// SPDX-License-Identifier: GPL-2.0+ /* * Copyright 2018 NXP */ #include #include #include #include #include #include #include static inline void poll_pmu_message_ready(void) { unsigned int reg; do { reg = reg32_read(IP2APB_DDRPHY_IPS_BASE_ADDR(0) + 4 * 0xd0004); } while (reg & 0x1); } static inline void ack_pmu_message_receive(void) { unsigned int reg; reg32_write(IP2APB_DDRPHY_IPS_BASE_ADDR(0) + 4 * 0xd0031, 0x0); do { reg = reg32_read(IP2APB_DDRPHY_IPS_BASE_ADDR(0) + 4 * 0xd0004); } while (!(reg & 0x1)); reg32_write(IP2APB_DDRPHY_IPS_BASE_ADDR(0) + 4 * 0xd0031, 0x1); } static inline unsigned int get_mail(void) { unsigned int reg; poll_pmu_message_ready(); reg = reg32_read(IP2APB_DDRPHY_IPS_BASE_ADDR(0) + 4 * 0xd0032); ack_pmu_message_receive(); return reg; } static inline unsigned int get_stream_message(void) { unsigned int reg, reg2; poll_pmu_message_ready(); reg = reg32_read(IP2APB_DDRPHY_IPS_BASE_ADDR(0) + 4 * 0xd0032); reg2 = reg32_read(IP2APB_DDRPHY_IPS_BASE_ADDR(0) + 4 * 0xd0034); reg2 = (reg2 << 16) | reg; ack_pmu_message_receive(); return reg2; } static inline void decode_major_message(unsigned int mail) { debug("[PMU Major message = 0x%08x]\n", mail); } static inline void decode_streaming_message(void) { unsigned int string_index, arg __maybe_unused; int i = 0; string_index = get_stream_message(); debug("PMU String index = 0x%08x\n", string_index); while (i < (string_index & 0xffff)) { arg = get_stream_message(); debug("arg[%d] = 0x%08x\n", i, arg); i++; } debug("\n"); } void wait_ddrphy_training_complete(void) { unsigned int mail; while (1) { mail = get_mail(); decode_major_message(mail); if (mail == 0x08) { decode_streaming_message(); } else if (mail == 0x07) { debug("Training PASS\n"); break; } else if (mail == 0xff) { printf("Training FAILED\n"); break; } } } void ddrphy_init_set_dfi_clk(unsigned int drate) { switch (drate) { case 3200: dram_pll_init(MHZ(800)); dram_disable_bypass(); break; case 3000: dram_pll_init(MHZ(750)); dram_disable_bypass(); break; case 2400: dram_pll_init(MHZ(600)); dram_disable_bypass(); break; case 1600: dram_pll_init(MHZ(400)); dram_disable_bypass(); break; case 1066: dram_pll_init(MHZ(266)); dram_disable_bypass(); break; case 667: dram_pll_init(MHZ(167)); dram_disable_bypass(); break; case 400: dram_enable_bypass(MHZ(400)); break; case 100: dram_enable_bypass(MHZ(100)); break; default: return; } } void ddrphy_init_read_msg_block(enum fw_type type) { } void lpddr4_mr_write(unsigned int mr_rank, unsigned int mr_addr, unsigned int mr_data) { unsigned int tmp; /* * 1. Poll MRSTAT.mr_wr_busy until it is 0. * This checks that there is no outstanding MR transaction. * No writes should be performed to MRCTRL0 and MRCTRL1 if * MRSTAT.mr_wr_busy = 1. */ do { tmp = reg32_read(DDRC_MRSTAT(0)); } while (tmp & 0x1); /* * 2. Write the MRCTRL0.mr_type, MRCTRL0.mr_addr, MRCTRL0.mr_rank and * (for MRWs) MRCTRL1.mr_data to define the MR transaction. */ reg32_write(DDRC_MRCTRL0(0), (mr_rank << 4)); reg32_write(DDRC_MRCTRL1(0), (mr_addr << 8) | mr_data); reg32setbit(DDRC_MRCTRL0(0), 31); } unsigned int lpddr4_mr_read(unsigned int mr_rank, unsigned int mr_addr) { unsigned int tmp; reg32_write(DRC_PERF_MON_MRR0_DAT(0), 0x1); do { tmp = reg32_read(DDRC_MRSTAT(0)); } while (tmp & 0x1); reg32_write(DDRC_MRCTRL0(0), (mr_rank << 4) | 0x1); reg32_write(DDRC_MRCTRL1(0), (mr_addr << 8)); reg32setbit(DDRC_MRCTRL0(0), 31); do { tmp = reg32_read(DRC_PERF_MON_MRR0_DAT(0)); } while ((tmp & 0x8) == 0); tmp = reg32_read(DRC_PERF_MON_MRR1_DAT(0)); tmp = tmp & 0xff; reg32_write(DRC_PERF_MON_MRR0_DAT(0), 0x4); return tmp; }