// SPDX-License-Identifier: GPL-2.0+ /* * AM6: SoC specific initialization * * Copyright (C) 2017-2018 Texas Instruments Incorporated - http://www.ti.com/ * Lokesh Vutla */ #include #include #include #include #include #include #include "common.h" #include #include #include #include #include #ifdef CONFIG_SPL_BUILD #ifdef CONFIG_K3_LOAD_SYSFW #ifdef CONFIG_TI_SECURE_DEVICE struct fwl_data main_cbass_fwls[] = { { "MMCSD1_CFG", 2057, 1 }, { "MMCSD0_CFG", 2058, 1 }, { "USB3SS0_SLV0", 2176, 2 }, { "PCIE0_SLV", 2336, 8 }, { "PCIE1_SLV", 2337, 8 }, { "PCIE0_CFG", 2688, 1 }, { "PCIE1_CFG", 2689, 1 }, }, mcu_cbass_fwls[] = { { "MCU_ARMSS0_CORE0_SLV", 1024, 1 }, { "MCU_ARMSS0_CORE1_SLV", 1028, 1 }, { "MCU_FSS0_S1", 1033, 8 }, { "MCU_FSS0_S0", 1036, 8 }, { "MCU_CPSW0", 1220, 1 }, }; #endif #endif static void mmr_unlock(u32 base, u32 partition) { /* Translate the base address */ phys_addr_t part_base = base + partition * CTRL_MMR0_PARTITION_SIZE; /* Unlock the requested partition if locked using two-step sequence */ writel(CTRLMMR_LOCK_KICK0_UNLOCK_VAL, part_base + CTRLMMR_LOCK_KICK0); writel(CTRLMMR_LOCK_KICK1_UNLOCK_VAL, part_base + CTRLMMR_LOCK_KICK1); } static void ctrl_mmr_unlock(void) { /* Unlock all WKUP_CTRL_MMR0 module registers */ mmr_unlock(WKUP_CTRL_MMR0_BASE, 0); mmr_unlock(WKUP_CTRL_MMR0_BASE, 1); mmr_unlock(WKUP_CTRL_MMR0_BASE, 2); mmr_unlock(WKUP_CTRL_MMR0_BASE, 3); mmr_unlock(WKUP_CTRL_MMR0_BASE, 6); mmr_unlock(WKUP_CTRL_MMR0_BASE, 7); /* Unlock all MCU_CTRL_MMR0 module registers */ mmr_unlock(MCU_CTRL_MMR0_BASE, 0); mmr_unlock(MCU_CTRL_MMR0_BASE, 1); mmr_unlock(MCU_CTRL_MMR0_BASE, 2); mmr_unlock(MCU_CTRL_MMR0_BASE, 6); /* Unlock all CTRL_MMR0 module registers */ mmr_unlock(CTRL_MMR0_BASE, 0); mmr_unlock(CTRL_MMR0_BASE, 1); mmr_unlock(CTRL_MMR0_BASE, 2); mmr_unlock(CTRL_MMR0_BASE, 3); mmr_unlock(CTRL_MMR0_BASE, 6); mmr_unlock(CTRL_MMR0_BASE, 7); } /* * This uninitialized global variable would normal end up in the .bss section, * but the .bss is cleared between writing and reading this variable, so move * it to the .data section. */ u32 bootindex __attribute__((section(".data"))); static void store_boot_index_from_rom(void) { bootindex = *(u32 *)(CONFIG_SYS_K3_BOOT_PARAM_TABLE_INDEX); } #if defined(CONFIG_K3_LOAD_SYSFW) void k3_mmc_stop_clock(void) { if (spl_boot_device() == BOOT_DEVICE_MMC1) { struct mmc *mmc = find_mmc_device(0); if (!mmc) return; mmc->saved_clock = mmc->clock; mmc_set_clock(mmc, 0, true); } } void k3_mmc_restart_clock(void) { if (spl_boot_device() == BOOT_DEVICE_MMC1) { struct mmc *mmc = find_mmc_device(0); if (!mmc) return; mmc_set_clock(mmc, mmc->saved_clock, false); } } #endif void board_init_f(ulong dummy) { #if defined(CONFIG_K3_LOAD_SYSFW) || defined(CONFIG_K3_AM654_DDRSS) struct udevice *dev; int ret; #endif /* * Cannot delay this further as there is a chance that * K3_BOOT_PARAM_TABLE_INDEX can be over written by SPL MALLOC section. */ store_boot_index_from_rom(); /* Make all control module registers accessible */ ctrl_mmr_unlock(); #ifdef CONFIG_CPU_V7R disable_linefill_optimization(); setup_k3_mpu_regions(); #endif /* Init DM early in-order to invoke system controller */ spl_early_init(); #ifdef CONFIG_K3_EARLY_CONS /* * Allow establishing an early console as required for example when * doing a UART-based boot. Note that this console may not "survive" * through a SYSFW PM-init step and will need a re-init in some way * due to changing module clock frequencies. */ early_console_init(); #endif #ifdef CONFIG_K3_LOAD_SYSFW /* * Process pinctrl for the serial0 a.k.a. WKUP_UART0 module and continue * regardless of the result of pinctrl. Do this without probing the * device, but instead by searching the device that would request the * given sequence number if probed. The UART will be used by the system * firmware (SYSFW) image for various purposes and SYSFW depends on us * to initialize its pin settings. */ ret = uclass_find_device_by_seq(UCLASS_SERIAL, 0, true, &dev); if (!ret) pinctrl_select_state(dev, "default"); /* * Load, start up, and configure system controller firmware while * also populating the SYSFW post-PM configuration callback hook. */ k3_sysfw_loader(k3_mmc_stop_clock, k3_mmc_restart_clock); /* Prepare console output */ preloader_console_init(); /* Disable ROM configured firewalls right after loading sysfw */ #ifdef CONFIG_TI_SECURE_DEVICE remove_fwl_configs(main_cbass_fwls, ARRAY_SIZE(main_cbass_fwls)); remove_fwl_configs(mcu_cbass_fwls, ARRAY_SIZE(mcu_cbass_fwls)); #endif #else /* Prepare console output */ preloader_console_init(); #endif /* Output System Firmware version info */ k3_sysfw_print_ver(); /* Perform EEPROM-based board detection */ do_board_detect(); #if defined(CONFIG_CPU_V7R) && defined(CONFIG_K3_AVS0) ret = uclass_get_device_by_driver(UCLASS_MISC, DM_GET_DRIVER(k3_avs), &dev); if (ret) printf("AVS init failed: %d\n", ret); #endif #ifdef CONFIG_K3_AM654_DDRSS ret = uclass_get_device(UCLASS_RAM, 0, &dev); if (ret) panic("DRAM init failed: %d\n", ret); #endif } u32 spl_boot_mode(const u32 boot_device) { #if defined(CONFIG_SUPPORT_EMMC_BOOT) u32 devstat = readl(CTRLMMR_MAIN_DEVSTAT); u32 bootmode = (devstat & CTRLMMR_MAIN_DEVSTAT_BOOTMODE_MASK) >> CTRLMMR_MAIN_DEVSTAT_BOOTMODE_SHIFT; /* eMMC boot0 mode is only supported for primary boot */ if (bootindex == K3_PRIMARY_BOOTMODE && bootmode == BOOT_DEVICE_MMC1) return MMCSD_MODE_EMMCBOOT; #endif /* Everything else use filesystem if available */ #if defined(CONFIG_SPL_FS_FAT) || defined(CONFIG_SPL_FS_EXT4) return MMCSD_MODE_FS; #else return MMCSD_MODE_RAW; #endif } static u32 __get_backup_bootmedia(u32 devstat) { u32 bkup_boot = (devstat & CTRLMMR_MAIN_DEVSTAT_BKUP_BOOTMODE_MASK) >> CTRLMMR_MAIN_DEVSTAT_BKUP_BOOTMODE_SHIFT; switch (bkup_boot) { case BACKUP_BOOT_DEVICE_USB: return BOOT_DEVICE_USB; case BACKUP_BOOT_DEVICE_UART: return BOOT_DEVICE_UART; case BACKUP_BOOT_DEVICE_ETHERNET: return BOOT_DEVICE_ETHERNET; case BACKUP_BOOT_DEVICE_MMC2: { u32 port = (devstat & CTRLMMR_MAIN_DEVSTAT_BKUP_MMC_PORT_MASK) >> CTRLMMR_MAIN_DEVSTAT_BKUP_MMC_PORT_SHIFT; if (port == 0x0) return BOOT_DEVICE_MMC1; return BOOT_DEVICE_MMC2; } case BACKUP_BOOT_DEVICE_SPI: return BOOT_DEVICE_SPI; case BACKUP_BOOT_DEVICE_HYPERFLASH: return BOOT_DEVICE_HYPERFLASH; case BACKUP_BOOT_DEVICE_I2C: return BOOT_DEVICE_I2C; }; return BOOT_DEVICE_RAM; } static u32 __get_primary_bootmedia(u32 devstat) { u32 bootmode = (devstat & CTRLMMR_MAIN_DEVSTAT_BOOTMODE_MASK) >> CTRLMMR_MAIN_DEVSTAT_BOOTMODE_SHIFT; if (bootmode == BOOT_DEVICE_OSPI || bootmode == BOOT_DEVICE_QSPI) bootmode = BOOT_DEVICE_SPI; if (bootmode == BOOT_DEVICE_MMC2) { u32 port = (devstat & CTRLMMR_MAIN_DEVSTAT_MMC_PORT_MASK) >> CTRLMMR_MAIN_DEVSTAT_MMC_PORT_SHIFT; if (port == 0x0) bootmode = BOOT_DEVICE_MMC1; } else if (bootmode == BOOT_DEVICE_MMC1) { u32 port = (devstat & CTRLMMR_MAIN_DEVSTAT_EMMC_PORT_MASK) >> CTRLMMR_MAIN_DEVSTAT_EMMC_PORT_SHIFT; if (port == 0x1) bootmode = BOOT_DEVICE_MMC2; } return bootmode; } u32 spl_boot_device(void) { u32 devstat = readl(CTRLMMR_MAIN_DEVSTAT); if (bootindex == K3_PRIMARY_BOOTMODE) return __get_primary_bootmedia(devstat); else return __get_backup_bootmedia(devstat); } #endif #ifdef CONFIG_SYS_K3_SPL_ATF #define AM6_DEV_MCU_RTI0 134 #define AM6_DEV_MCU_RTI1 135 #define AM6_DEV_MCU_ARMSS0_CPU0 159 #define AM6_DEV_MCU_ARMSS0_CPU1 245 void release_resources_for_core_shutdown(void) { struct ti_sci_handle *ti_sci = get_ti_sci_handle(); struct ti_sci_dev_ops *dev_ops = &ti_sci->ops.dev_ops; struct ti_sci_proc_ops *proc_ops = &ti_sci->ops.proc_ops; int ret; u32 i; const u32 put_device_ids[] = { AM6_DEV_MCU_RTI0, AM6_DEV_MCU_RTI1, }; /* Iterate through list of devices to put (shutdown) */ for (i = 0; i < ARRAY_SIZE(put_device_ids); i++) { u32 id = put_device_ids[i]; ret = dev_ops->put_device(ti_sci, id); if (ret) panic("Failed to put device %u (%d)\n", id, ret); } const u32 put_core_ids[] = { AM6_DEV_MCU_ARMSS0_CPU1, AM6_DEV_MCU_ARMSS0_CPU0, /* Handle CPU0 after CPU1 */ }; /* Iterate through list of cores to put (shutdown) */ for (i = 0; i < ARRAY_SIZE(put_core_ids); i++) { u32 id = put_core_ids[i]; /* * Queue up the core shutdown request. Note that this call * needs to be followed up by an actual invocation of an WFE * or WFI CPU instruction. */ ret = proc_ops->proc_shutdown_no_wait(ti_sci, id); if (ret) panic("Failed sending core %u shutdown message (%d)\n", id, ret); } } #endif