDR IO TYPE */ mx6_grp_iomux->grp_ddr_type = grp->grp_ddr_type; mx6_grp_iomux->grp_ddrpke = grp->grp_ddrpke; /* CLOCK */ mx6_ddr_iomux->dram_sdclk_0 = ddr->dram_sdclk_0; /* ADDRESS */ mx6_ddr_iomux->dram_cas = ddr->dram_cas; mx6_ddr_iomux->dram_ras = ddr->dram_ras; mx6_grp_iomux->grp_addds = grp->grp_addds; /* Control */ mx6_ddr_iomux->dram_reset = ddr->dram_reset; mx6_ddr_iomux->dram_sdba2 = ddr->dram_sdba2; mx6_grp_iomux->grp_ctlds = grp->grp_ctlds; /* Data Strobes */ mx6_grp_iomux->grp_ddrmode_ctl = grp->grp_ddrmode_ctl; mx6_ddr_iomux->dram_sdqs0 = ddr->dram_sdqs0; mx6_ddr_iomux->dram_sdqs1 = ddr->dram_sdqs1; if (width >= 32) { mx6_ddr_iomux->dram_sdqs2 = ddr->dram_sdqs2; mx6_ddr_iomux->dram_sdqs3 = ddr->dram_sdqs3; } /* Data */ mx6_grp_iomux->grp_ddrmode = grp->grp_ddrmode; mx6_grp_iomux->grp_b0ds = grp->grp_b0ds; mx6_grp_iomux->grp_b1ds = grp->grp_b1ds; if (width >= 32) { mx6_grp_iomux->grp_b2ds = grp->grp_b2ds; mx6_grp_iomux->grp_b3ds = grp->grp_b3ds; } mx6_ddr_iomux->dram_dqm0 = ddr->dram_dqm0; mx6_ddr_iomux->dram_dqm1 = ddr->dram_dqm1; if (width >= 32) { mx6_ddr_iomux->dram_dqm2 = ddr->dram_dqm2; mx6_ddr_iomux->dram_dqm3 = ddr->dram_dqm3; } } #endif #if defined(CONFIG_MX6QDL) || defined(CONFIG_MX6Q) || defined(CONFIG_MX6D) /* Configure MX6DQ mmdc iomux */ void mx6dq_dram_iocfg(unsigned width, const struct mx6dq_iomux_ddr_regs *ddr, const struct mx6dq_iomux_grp_regs *grp) { volatile struct mx6dq_iomux_ddr_regs *mx6_ddr_iomux; volatile struct mx6dq_iomux_grp_regs *mx6_grp_iomux; mx6_ddr_iomux = (struct mx6dq_iomux_ddr_regs *)MX6DQ_IOM_DDR_BASE; mx6_grp_iomux = (struct mx6dq_iomux_grp_regs *)MX6DQ_IOM_GRP_BASE; /* DDR IO Type */ mx6_grp_iomux->grp_ddr_type = grp->grp_ddr_type; mx6_grp_iomux->grp_ddrpke = grp->grp_ddrpke; /* Clock */ mx6_ddr_iomux->dram_sdclk_0 = ddr->dram_sdclk_0; mx6_ddr_iomux->dram_sdclk_1 = ddr->dram_sdclk_1; /* Address */ mx6_ddr_iomux->dram_cas = ddr->dram_cas; mx6_ddr_iomux->dram_ras = ddr->dram_ras; mx6_grp_iomux->grp_addds = grp->grp_addds; /* Control */ mx6_ddr_iomux->dram_reset = ddr->dram_reset; mx6_ddr_iomux->dram_sdcke0 = ddr->dram_sdcke0; mx6_ddr_iomux->dram_sdcke1 = ddr->dram_sdcke1; mx6_ddr_iomux->dram_sdba2 = ddr->dram_sdba2; mx6_ddr_iomux->dram_sdodt0 = ddr->dram_sdodt0; mx6_ddr_iomux->dram_sdodt1 = ddr->dram_sdodt1; mx6_grp_iomux->grp_ctlds = grp->grp_ctlds; /* Data Strobes */ mx6_grp_iomux->grp_ddrmode_ctl = grp->grp_ddrmode_ctl; mx6_ddr_iomux->dram_sdqs0 = ddr->dram_sdqs0; mx6_ddr_iomux->dram_sdqs1 = ddr->dram_sdqs1; if (width >= 32) { mx6_ddr_iomux->dram_sdqs2 = ddr->dram_sdqs2; mx6_ddr_iomux->dram_sdqs3 = ddr->dram_sdqs3; } if (width >= 64) { mx6_ddr_iomux->dram_sdqs4 = ddr->dram_sdqs4; mx6_ddr_iomux->dram_sdqs5 = ddr->dram_sdqs5; mx6_ddr_iomux->dram_sdqs6 = ddr->dram_sdqs6; mx6_ddr_iomux->dram_sdqs7 = ddr->dram_sdqs7; } /* Data */ mx6_grp_iomux->grp_ddrmode = grp->grp_ddrmode; mx6_grp_iomux->grp_b0ds = grp->grp_b0ds; mx6_grp_iomux->grp_b1ds = grp->grp_b1ds; if (width >= 32) { mx6_grp_iomux->grp_b2ds = grp->grp_b2ds; mx6_grp_iomux->grp_b3ds = grp->grp_b3ds; } if (width >= 64) { mx6_grp_iomux->grp_b4ds = grp->grp_b4ds; mx6_grp_iomux->grp_b5ds = grp->grp_b5ds; mx6_grp_iomux->grp_b6ds = grp->grp_b6ds; mx6_grp_iomux->grp_b7ds = grp->grp_b7ds; } mx6_ddr_iomux->dram_dqm0 = ddr->dram_dqm0; mx6_ddr_iomux->dram_dqm1 = ddr->dram_dqm1; if (width >= 32) { mx6_ddr_iomux->dram_dqm2 = ddr->dram_dqm2; mx6_ddr_iomux->dram_dqm3 = ddr->dram_dqm3; } if (width >= 64) { mx6_ddr_iomux->dram_dqm4 = ddr->dram_dqm4; mx6_ddr_iomux->dram_dqm5 = ddr->dram_dqm5; mx6_ddr_iomux->dram_dqm6 = ddr->dram_dqm6; mx6_ddr_iomux->dram_dqm7 = ddr->dram_dqm7; } } #endif #if defined(CONFIG_MX6QDL) || defined(CONFIG_MX6DL) || defined(CONFIG_MX6S) /* Configure MX6SDL mmdc iomux */ void mx6sdl_dram_iocfg(unsigned width, const struct mx6sdl_iomux_ddr_regs *ddr, const struct mx6sdl_iomux_grp_regs *grp) { volatile struct mx6sdl_iomux_ddr_regs *mx6_ddr_iomux; volatile struct mx6sdl_iomux_grp_regs *mx6_grp_iomux; mx6_ddr_iomux = (struct mx6sdl_iomux_ddr_regs *)MX6SDL_IOM_DDR_BASE; mx6_grp_iomux = (struct mx6sdl_iomux_grp_regs *)MX6SDL_IOM_GRP_BASE; /* DDR IO Type */ mx6_grp_iomux->grp_ddr_type = grp->grp_ddr_type; mx6_grp_iomux->grp_ddrpke = grp->grp_ddrpke; /* Clock */ mx6_ddr_iomux->dram_sdclk_0 = ddr->dram_sdclk_0; mx6_ddr_iomux->dram_sdclk_1 = ddr->dram_sdclk_1; /* Address */ mx6_ddr_iomux->dram_cas = ddr->dram_cas; mx6_ddr_iomux->dram_ras = ddr->dram_ras; mx6_grp_iomux->grp_addds = grp->grp_addds; /* Control */ mx6_ddr_iomux->dram_reset = ddr->dram_reset; mx6_ddr_iomux->dram_sdcke0 = ddr->dram_sdcke0; mx6_ddr_iomux->dram_sdcke1 = ddr->dram_sdcke1; mx6_ddr_iomux->dram_sdba2 = ddr->dram_sdba2; mx6_ddr_iomux->dram_sdodt0 = ddr->dram_sdodt0; mx6_ddr_iomux->dram_sdodt1 = ddr->dram_sdodt1; mx6_grp_iomux->grp_ctlds = grp->grp_ctlds; /* Data Strobes */ mx6_grp_iomux->grp_ddrmode_ctl = grp->grp_ddrmode_ctl; mx6_ddr_iomux->dram_sdqs0 = ddr->dram_sdqs0; mx6_ddr_iomux->dram_sdqs1 = ddr->dram_sdqs1; if (width >= 32) { mx6_ddr_iomux->dram_sdqs2 = ddr->dram_sdqs2; mx6_ddr_iomux->dram_sdqs3 = ddr->dram_sdqs3; } if (width >= 64) { mx6_ddr_iomux->dram_sdqs4 = ddr->dram_sdqs4; mx6_ddr_iomux->dram_sdqs5 = ddr->dram_sdqs5; mx6_ddr_iomux->dram_sdqs6 = ddr->dram_sdqs6; mx6_ddr_iomux->dram_sdqs7 = ddr->dram_sdqs7; } /* Data */ mx6_grp_iomux->grp_ddrmode = grp->grp_ddrmode; mx6_grp_iomux->grp_b0ds = grp->grp_b0ds; mx6_grp_iomux->grp_b1ds = grp->grp_b1ds; if (width >= 32) { mx6_grp_iomux->grp_b2ds = grp->grp_b2ds; mx6_grp_iomux->grp_b3ds = grp->grp_b3ds; } if (width >= 64) { mx6_grp_iomux->grp_b4ds = grp->grp_b4ds; mx6_grp_iomux->grp_b5ds = grp->grp_b5ds; mx6_grp_iomux->grp_b6ds = grp->grp_b6ds; mx6_grp_iomux->grp_b7ds = grp->grp_b7ds; } mx6_ddr_iomux->dram_dqm0 = ddr->dram_dqm0; mx6_ddr_iomux->dram_dqm1 = ddr->dram_dqm1; if (width >= 32) { mx6_ddr_iomux->dram_dqm2 = ddr->dram_dqm2; mx6_ddr_iomux->dram_dqm3 = ddr->dram_dqm3; } if (width >= 64) { mx6_ddr_iomux->dram_dqm4 = ddr->dram_dqm4; mx6_ddr_iomux->dram_dqm5 = ddr->dram_dqm5; mx6_ddr_iomux->dram_dqm6 = ddr->dram_dqm6; mx6_ddr_iomux->dram_dqm7 = ddr->dram_dqm7; } } #endif /* * Configure mx6 mmdc registers based on: * - board-specific memory configuration * - board-specific calibration data * - ddr3/lpddr2 chip details * * The various calculations here are derived from the Freescale * 1. i.Mx6DQSDL DDR3 Script Aid spreadsheet (DOC-94917) designed to generate * MMDC configuration registers based on memory system and memory chip * parameters. * * 2. i.Mx6SL LPDDR2 Script Aid spreadsheet V0.04 designed to generate MMDC * configuration registers based on memory system and memory chip * parameters. * * The defaults here are those which were specified in the spreadsheet. * For details on each register, refer to the IMX6DQRM and/or IMX6SDLRM * and/or IMX6SLRM section titled MMDC initialization. */ #define MR(val, ba, cmd, cs1) \ ((val << 16) | (1 << 15) | (cmd << 4) | (cs1 << 3) | ba) #define MMDC1(entry, value) do { \ if (!is_mx6sx() && !is_mx6ul() && !is_mx6ull() && !is_mx6sl()) \ mmdc1->entry = value; \ } while (0) /* see BOOT_CFG3 description Table 5-4. EIM Boot Fusemap */ #define BOOT_CFG3_DDR_MASK 0x30 #define BOOT_CFG3_EXT_DDR_MASK 0x33 #define DDR_MMAP_NOC_SINGLE 0 #define DDR_MMAP_NOC_DUAL 0x31 /* NoC ACTIVATE shifts */ #define NOC_RD_SHIFT 0 #define NOC_FAW_PERIOD_SHIFT 4 #define NOC_FAW_BANKS_SHIFT 10 /* NoC DdrTiming shifts */ #define NOC_ACT_TO_ACT_SHIFT 0 #define NOC_RD_TO_MISS_SHIFT 6 #define NOC_WR_TO_MISS_SHIFT 12 #define NOC_BURST_LEN_SHIFT 18 #define NOC_RD_TO_WR_SHIFT 21 #define NOC_WR_TO_RD_SHIFT 26 #define NOC_BW_RATIO_SHIFT 31 /* * According JESD209-2B-LPDDR2: Table 103 * WL: write latency */ static int lpddr2_wl(uint32_t mem_speed) { switch (mem_speed) { case 1066: case 933: return 4; case 800: return 3; case 677: case 533: return 2; case 400: case 333: return 1; default: puts("invalid memory speed\n"); hang(); } return 0; } /* * According JESD209-2B-LPDDR2: Table 103 * RL: read latency */ static int lpddr2_rl(uint32_t mem_speed) { switch (mem_speed) { case 1066: return 8; case 933: return 7; case 800: return 6; case 677: return 5; case 533: return 4; case 400: case 333: return 3; default: puts("invalid memory speed\n"); hang(); } return 0; } void mx6_lpddr2_cfg(const struct mx6_ddr_sysinfo *sysinfo, const struct mx6_mmdc_calibration *calib, const struct mx6_lpddr2_cfg *lpddr2_cfg) { volatile struct mmdc_p_regs *mmdc0; u32 val; u8 tcke, tcksrx, tcksre, trrd; u8 twl, txp, tfaw, tcl; u16 tras, twr, tmrd, trtp, twtr, trfc, txsr; u16 trcd_lp, trppb_lp, trpab_lp, trc_lp; u16 cs0_end; u8 coladdr; int clkper; /* clock period in picoseconds */ int clock; /* clock freq in mHz */ int cs; /* only support 16/32 bits */ if (sysinfo->dsize > 1) hang(); mmdc0 = (struct mmdc_p_regs *)MMDC_P0_BASE_ADDR; clock = mxc_get_clock(MXC_DDR_CLK) / 1000000U; clkper = (1000 * 1000) / clock; /* pico seconds */ twl = lpddr2_wl(lpddr2_cfg->mem_speed) - 1; /* LPDDR2-S2 and LPDDR2-S4 have the same tRFC value. */ switch (lpddr2_cfg->density) { case 1: case 2: case 4: trfc = DIV_ROUND_UP(130000, clkper) - 1; txsr = DIV_ROUND_UP(140000, clkper) - 1; break; case 8: trfc = DIV_ROUND_UP(210000, clkper) - 1; txsr = DIV_ROUND_UP(220000, clkper) - 1; break; default: /* * 64Mb, 128Mb, 256Mb, 512Mb are not supported currently. */ hang(); break; } /* * txpdll, txpr, taonpd and taofpd are not relevant in LPDDR2 mode, * set them to 0. */ txp = DIV_ROUND_UP(7500, clkper) - 1; tcke = 3; if (lpddr2_cfg->mem_speed == 333) tfaw = DIV_ROUND_UP(60000, clkper) - 1; else tfaw = DIV_ROUND_UP(50000, clkper) - 1; trrd = DIV_ROUND_UP(10000, clkper) - 1; /* tckesr for LPDDR2 */ tcksre = DIV_ROUND_UP(15000, clkper); tcksrx = tcksre; twr = DIV_ROUND_UP(15000, clkper) - 1; /* * tMRR: 2, tMRW: 5 * tMRD should be set to max(tMRR, tMRW) */ tmrd = 5; tras = DIV_ROUND_UP(lpddr2_cfg->trasmin, clkper / 10) - 1; /* LPDDR2 mode use tRCD_LP filed in MDCFG3. */ trcd_lp = DIV_ROUND_UP(lpddr2_cfg->trcd_lp, clkper / 10) - 1; trc_lp = DIV_ROUND_UP(lpddr2_cfg->trasmin + lpddr2_cfg->trppb_lp, clkper / 10) - 1; trppb_lp = DIV_ROUND_UP(lpddr2_cfg->trppb_lp, clkper / 10) - 1; trpab_lp = DIV_ROUND_UP(lpddr2_cfg->trpab_lp, clkper / 10) - 1; /* To LPDDR2, CL in MDCFG0 refers to RL */ tcl = lpddr2_rl(lpddr2_cfg->mem_speed) - 3; twtr = DIV_ROUND_UP(7500, clkper) - 1; trtp = DIV_ROUND_UP(7500, clkper) - 1; cs0_end = 4 * sysinfo->cs_density - 1; debug("density:%d Gb (%d Gb per chip)\n", sysinfo->cs_density, lpddr2_cfg->density); debug("clock: %dMHz (%d ps)\n", clock, clkper); debug("memspd:%d\n", lpddr2_cfg->mem_speed); debug("trcd_lp=%d\n", trcd_lp); debug("trppb_lp=%d\n", trppb_lp); debug("trpab_lp=%d\n", trpab_lp); debug("trc_lp=%d\n", trc_lp); debug("tcke=%d\n", tcke); debug("tcksrx=%d\n", tcksrx); debug("tcksre=%d\n", tcksre); debug("trfc=%d\n", trfc); debug("txsr=%d\n", txsr); debug("txp=%d\n", txp); debug("tfaw=%d\n", tfaw); debug("tcl=%d\n", tcl); debug("tras=%d\n", tras); debug("twr=%d\n", twr); debug("tmrd=%d\n", tmrd); debug("twl=%d\n", twl); debug("trtp=%d\n", trtp); debug("twtr=%d\n", twtr); debug("trrd=%d\n", trrd); debug("cs0_end=%d\n", cs0_end); debug("ncs=%d\n", sysinfo->ncs); /* * board-specific configuration: * These values are determined empirically and vary per board layout */ mmdc0->mpwldectrl0 = calib->p0_mpwldectrl0; mmdc0->mpwldectrl1 = calib->p0_mpwldectrl1; mmdc0->mpdgctrl0 = calib->p0_mpdgctrl0; mmdc0->mpdgctrl1 = calib->p0_mpdgctrl1; mmdc0->mprddlctl = calib->p0_mprddlctl; mmdc0->mpwrdlctl = calib->p0_mpwrdlctl; mmdc0->mpzqlp2ctl = calib->mpzqlp2ctl; /* Read data DQ Byte0-3 delay */ mmdc0->mprddqby0dl = 0x33333333; mmdc0->mprddqby1dl = 0x33333333; if (sysinfo->dsize > 0) { mmdc0->mprddqby2dl = 0x33333333; mmdc0->mprddqby3dl = 0x33333333; } /* Write data DQ Byte0-3 delay */ mmdc0->mpwrdqby0dl = 0xf3333333; mmdc0->mpwrdqby1dl = 0xf3333333; if (sysinfo->dsize > 0) { mmdc0->mpwrdqby2dl = 0xf3333333; mmdc0->mpwrdqby3dl = 0xf3333333; } /* * In LPDDR2 mode this register should be cleared, * so no termination will be activated. */ mmdc0->mpodtctrl = 0; /* complete calibration */ val = (1 << 11); /* Force measurement on delay-lines */ mmdc0->mpmur0 = val; /* Step 1: configuration request */ mmdc0->mdscr = (u32)(1 << 15); /* config request */ /* Step 2: Timing configuration */ mmdc0->mdcfg0 = (trfc << 24) | (txsr << 16) | (txp << 13) | (tfaw << 4) | tcl; mmdc0->mdcfg1 = (tras << 16) | (twr << 9) | (tmrd << 5) | twl; mmdc0->mdcfg2 = (trtp << 6) | (twtr << 3) | trrd; mmdc0->mdcfg3lp = (trc_lp << 16) | (trcd_lp << 8) | (trppb_lp << 4) | trpab_lp; mmdc0->mdotc = 0; mmdc0->mdasp = cs0_end; /* CS addressing */ /* Step 3: Configure DDR type */ mmdc0->mdmisc = (sysinfo->cs1_mirror << 19) | (sysinfo->walat << 16) | (sysinfo->bi_on << 12) | (sysinfo->mif3_mode << 9) | (sysinfo->ralat << 6) | (1 << 3); /* Step 4: Configure delay while leaving reset */ mmdc0->mdor = (sysinfo->sde_to_rst << 8) | (sysinfo->rst_to_cke << 0); /* Step 5: Configure DDR physical parameters (density and burst len) */ coladdr = lpddr2_cfg->coladdr; if (lpddr2_cfg->coladdr == 8) /* 8-bit COL is 0x3 */ coladdr += 4; else if (lpddr2_cfg->coladdr == 12) /* 12-bit COL is 0x4 */ coladdr += 1; mmdc0->mdctl = (lpddr2_cfg->rowaddr - 11) << 24 | /* ROW */ (coladdr - 9) << 20 | /* COL */ (0 << 19) | /* Burst Length = 4 for LPDDR2 */ (sysinfo->dsize << 16); /* DDR data bus size */ /* Step 6: Perform ZQ calibration */ val = 0xa1390003; /* one-time HW ZQ calib */ mmdc0->mpzqhwctrl = val; /* Step 7: Enable MMDC with desired chip select */ mmdc0->mdctl |= (1 << 31) | /* SDE_0 for CS0 */ ((sysinfo->ncs == 2) ? 1 : 0) << 30; /* SDE_1 for CS1 */ /* Step 8: Write Mode Registers to Init LPDDR2 devices */ for (cs = 0; cs < sysinfo->ncs; cs++) { /* MR63: reset */ mmdc0->mdscr = MR(63, 0, 3, cs); /* MR10: calibration, * 0xff is calibration command after intilization. */ val = 0xA | (0xff << 8); mmdc0->mdscr = MR(val, 0, 3, cs); /* MR1 */ val = 0x1 | (0x82 << 8); mmdc0->mdscr = MR(val, 0, 3, cs); /* MR2 */ val = 0x2 | (0x04 << 8); mmdc0->mdscr = MR(val, 0, 3, cs); /* MR3 */ val = 0x3 | (0x02 << 8); mmdc0->mdscr = MR(val, 0, 3, cs); } /* Step 10: Power down control and self-refresh */ mmdc0->mdpdc = (tcke & 0x7) << 16 | 5 << 12 | /* PWDT_1: 256 cycles */ 5 << 8 | /* PWDT_0: 256 cycles */ 1 << 6 | /* BOTH_CS_PD */ (tcksrx & 0x7) << 3 | (tcksre & 0x7); mmdc0->mapsr = 0x00001006; /* ADOPT power down enabled */ /* Step 11: Configure ZQ calibration: one-time and periodic 1ms */ val = 0xa1310003; mmdc0->mpzqhwctrl = val; /* Step 12: Configure and activate periodic refresh */ mmdc0->mdref = (sysinfo->refsel << 14) | (sysinfo->refr << 11); /* Step 13: Deassert config request - init complete */ mmdc0->mdscr = 0x00000000; /* wait for auto-ZQ calibration to complete */ mdelay(1); } void mx6_ddr3_cfg(const struct mx6_ddr_sysinfo *sysinfo, const struct mx6_mmdc_calibration *calib, const struct mx6_ddr3_cfg *ddr3_cfg) { volatile struct mmdc_p_regs *mmdc0; volatile struct mmdc_p_regs *mmdc1; struct src *src_regs = (struct src *)SRC_BASE_ADDR; u8 soc_boot_cfg3 = (readl(&src_regs->sbmr1) >> 16) & 0xff; u32 val; u8 tcke, tcksrx, tcksre, txpdll, taofpd, taonpd, trrd; u8 todtlon, taxpd, tanpd, tcwl, txp, tfaw, tcl; u8 todt_idle_off = 0x4; /* from DDR3 Script Aid spreadsheet */ u16 trcd, trc, tras, twr, tmrd, trtp, trp, twtr, trfc, txs, txpr; u16 cs0_end; u16 tdllk = 0x1ff; /* DLL locking time: 512 cycles (JEDEC DDR3) */ u8 coladdr; int clkper; /* clock period in picoseconds */ int clock; /* clock freq in MHz */ int cs; u16 mem_speed = ddr3_cfg->mem_speed; mmdc0 = (struct mmdc_p_regs *)MMDC_P0_BASE_ADDR; if (!is_mx6sx() && !is_mx6ul() && !is_mx6ull() && !is_mx6sl()) mmdc1 = (struct mmdc_p_regs *)MMDC_P1_BASE_ADDR; /* Limit mem_speed for MX6D/MX6Q */ if (is_mx6dq() || is_mx6dqp()) { if (mem_speed > 1066) mem_speed = 1066; /* 1066 MT/s */ tcwl = 4; } /* Limit mem_speed for MX6S/MX6DL */ else { if (mem_speed > 800) mem_speed = 800; /* 800 MT/s */ tcwl = 3; } clock = mem_speed / 2; /* * Data rate of 1066 MT/s requires 533 MHz DDR3 clock, but MX6D/Q supports * up to 528 MHz, so reduce the clock to fit chip specs */ if (is_mx6dq() || is_mx6dqp()) { if (clock > 528) clock = 528; /* 528 MHz */ } clkper = (1000 * 1000) / clock; /* pico seconds */ todtlon = tcwl; taxpd = tcwl; tanpd = tcwl; switch (ddr3_cfg->density) { case 1: /* 1Gb per chip */ trfc = DIV_ROUND_UP(110000, clkper) - 1; txs = DIV_ROUND_UP(120000, clkper) - 1; break; case 2: /* 2Gb per chip */ trfc = DIV_ROUND_UP(160000, clkper) - 1; txs = DIV_ROUND_UP(170000, clkper) - 1; break; case 4: /* 4Gb per chip */ trfc = DIV_ROUND_UP(260000, clkper) - 1; txs = DIV_ROUND_UP(270000, clkper) - 1; break; case 8: /* 8Gb per chip */ trfc = DIV_ROUND_UP(350000, clkper) - 1; txs = DIV_ROUND_UP(360000, clkper) - 1; break; default: /* invalid density */ puts("invalid chip density\n"); hang(); break; } txpr = txs; switch (mem_speed) { case 800: txp = DIV_ROUND_UP(max(3 * clkper, 7500), clkper) - 1; tcke = DIV_ROUND_UP(max(3 * clkper, 7500), clkper) - 1; if (ddr3_cfg->pagesz == 1) { tfaw = DIV_ROUND_UP(40000, clkper) - 1; trrd = DIV_ROUND_UP(max(4 * clkper, 10000), clkper) - 1; } else { tfaw = DIV_ROUND_UP(50000, clkper) - 1; trrd = DIV_ROUND_UP(max(4 * clkper, 10000), clkper) - 1; } break; case 1066: txp = DIV_ROUND_UP(max(3 * clkper, 7500), clkper) - 1; tcke = DIV_ROUND_UP(max(3 * clkper, 5625), clkper) - 1; if (ddr3_cfg->pagesz == 1) { tfaw = DIV_ROUND_UP(37500, clkper) - 1; trrd = DIV_ROUND_UP(max(4 * clkper, 7500), clkper) - 1; } else { tfaw = DIV_ROUND_UP(50000, clkper) - 1; trrd = DIV_ROUND_UP(max(4 * clkper, 10000), clkper) - 1; } break; default: puts("invalid memory speed\n"); hang(); break; } txpdll = DIV_ROUND_UP(max(10 * clkper, 24000), clkper) - 1; tcksre = DIV_ROUND_UP(max(5 * clkper, 10000), clkper); taonpd = DIV_ROUND_UP(2000, clkper) - 1; tcksrx = tcksre; taofpd = taonpd; twr = DIV_ROUND_UP(15000, clkper) - 1; tmrd = DIV_ROUND_UP(max(12 * clkper, 15000), clkper) - 1; trc = DIV_ROUND_UP(ddr3_cfg->trcmin, clkper / 10) - 1; tras = DIV_ROUND_UP(ddr3_cfg->trasmin, clkper / 10) - 1; tcl = DIV_ROUND_UP(ddr3_cfg->trcd, clkper / 10) - 3; trp = DIV_ROUND_UP(ddr3_cfg->trcd, clkper / 10) - 1; twtr = ROUND(max(4 * clkper, 7500) / clkper, 1) - 1; trcd = trp; trtp = twtr; cs0_end = 4 * sysinfo->cs_density - 1; debug("density:%d Gb (%d Gb per chip)\n", sysinfo->cs_density, ddr3_cfg->density); debug("clock: %dMHz (%d ps)\n", clock, clkper); debug("memspd:%d\n", mem_speed); debug("tcke=%d\n", tcke); debug("tcksrx=%d\n", tcksrx); debug("tcksre=%d\n", tcksre); debug("taofpd=%d\n", taofpd); debug("taonpd=%d\n", taonpd); debug("todtlon=%d\n", todtlon); debug("tanpd=%d\n", tanpd); debug("taxpd=%d\n", taxpd); debug("trfc=%d\n", trfc); debug("txs=%d\n", txs); debug("txp=%d\n", txp); debug("txpdll=%d\n", txpdll); debug("tfaw=%d\n", tfaw); debug("tcl=%d\n", tcl); debug("trcd=%d\n", trcd); debug("trp=%d\n", trp); debug("trc=%d\n", trc); debug("tras=%d\n", tras); debug("twr=%d\n", twr); debug("tmrd=%d\n", tmrd); debug("tcwl=%d\n", tcwl); debug("tdllk=%d\n", tdllk); debug("trtp=%d\n", trtp); debug("twtr=%d\n", twtr); debug("trrd=%d\n", trrd); debug("txpr=%d\n", txpr); debug("cs0_end=%d\n", cs0_end); debug("ncs=%d\n", sysinfo->ncs); debug("Rtt_wr=%d\n", sysinfo->rtt_wr); debug("Rtt_nom=%d\n", sysinfo->rtt_nom); debug("SRT=%d\n", ddr3_cfg->SRT); debug("twr=%d\n", twr); /* * board-specific configuration: * These values are determined empirically and vary per board layout * see: * appnote, ddr3 spreadsheet */ mmdc0->mpwldectrl0 = calib->p0_mpwldectrl0; mmdc0->mpwldectrl1 = calib->p0_mpwldectrl1; mmdc0->mpdgctrl0 = calib->p0_mpdgctrl0; mmdc0->mpdgctrl1 = calib->p0_mpdgctrl1; mmdc0->mprddlctl = calib->p0_mprddlctl; mmdc0->mpwrdlctl = calib->p0_mpwrdlctl; if (sysinfo->dsize > 1) { MMDC1(mpwldectrl0, calib->p1_mpwldectrl0); MMDC1(mpwldectrl1, calib->p1_mpwldectrl1); MMDC1(mpdgctrl0, calib->p1_mpdgctrl0); MMDC1(mpdgctrl1, calib->p1_mpdgctrl1); MMDC1(mprddlctl, calib->p1_mprddlctl); MMDC1(mpwrdlctl, calib->p1_mpwrdlctl); } /* Read data DQ Byte0-3 delay */ mmdc0->mprddqby0dl = 0x33333333; mmdc0->mprddqby1dl = 0x33333333; if (sysinfo->dsize > 0) { mmdc0->mprddqby2dl = 0x33333333; mmdc0->mprddqby3dl = 0x33333333; } if (sysinfo->dsize > 1) { MMDC1(mprddqby0dl, 0x33333333); MMDC1(mprddqby1dl, 0x33333333); MMDC1(mprddqby2dl, 0x33333333); MMDC1(mprddqby3dl, 0x33333333); } /* MMDC Termination: rtt_nom:2 RZQ/2(120ohm), rtt_nom:1 RZQ/4(60ohm) */ val = (sysinfo->rtt_nom == 2) ? 0x00011117 : 0x00022227; mmdc0->mpodtctrl = val; if (sysinfo->dsize > 1) MMDC1(mpodtctrl, val); /* complete calibration */ val = (1 << 11); /* Force measurement on delay-lines */ mmdc0->mpmur0 = val; if (sysinfo->dsize > 1) MMDC1(mpmur0, val); /* Step 1: configuration request */ mmdc0->mdscr = (u32)(1 << 15); /* config request */ /* Step 2: Timing configuration */ mmdc0->mdcfg0 = (trfc << 24) | (txs << 16) | (txp << 13) | (txpdll << 9) | (tfaw << 4) | tcl; mmdc0->mdcfg1 = (trcd << 29) | (trp << 26) | (trc << 21) | (tras << 16) | (1 << 15) /* trpa */ | (twr << 9) | (tmrd << 5) | tcwl; mmdc0->mdcfg2 = (tdllk << 16) | (trtp << 6) | (twtr << 3) | trrd; mmdc0->mdotc = (taofpd << 27) | (taonpd << 24) | (tanpd << 20) | (taxpd << 16) | (todtlon << 12) | (todt_idle_off << 4); mmdc0->mdasp = cs0_end; /* CS addressing */ /* Step 3: Configure DDR type */ mmdc0->mdmisc = (sysinfo->cs1_mirror << 19) | (sysinfo->walat << 16) | (sysinfo->bi_on << 12) | (sysinfo->mif3_mode << 9) | (sysinfo->ralat << 6); /* Step 4: Configure delay while leaving reset */ mmdc0->mdor = (txpr << 16) | (sysinfo->sde_to_rst << 8) | (sysinfo->rst_to_cke << 0); /* Step 5: Configure DDR physical parameters (density and burst len) */ coladdr = ddr3_cfg->coladdr; if (ddr3_cfg->coladdr == 8) /* 8-bit COL is 0x3 */ coladdr += 4; else if (ddr3_cfg->coladdr == 12) /* 12-bit COL is 0x4 */ coladdr += 1; mmdc0->mdctl = (ddr3_cfg->rowaddr - 11) << 24 | /* ROW */ (coladdr - 9) << 20 | /* COL */ (1 << 19) | /* Burst Length = 8 for DDR3 */ (sysinfo->dsize << 16); /* DDR data bus size */ /* Step 6: Perform ZQ calibration */ val = 0xa1390001; /* one-time HW ZQ calib */ mmdc0->mpzqhwctrl = val; if (sysinfo->dsize > 1) MMDC1(mpzqhwctrl, val); /* Step 7: Enable MMDC with desired chip select */ mmdc0->mdctl |= (1 << 31) | /* SDE_0 for CS0 */ ((sysinfo->ncs == 2) ? 1 : 0) << 30; /* SDE_1 for CS1 */ /* Step 8: Write Mode Registers to Init DDR3 devices */ for (cs = 0; cs < sysinfo->ncs; cs++) { /* MR2 */ val = (sysinfo->rtt_wr & 3) << 9 | (ddr3_cfg->SRT & 1) << 7 | ((tcwl - 3) & 3) << 3; debug("MR2 CS%d: 0x%08x\n", cs, (u32)MR(val, 2, 3, cs)); mmdc0->mdscr = MR(val, 2, 3, cs); /* MR3 */ debug("MR3 CS%d: 0x%08x\n", cs, (u32)MR(0, 3, 3, cs)); mmdc0->mdscr = MR(0, 3, 3, cs); /* MR1 */ val = ((sysinfo->rtt_nom & 1) ? 1 : 0) << 2 | ((sysinfo->rtt_nom & 2) ? 1 : 0) << 6; debug("MR1 CS%d: 0x%08x\n", cs, (u32)MR(val, 1, 3, cs)); mmdc0->mdscr = MR(val, 1, 3, cs); /* MR0 */ val = ((tcl - 1) << 4) | /* CAS */ (1 << 8) | /* DLL Reset */ ((twr - 3) << 9) | /* Write Recovery */ (sysinfo->pd_fast_exit << 12); /* Precharge PD PLL on */ debug("MR0 CS%d: 0x%08x\n", cs, (u32)MR(val, 0, 3, cs)); mmdc0->mdscr = MR(val, 0, 3, cs); /* ZQ calibration */ val = (1 << 10); mmdc0->mdscr = MR(val, 0, 4, cs); } /* Step 10: Power down control and self-refresh */ mmdc0->mdpdc = (tcke & 0x7) << 16 | 5 << 12 | /* PWDT_1: 256 cycles */ 5 << 8 | /* PWDT_0: 256 cycles */ 1 << 6 | /* BOTH_CS_PD */ (tcksrx & 0x7) << 3 | (tcksre & 0x7); if (!sysinfo->pd_fast_exit) mmdc0->mdpdc |= (1 << 7); /* SLOW_PD */ mmdc0->mapsr = 0x00001006; /* ADOPT power down enabled */ /* Step 11: Configure ZQ calibration: one-time and periodic 1ms */ val = 0xa1390003; mmdc0->mpzqhwctrl = val; if (sysinfo->dsize > 1) MMDC1(mpzqhwctrl, val); /* Step 12: Configure and activate periodic refresh */ mmdc0->mdref = (sysinfo->refsel << 14) | (sysinfo->refr << 11); /* * Step 13: i.MX6DQP only: If the NoC scheduler is enabled, * configure it and disable MMDC arbitration/reordering (see EB828) */ if (is_mx6dqp() && ((soc_boot_cfg3 & BOOT_CFG3_DDR_MASK) == DDR_MMAP_NOC_SINGLE || (soc_boot_cfg3 & BOOT_CFG3_EXT_DDR_MASK) == DDR_MMAP_NOC_DUAL)) { struct mx6dqp_noc_sched_regs *noc_sched = (struct mx6dqp_noc_sched_regs *)MX6DQP_NOC_SCHED_BASE; /* * These values are fixed based on integration parameters and * should not be modified */ noc_sched->rlat = 0x00000040; noc_sched->ipu1 = 0x00000020; noc_sched->ipu2 = 0x00000020; noc_sched->activate = (1 << NOC_FAW_BANKS_SHIFT) | (tfaw << NOC_FAW_PERIOD_SHIFT) | (trrd << NOC_RD_SHIFT); noc_sched->ddrtiming = (((sysinfo->dsize == 1) ? 1 : 0) << NOC_BW_RATIO_SHIFT) | ((tcwl + twtr) << NOC_WR_TO_RD_SHIFT) | ((tcl - tcwl + 2) << NOC_RD_TO_WR_SHIFT) | (4 << NOC_BURST_LEN_SHIFT) | /* BL8 */ ((tcwl + twr + trp + trcd) << NOC_WR_TO_MISS_SHIFT) | ((trtp + trp + trcd - 4) << NOC_RD_TO_MISS_SHIFT) | (trc << NOC_ACT_TO_ACT_SHIFT); if (sysinfo->dsize == 2) { if (ddr3_cfg->coladdr == 10) { if (ddr3_cfg->rowaddr == 15 && sysinfo->ncs == 2) noc_sched->ddrconf = 4; else noc_sched->ddrconf = 0; } else if (ddr3_cfg->coladdr == 11) { noc_sched->ddrconf = 1; } } else { if (ddr3_cfg->coladdr == 9) { if (ddr3_cfg->rowaddr == 13) noc_sched->ddrconf = 2; else if (ddr3_cfg->rowaddr == 14) noc_sched->ddrconf = 15; } else if (ddr3_cfg->coladdr == 10) { if (ddr3_cfg->rowaddr == 14 && sysinfo->ncs == 2) noc_sched->ddrconf = 14; else if (ddr3_cfg->rowaddr == 15 && sysinfo->ncs == 2) noc_sched->ddrconf = 9; else noc_sched->ddrconf = 3; } else if (ddr3_cfg->coladdr == 11) { if (ddr3_cfg->rowaddr == 15 && sysinfo->ncs == 2) noc_sched->ddrconf = 4; else noc_sched->ddrconf = 0; } else if (ddr3_cfg->coladdr == 12) { if (ddr3_cfg->rowaddr == 14) noc_sched->ddrconf = 1; } } /* Disable MMDC arbitration/reordering */ mmdc0->maarcr = 0x14420000; } /* Step 13: Deassert config request - init complete */ mmdc0->mdscr = 0x00000000; /* wait for auto-ZQ calibration to complete */ mdelay(1); } void mmdc_read_calibration(struct mx6_ddr_sysinfo const *sysinfo, struct mx6_mmdc_calibration *calib) { struct mmdc_p_regs *mmdc0 = (struct mmdc_p_regs *)MMDC_P0_BASE_ADDR; struct mmdc_p_regs *mmdc1 = (struct mmdc_p_regs *)MMDC_P1_BASE_ADDR; calib->p0_mpwldectrl0 = readl(&mmdc0->mpwldectrl0); calib->p0_mpwldectrl1 = readl(&mmdc0->mpwldectrl1); calib->p0_mpdgctrl0 = readl(&mmdc0->mpdgctrl0); calib->p0_mpdgctrl1 = readl(&mmdc0->mpdgctrl1); calib->p0_mprddlctl = readl(&mmdc0->mprddlctl); calib->p0_mpwrdlctl = readl(&mmdc0->mpwrdlctl); if (sysinfo->dsize == 2) { calib->p1_mpwldectrl0 = readl(&mmdc1->mpwldectrl0); calib->p1_mpwldectrl1 = readl(&mmdc1->mpwldectrl1); calib->p1_mpdgctrl0 = readl(&mmdc1->mpdgctrl0); calib->p1_mpdgctrl1 = readl(&mmdc1->mpdgctrl1); calib->p1_mprddlctl = readl(&mmdc1->mprddlctl); calib->p1_mpwrdlctl = readl(&mmdc1->mpwrdlctl); } } void mx6_dram_cfg(const struct mx6_ddr_sysinfo *sysinfo, const struct mx6_mmdc_calibration *calib, const void *ddr_cfg) { if (sysinfo->ddr_type == DDR_TYPE_DDR3) { mx6_ddr3_cfg(sysinfo, calib, ddr_cfg); } else if (sysinfo->ddr_type == DDR_TYPE_LPDDR2) { mx6_lpddr2_cfg(sysinfo, calib, ddr_cfg); } else { puts("Unsupported ddr type\n"); hang(); } }