// SPDX-License-Identifier: GPL-2.0+ /* * Author(s): Chris Morgan * * This MIPI DSI controller driver is heavily based on the Linux Kernel * driver from drivers/gpu/drm/rockchip/dw-mipi-dsi-rockchip.c and the * U-Boot driver from drivers/video/stm32/stm32_dsi.c. */ #define LOG_CATEGORY UCLASS_VIDEO_BRIDGE #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* * DSI wrapper registers & bit definitions * Note: registers are named as in the Reference Manual */ #define DSI_WCR 0x0404 /* Wrapper Control Reg */ #define WCR_DSIEN BIT(3) /* DSI ENable */ #define DSI_PHY_TST_CTRL0 0xb4 #define PHY_TESTCLK BIT(1) #define PHY_UNTESTCLK 0 #define PHY_TESTCLR BIT(0) #define PHY_UNTESTCLR 0 #define DSI_PHY_TST_CTRL1 0xb8 #define PHY_TESTEN BIT(16) #define PHY_UNTESTEN 0 #define PHY_TESTDOUT(n) (((n) & 0xff) << 8) #define PHY_TESTDIN(n) (((n) & 0xff) << 0) #define BYPASS_VCO_RANGE BIT(7) #define VCO_RANGE_CON_SEL(val) (((val) & 0x7) << 3) #define VCO_IN_CAP_CON_DEFAULT (0x0 << 1) #define VCO_IN_CAP_CON_LOW (0x1 << 1) #define VCO_IN_CAP_CON_HIGH (0x2 << 1) #define REF_BIAS_CUR_SEL BIT(0) #define CP_CURRENT_3UA 0x1 #define CP_CURRENT_4_5UA 0x2 #define CP_CURRENT_7_5UA 0x6 #define CP_CURRENT_6UA 0x9 #define CP_CURRENT_12UA 0xb #define CP_CURRENT_SEL(val) ((val) & 0xf) #define CP_PROGRAM_EN BIT(7) #define LPF_RESISTORS_15_5KOHM 0x1 #define LPF_RESISTORS_13KOHM 0x2 #define LPF_RESISTORS_11_5KOHM 0x4 #define LPF_RESISTORS_10_5KOHM 0x8 #define LPF_RESISTORS_8KOHM 0x10 #define LPF_PROGRAM_EN BIT(6) #define LPF_RESISTORS_SEL(val) ((val) & 0x3f) #define HSFREQRANGE_SEL(val) (((val) & 0x3f) << 1) #define INPUT_DIVIDER(val) (((val) - 1) & 0x7f) #define LOW_PROGRAM_EN 0 #define HIGH_PROGRAM_EN BIT(7) #define LOOP_DIV_LOW_SEL(val) (((val) - 1) & 0x1f) #define LOOP_DIV_HIGH_SEL(val) ((((val) - 1) >> 5) & 0xf) #define PLL_LOOP_DIV_EN BIT(5) #define PLL_INPUT_DIV_EN BIT(4) #define POWER_CONTROL BIT(6) #define INTERNAL_REG_CURRENT BIT(3) #define BIAS_BLOCK_ON BIT(2) #define BANDGAP_ON BIT(0) #define TER_RESISTOR_HIGH BIT(7) #define TER_RESISTOR_LOW 0 #define LEVEL_SHIFTERS_ON BIT(6) #define TER_CAL_DONE BIT(5) #define SETRD_MAX (0x7 << 2) #define POWER_MANAGE BIT(1) #define TER_RESISTORS_ON BIT(0) #define BIASEXTR_SEL(val) ((val) & 0x7) #define BANDGAP_SEL(val) ((val) & 0x7) #define TLP_PROGRAM_EN BIT(7) #define THS_PRE_PROGRAM_EN BIT(7) #define THS_ZERO_PROGRAM_EN BIT(6) #define PLL_BIAS_CUR_SEL_CAP_VCO_CONTROL 0x10 #define PLL_CP_CONTROL_PLL_LOCK_BYPASS 0x11 #define PLL_LPF_AND_CP_CONTROL 0x12 #define PLL_INPUT_DIVIDER_RATIO 0x17 #define PLL_LOOP_DIVIDER_RATIO 0x18 #define PLL_INPUT_AND_LOOP_DIVIDER_RATIOS_CONTROL 0x19 #define BANDGAP_AND_BIAS_CONTROL 0x20 #define TERMINATION_RESISTER_CONTROL 0x21 #define AFE_BIAS_BANDGAP_ANALOG_PROGRAMMABILITY 0x22 #define HS_RX_CONTROL_OF_LANE_CLK 0x34 #define HS_RX_CONTROL_OF_LANE_0 0x44 #define HS_RX_CONTROL_OF_LANE_1 0x54 #define HS_TX_CLOCK_LANE_REQUEST_STATE_TIME_CONTROL 0x60 #define HS_TX_CLOCK_LANE_PREPARE_STATE_TIME_CONTROL 0x61 #define HS_TX_CLOCK_LANE_HS_ZERO_STATE_TIME_CONTROL 0x62 #define HS_TX_CLOCK_LANE_TRAIL_STATE_TIME_CONTROL 0x63 #define HS_TX_CLOCK_LANE_EXIT_STATE_TIME_CONTROL 0x64 #define HS_TX_CLOCK_LANE_POST_TIME_CONTROL 0x65 #define HS_TX_DATA_LANE_REQUEST_STATE_TIME_CONTROL 0x70 #define HS_TX_DATA_LANE_PREPARE_STATE_TIME_CONTROL 0x71 #define HS_TX_DATA_LANE_HS_ZERO_STATE_TIME_CONTROL 0x72 #define HS_TX_DATA_LANE_TRAIL_STATE_TIME_CONTROL 0x73 #define HS_TX_DATA_LANE_EXIT_STATE_TIME_CONTROL 0x74 #define HS_RX_DATA_LANE_THS_SETTLE_CONTROL 0x75 #define HS_RX_CONTROL_OF_LANE_2 0x84 #define HS_RX_CONTROL_OF_LANE_3 0x94 #define DW_MIPI_NEEDS_PHY_CFG_CLK BIT(0) #define DW_MIPI_NEEDS_GRF_CLK BIT(1) #define RK3399_GRF_SOC_CON20 0x6250 #define RK3399_DSI0_LCDC_SEL BIT(0) #define RK3399_DSI1_LCDC_SEL BIT(4) #define RK3399_GRF_SOC_CON22 0x6258 #define RK3399_DSI0_TURNREQUEST (0xf << 12) #define RK3399_DSI0_TURNDISABLE (0xf << 8) #define RK3399_DSI0_FORCETXSTOPMODE (0xf << 4) #define RK3399_DSI0_FORCERXMODE (0xf << 0) #define RK3399_GRF_SOC_CON23 0x625c #define RK3399_DSI1_TURNDISABLE (0xf << 12) #define RK3399_DSI1_FORCETXSTOPMODE (0xf << 8) #define RK3399_DSI1_FORCERXMODE (0xf << 4) #define RK3399_DSI1_ENABLE (0xf << 0) #define RK3399_GRF_SOC_CON24 0x6260 #define RK3399_TXRX_MASTERSLAVEZ BIT(7) #define RK3399_TXRX_ENABLECLK BIT(6) #define RK3399_TXRX_BASEDIR BIT(5) #define RK3399_TXRX_SRC_SEL_ISP0 BIT(4) #define RK3399_TXRX_TURNREQUEST GENMASK(3, 0) #define RK3568_GRF_VO_CON2 0x0368 #define RK3568_DSI0_SKEWCALHS (0x1f << 11) #define RK3568_DSI0_FORCETXSTOPMODE (0xf << 4) #define RK3568_DSI0_TURNDISABLE BIT(2) #define RK3568_DSI0_FORCERXMODE BIT(0) /* * Note these registers do not appear in the datasheet, they are * however present in the BSP driver which is where these values * come from. Name GRF_VO_CON3 is assumed. */ #define RK3568_GRF_VO_CON3 0x36c #define RK3568_DSI1_SKEWCALHS (0x1f << 11) #define RK3568_DSI1_FORCETXSTOPMODE (0xf << 4) #define RK3568_DSI1_TURNDISABLE BIT(2) #define RK3568_DSI1_FORCERXMODE BIT(0) #define HIWORD_UPDATE(val, mask) (val | (mask) << 16) /* Timeout for regulator on/off, pll lock/unlock & fifo empty */ #define TIMEOUT_US 200000 enum { BANDGAP_97_07, BANDGAP_98_05, BANDGAP_99_02, BANDGAP_100_00, BANDGAP_93_17, BANDGAP_94_15, BANDGAP_95_12, BANDGAP_96_10, }; enum { BIASEXTR_87_1, BIASEXTR_91_5, BIASEXTR_95_9, BIASEXTR_100, BIASEXTR_105_94, BIASEXTR_111_88, BIASEXTR_118_8, BIASEXTR_127_7, }; struct rockchip_dw_dsi_chip_data { u32 reg; u32 lcdsel_grf_reg; u32 lcdsel_big; u32 lcdsel_lit; u32 enable_grf_reg; u32 enable; u32 lanecfg1_grf_reg; u32 lanecfg1; u32 lanecfg2_grf_reg; u32 lanecfg2; unsigned int flags; unsigned int max_data_lanes; }; struct dw_rockchip_dsi_priv { struct mipi_dsi_device device; void __iomem *base; struct udevice *panel; void __iomem *grf; /* Optional external dphy */ struct phy phy; struct phy_configure_opts_mipi_dphy phy_opts; struct clk *pclk; struct clk *ref; struct clk *grf_clk; struct clk *phy_cfg_clk; struct reset_ctl *rst; unsigned int lane_mbps; /* per lane */ u16 input_div; u16 feedback_div; const struct rockchip_dw_dsi_chip_data *cdata; struct udevice *dsi_host; }; static inline void dsi_write(struct dw_rockchip_dsi_priv *dsi, u32 reg, u32 val) { writel(val, dsi->base + reg); } static inline u32 dsi_read(struct dw_rockchip_dsi_priv *dsi, u32 reg) { return readl(dsi->base + reg); } static inline void dsi_set(struct dw_rockchip_dsi_priv *dsi, u32 reg, u32 mask) { dsi_write(dsi, reg, dsi_read(dsi, reg) | mask); } static inline void dsi_clear(struct dw_rockchip_dsi_priv *dsi, u32 reg, u32 mask) { dsi_write(dsi, reg, dsi_read(dsi, reg) & ~mask); } static inline void dsi_update_bits(struct dw_rockchip_dsi_priv *dsi, u32 reg, u32 mask, u32 val) { dsi_write(dsi, reg, (dsi_read(dsi, reg) & ~mask) | val); } static void dw_mipi_dsi_phy_write(struct dw_rockchip_dsi_priv *dsi, u8 test_code, u8 test_data) { /* * With the falling edge on TESTCLK, the TESTDIN[7:0] signal content * is latched internally as the current test code. Test data is * programmed internally by rising edge on TESTCLK. */ dsi_write(dsi, DSI_PHY_TST_CTRL0, PHY_TESTCLK | PHY_UNTESTCLR); dsi_write(dsi, DSI_PHY_TST_CTRL1, PHY_TESTEN | PHY_TESTDOUT(0) | PHY_TESTDIN(test_code)); dsi_write(dsi, DSI_PHY_TST_CTRL0, PHY_UNTESTCLK | PHY_UNTESTCLR); dsi_write(dsi, DSI_PHY_TST_CTRL1, PHY_UNTESTEN | PHY_TESTDOUT(0) | PHY_TESTDIN(test_data)); dsi_write(dsi, DSI_PHY_TST_CTRL0, PHY_TESTCLK | PHY_UNTESTCLR); } struct dphy_pll_parameter_map { unsigned int max_mbps; u8 hsfreqrange; u8 icpctrl; u8 lpfctrl; }; /* The table is based on 27MHz DPHY pll reference clock. */ static const struct dphy_pll_parameter_map dppa_map[] = { { 89, 0x00, CP_CURRENT_3UA, LPF_RESISTORS_13KOHM }, { 99, 0x10, CP_CURRENT_3UA, LPF_RESISTORS_13KOHM }, { 109, 0x20, CP_CURRENT_3UA, LPF_RESISTORS_13KOHM }, { 129, 0x01, CP_CURRENT_3UA, LPF_RESISTORS_15_5KOHM }, { 139, 0x11, CP_CURRENT_3UA, LPF_RESISTORS_15_5KOHM }, { 149, 0x21, CP_CURRENT_3UA, LPF_RESISTORS_15_5KOHM }, { 169, 0x02, CP_CURRENT_6UA, LPF_RESISTORS_13KOHM }, { 179, 0x12, CP_CURRENT_6UA, LPF_RESISTORS_13KOHM }, { 199, 0x22, CP_CURRENT_6UA, LPF_RESISTORS_13KOHM }, { 219, 0x03, CP_CURRENT_4_5UA, LPF_RESISTORS_13KOHM }, { 239, 0x13, CP_CURRENT_4_5UA, LPF_RESISTORS_13KOHM }, { 249, 0x23, CP_CURRENT_4_5UA, LPF_RESISTORS_13KOHM }, { 269, 0x04, CP_CURRENT_6UA, LPF_RESISTORS_11_5KOHM }, { 299, 0x14, CP_CURRENT_6UA, LPF_RESISTORS_11_5KOHM }, { 329, 0x05, CP_CURRENT_3UA, LPF_RESISTORS_15_5KOHM }, { 359, 0x15, CP_CURRENT_3UA, LPF_RESISTORS_15_5KOHM }, { 399, 0x25, CP_CURRENT_3UA, LPF_RESISTORS_15_5KOHM }, { 449, 0x06, CP_CURRENT_7_5UA, LPF_RESISTORS_11_5KOHM }, { 499, 0x16, CP_CURRENT_7_5UA, LPF_RESISTORS_11_5KOHM }, { 549, 0x07, CP_CURRENT_7_5UA, LPF_RESISTORS_10_5KOHM }, { 599, 0x17, CP_CURRENT_7_5UA, LPF_RESISTORS_10_5KOHM }, { 649, 0x08, CP_CURRENT_7_5UA, LPF_RESISTORS_11_5KOHM }, { 699, 0x18, CP_CURRENT_7_5UA, LPF_RESISTORS_11_5KOHM }, { 749, 0x09, CP_CURRENT_7_5UA, LPF_RESISTORS_11_5KOHM }, { 799, 0x19, CP_CURRENT_7_5UA, LPF_RESISTORS_11_5KOHM }, { 849, 0x29, CP_CURRENT_7_5UA, LPF_RESISTORS_11_5KOHM }, { 899, 0x39, CP_CURRENT_7_5UA, LPF_RESISTORS_11_5KOHM }, { 949, 0x0a, CP_CURRENT_12UA, LPF_RESISTORS_8KOHM }, { 999, 0x1a, CP_CURRENT_12UA, LPF_RESISTORS_8KOHM }, {1049, 0x2a, CP_CURRENT_12UA, LPF_RESISTORS_8KOHM }, {1099, 0x3a, CP_CURRENT_12UA, LPF_RESISTORS_8KOHM }, {1149, 0x0b, CP_CURRENT_12UA, LPF_RESISTORS_10_5KOHM }, {1199, 0x1b, CP_CURRENT_12UA, LPF_RESISTORS_10_5KOHM }, {1249, 0x2b, CP_CURRENT_12UA, LPF_RESISTORS_10_5KOHM }, {1299, 0x3b, CP_CURRENT_12UA, LPF_RESISTORS_10_5KOHM }, {1349, 0x0c, CP_CURRENT_12UA, LPF_RESISTORS_10_5KOHM }, {1399, 0x1c, CP_CURRENT_12UA, LPF_RESISTORS_10_5KOHM }, {1449, 0x2c, CP_CURRENT_12UA, LPF_RESISTORS_10_5KOHM }, {1500, 0x3c, CP_CURRENT_12UA, LPF_RESISTORS_10_5KOHM } }; static int max_mbps_to_parameter(unsigned int max_mbps) { int i; for (i = 0; i < ARRAY_SIZE(dppa_map); i++) if (dppa_map[i].max_mbps >= max_mbps) return i; return -EINVAL; } /* * ns2bc - Nanoseconds to byte clock cycles */ static inline unsigned int ns2bc(struct dw_rockchip_dsi_priv *dsi, int ns) { return DIV_ROUND_UP(ns * dsi->lane_mbps / 8, 1000); } /* * ns2ui - Nanoseconds to UI time periods */ static inline unsigned int ns2ui(struct dw_rockchip_dsi_priv *dsi, int ns) { return DIV_ROUND_UP(ns * dsi->lane_mbps, 1000); } static int dsi_phy_init(void *priv_data) { struct mipi_dsi_device *device = priv_data; struct udevice *dev = device->dev; struct dw_rockchip_dsi_priv *dsi = dev_get_priv(dev); int ret, i, vco; if (generic_phy_valid(&dsi->phy)) { ret = generic_phy_configure(&dsi->phy, &dsi->phy_opts); if (ret) { dev_err(dsi->dsi_host, "Configure external dphy fail %d\n", ret); return ret; } ret = generic_phy_power_on(&dsi->phy); if (ret) { dev_err(dsi->dsi_host, "Generic phy power on fail %d\n", ret); return ret; } return 0; } /* * Get vco from frequency(lane_mbps) * vco frequency table * 000 - between 80 and 200 MHz * 001 - between 200 and 300 MHz * 010 - between 300 and 500 MHz * 011 - between 500 and 700 MHz * 100 - between 700 and 900 MHz * 101 - between 900 and 1100 MHz * 110 - between 1100 and 1300 MHz * 111 - between 1300 and 1500 MHz */ vco = (dsi->lane_mbps < 200) ? 0 : (dsi->lane_mbps + 100) / 200; i = max_mbps_to_parameter(dsi->lane_mbps); if (i < 0) { dev_err(dsi->dsi_host, "failed to get parameter for %dmbps clock\n", dsi->lane_mbps); return i; } dw_mipi_dsi_phy_write(dsi, PLL_BIAS_CUR_SEL_CAP_VCO_CONTROL, BYPASS_VCO_RANGE | VCO_RANGE_CON_SEL(vco) | VCO_IN_CAP_CON_LOW | REF_BIAS_CUR_SEL); dw_mipi_dsi_phy_write(dsi, PLL_CP_CONTROL_PLL_LOCK_BYPASS, CP_CURRENT_SEL(dppa_map[i].icpctrl)); dw_mipi_dsi_phy_write(dsi, PLL_LPF_AND_CP_CONTROL, CP_PROGRAM_EN | LPF_PROGRAM_EN | LPF_RESISTORS_SEL(dppa_map[i].lpfctrl)); dw_mipi_dsi_phy_write(dsi, HS_RX_CONTROL_OF_LANE_0, HSFREQRANGE_SEL(dppa_map[i].hsfreqrange)); dw_mipi_dsi_phy_write(dsi, PLL_INPUT_DIVIDER_RATIO, INPUT_DIVIDER(dsi->input_div)); dw_mipi_dsi_phy_write(dsi, PLL_LOOP_DIVIDER_RATIO, LOOP_DIV_LOW_SEL(dsi->feedback_div) | LOW_PROGRAM_EN); /* * We need set PLL_INPUT_AND_LOOP_DIVIDER_RATIOS_CONTROL immediately * to make the configured LSB effective according to IP simulation * and lab test results. * Only in this way can we get correct mipi phy pll frequency. */ dw_mipi_dsi_phy_write(dsi, PLL_INPUT_AND_LOOP_DIVIDER_RATIOS_CONTROL, PLL_LOOP_DIV_EN | PLL_INPUT_DIV_EN); dw_mipi_dsi_phy_write(dsi, PLL_LOOP_DIVIDER_RATIO, LOOP_DIV_HIGH_SEL(dsi->feedback_div) | HIGH_PROGRAM_EN); dw_mipi_dsi_phy_write(dsi, PLL_INPUT_AND_LOOP_DIVIDER_RATIOS_CONTROL, PLL_LOOP_DIV_EN | PLL_INPUT_DIV_EN); dw_mipi_dsi_phy_write(dsi, AFE_BIAS_BANDGAP_ANALOG_PROGRAMMABILITY, LOW_PROGRAM_EN | BIASEXTR_SEL(BIASEXTR_127_7)); dw_mipi_dsi_phy_write(dsi, AFE_BIAS_BANDGAP_ANALOG_PROGRAMMABILITY, HIGH_PROGRAM_EN | BANDGAP_SEL(BANDGAP_96_10)); dw_mipi_dsi_phy_write(dsi, BANDGAP_AND_BIAS_CONTROL, POWER_CONTROL | INTERNAL_REG_CURRENT | BIAS_BLOCK_ON | BANDGAP_ON); dw_mipi_dsi_phy_write(dsi, TERMINATION_RESISTER_CONTROL, TER_RESISTOR_LOW | TER_CAL_DONE | SETRD_MAX | TER_RESISTORS_ON); dw_mipi_dsi_phy_write(dsi, TERMINATION_RESISTER_CONTROL, TER_RESISTOR_HIGH | LEVEL_SHIFTERS_ON | SETRD_MAX | POWER_MANAGE | TER_RESISTORS_ON); dw_mipi_dsi_phy_write(dsi, HS_TX_CLOCK_LANE_REQUEST_STATE_TIME_CONTROL, TLP_PROGRAM_EN | ns2bc(dsi, 500)); dw_mipi_dsi_phy_write(dsi, HS_TX_CLOCK_LANE_PREPARE_STATE_TIME_CONTROL, THS_PRE_PROGRAM_EN | ns2ui(dsi, 40)); dw_mipi_dsi_phy_write(dsi, HS_TX_CLOCK_LANE_HS_ZERO_STATE_TIME_CONTROL, THS_ZERO_PROGRAM_EN | ns2bc(dsi, 300)); dw_mipi_dsi_phy_write(dsi, HS_TX_CLOCK_LANE_TRAIL_STATE_TIME_CONTROL, THS_PRE_PROGRAM_EN | ns2ui(dsi, 100)); dw_mipi_dsi_phy_write(dsi, HS_TX_CLOCK_LANE_EXIT_STATE_TIME_CONTROL, BIT(5) | ns2bc(dsi, 100)); dw_mipi_dsi_phy_write(dsi, HS_TX_CLOCK_LANE_POST_TIME_CONTROL, BIT(5) | (ns2bc(dsi, 60) + 7)); dw_mipi_dsi_phy_write(dsi, HS_TX_DATA_LANE_REQUEST_STATE_TIME_CONTROL, TLP_PROGRAM_EN | ns2bc(dsi, 500)); dw_mipi_dsi_phy_write(dsi, HS_TX_DATA_LANE_PREPARE_STATE_TIME_CONTROL, THS_PRE_PROGRAM_EN | (ns2ui(dsi, 50) + 20)); dw_mipi_dsi_phy_write(dsi, HS_TX_DATA_LANE_HS_ZERO_STATE_TIME_CONTROL, THS_ZERO_PROGRAM_EN | (ns2bc(dsi, 140) + 2)); dw_mipi_dsi_phy_write(dsi, HS_TX_DATA_LANE_TRAIL_STATE_TIME_CONTROL, THS_PRE_PROGRAM_EN | (ns2ui(dsi, 60) + 8)); dw_mipi_dsi_phy_write(dsi, HS_TX_DATA_LANE_EXIT_STATE_TIME_CONTROL, BIT(5) | ns2bc(dsi, 100)); return 0; } static void dsi_phy_post_set_mode(void *priv_data, unsigned long mode_flags) { struct mipi_dsi_device *device = priv_data; struct udevice *dev = device->dev; struct dw_rockchip_dsi_priv *dsi = dev_get_priv(dev); dev_dbg(dev, "Set mode %p enable %ld\n", dsi, mode_flags & MIPI_DSI_MODE_VIDEO); if (!dsi) return; /* * DSI wrapper must be enabled in video mode & disabled in command mode. * If wrapper is enabled in command mode, the display controller * register access will hang. Note that this was carried over from the * stm32 dsi driver and is unknown if necessary for Rockchip. */ if (mode_flags & MIPI_DSI_MODE_VIDEO) dsi_set(dsi, DSI_WCR, WCR_DSIEN); else dsi_clear(dsi, DSI_WCR, WCR_DSIEN); } static int dw_mipi_dsi_get_lane_mbps(void *priv_data, struct display_timing *timings, u32 lanes, u32 format, unsigned int *lane_mbps) { struct mipi_dsi_device *device = priv_data; struct udevice *dev = device->dev; struct dw_rockchip_dsi_priv *dsi = dev_get_priv(dev); int bpp; unsigned long mpclk, tmp; unsigned int target_mbps = 1000; unsigned int max_mbps = dppa_map[ARRAY_SIZE(dppa_map) - 1].max_mbps; unsigned long best_freq = 0; unsigned long fvco_min, fvco_max, fin, fout; unsigned int min_prediv, max_prediv; unsigned int _prediv, best_prediv; unsigned long _fbdiv, best_fbdiv; unsigned long min_delta = ULONG_MAX; bpp = mipi_dsi_pixel_format_to_bpp(format); if (bpp < 0) { dev_err(dsi->dsi_host, "failed to get bpp for pixel format %d\n", format); return bpp; } mpclk = DIV_ROUND_UP(timings->pixelclock.typ, 1000); if (mpclk) { /* take 1 / 0.8, since mbps must big than bandwidth of RGB */ tmp = (mpclk * (bpp / lanes) * 10 / 8) / 1000; if (tmp < max_mbps) target_mbps = tmp; else dev_err(dsi->dsi_host, "DPHY clock frequency is out of range\n"); } /* for external phy only the mipi_dphy_config is necessary */ if (generic_phy_valid(&dsi->phy)) { phy_mipi_dphy_get_default_config(timings->pixelclock.typ * 10 / 8, bpp, lanes, &dsi->phy_opts); dsi->lane_mbps = target_mbps; *lane_mbps = dsi->lane_mbps; return 0; } fin = clk_get_rate(dsi->ref); fout = target_mbps * USEC_PER_SEC; /* constraint: 5Mhz <= Fref / N <= 40MHz */ min_prediv = DIV_ROUND_UP(fin, 40 * USEC_PER_SEC); max_prediv = fin / (5 * USEC_PER_SEC); /* constraint: 80MHz <= Fvco <= 1500Mhz */ fvco_min = 80 * USEC_PER_SEC; fvco_max = 1500 * USEC_PER_SEC; for (_prediv = min_prediv; _prediv <= max_prediv; _prediv++) { u64 tmp; u32 delta; /* Fvco = Fref * M / N */ tmp = (u64)fout * _prediv; do_div(tmp, fin); _fbdiv = tmp; /* * Due to the use of a "by 2 pre-scaler," the range of the * feedback multiplication value M is limited to even division * numbers, and m must be greater than 6, not bigger than 512. */ if (_fbdiv < 6 || _fbdiv > 512) continue; _fbdiv += _fbdiv % 2; tmp = (u64)_fbdiv * fin; do_div(tmp, _prediv); if (tmp < fvco_min || tmp > fvco_max) continue; delta = abs(fout - tmp); if (delta < min_delta) { best_prediv = _prediv; best_fbdiv = _fbdiv; min_delta = delta; best_freq = tmp; } } if (best_freq) { dsi->lane_mbps = DIV_ROUND_UP(best_freq, USEC_PER_SEC); *lane_mbps = dsi->lane_mbps; dsi->input_div = best_prediv; dsi->feedback_div = best_fbdiv; } else { dev_err(dsi->dsi_host, "Can not find best_freq for DPHY\n"); return -EINVAL; } return 0; } struct hstt { unsigned int maxfreq; struct mipi_dsi_phy_timing timing; }; #define HSTT(_maxfreq, _c_lp2hs, _c_hs2lp, _d_lp2hs, _d_hs2lp) \ { \ .maxfreq = _maxfreq, \ .timing = { \ .clk_lp2hs = _c_lp2hs, \ .clk_hs2lp = _c_hs2lp, \ .data_lp2hs = _d_lp2hs, \ .data_hs2lp = _d_hs2lp, \ } \ } /* * Table A-3 High-Speed Transition Times * (Note spacing is deliberate for readability). */ static struct hstt hstt_table[] = { HSTT( 90, 32, 20, 26, 13), HSTT( 100, 35, 23, 28, 14), HSTT( 110, 32, 22, 26, 13), HSTT( 130, 31, 20, 27, 13), HSTT( 140, 33, 22, 26, 14), HSTT( 150, 33, 21, 26, 14), HSTT( 170, 32, 20, 27, 13), HSTT( 180, 36, 23, 30, 15), HSTT( 200, 40, 22, 33, 15), HSTT( 220, 40, 22, 33, 15), HSTT( 240, 44, 24, 36, 16), HSTT( 250, 48, 24, 38, 17), HSTT( 270, 48, 24, 38, 17), HSTT( 300, 50, 27, 41, 18), HSTT( 330, 56, 28, 45, 18), HSTT( 360, 59, 28, 48, 19), HSTT( 400, 61, 30, 50, 20), HSTT( 450, 67, 31, 55, 21), HSTT( 500, 73, 31, 59, 22), HSTT( 550, 79, 36, 63, 24), HSTT( 600, 83, 37, 68, 25), HSTT( 650, 90, 38, 73, 27), HSTT( 700, 95, 40, 77, 28), HSTT( 750, 102, 40, 84, 28), HSTT( 800, 106, 42, 87, 30), HSTT( 850, 113, 44, 93, 31), HSTT( 900, 118, 47, 98, 32), HSTT( 950, 124, 47, 102, 34), HSTT(1000, 130, 49, 107, 35), HSTT(1050, 135, 51, 111, 37), HSTT(1100, 139, 51, 114, 38), HSTT(1150, 146, 54, 120, 40), HSTT(1200, 153, 57, 125, 41), HSTT(1250, 158, 58, 130, 42), HSTT(1300, 163, 58, 135, 44), HSTT(1350, 168, 60, 140, 45), HSTT(1400, 172, 64, 144, 47), HSTT(1450, 176, 65, 148, 48), HSTT(1500, 181, 66, 153, 50) }; static int dw_mipi_dsi_rockchip_get_timing(void *priv_data, unsigned int lane_mbps, struct mipi_dsi_phy_timing *timing) { int i; for (i = 0; i < ARRAY_SIZE(hstt_table); i++) if (lane_mbps < hstt_table[i].maxfreq) break; if (i == ARRAY_SIZE(hstt_table)) i--; *timing = hstt_table[i].timing; return 0; } static const struct mipi_dsi_phy_ops dsi_rockchip_phy_ops = { .init = dsi_phy_init, .get_lane_mbps = dw_mipi_dsi_get_lane_mbps, .get_timing = dw_mipi_dsi_rockchip_get_timing, .post_set_mode = dsi_phy_post_set_mode, }; static int dw_mipi_dsi_rockchip_attach(struct udevice *dev) { struct dw_rockchip_dsi_priv *priv = dev_get_priv(dev); struct mipi_dsi_device *device = &priv->device; struct mipi_dsi_panel_plat *mplat; struct display_timing timings; int ret; ret = uclass_first_device_err(UCLASS_PANEL, &priv->panel); if (ret) { dev_err(dev, "panel device error %d\n", ret); return ret; } mplat = dev_get_plat(priv->panel); mplat->device = &priv->device; device->lanes = mplat->lanes; device->format = mplat->format; device->mode_flags = mplat->mode_flags; ret = panel_get_display_timing(priv->panel, &timings); if (ret) { ret = ofnode_decode_display_timing(dev_ofnode(priv->panel), 0, &timings); if (ret) { dev_err(dev, "decode display timing error %d\n", ret); return ret; } } ret = uclass_get_device(UCLASS_DSI_HOST, 0, &priv->dsi_host); if (ret) { dev_err(dev, "No video dsi host detected %d\n", ret); return ret; } ret = dsi_host_init(priv->dsi_host, device, &timings, 4, &dsi_rockchip_phy_ops); if (ret) { dev_err(dev, "failed to initialize mipi dsi host\n"); return ret; } return 0; } static int dw_mipi_dsi_rockchip_set_bl(struct udevice *dev, int percent) { struct dw_rockchip_dsi_priv *priv = dev_get_priv(dev); int ret; /* * Allow backlight to be optional, since this driver may be * used to simply detect a panel rather than bring one up. */ ret = panel_enable_backlight(priv->panel); if ((ret) && (ret != -ENOSYS)) { dev_err(dev, "panel %s enable backlight error %d\n", priv->panel->name, ret); return ret; } ret = dsi_host_enable(priv->dsi_host); if (ret) { dev_err(dev, "failed to enable mipi dsi host\n"); return ret; } return 0; } static void dw_mipi_dsi_rockchip_config(struct dw_rockchip_dsi_priv *dsi) { if (dsi->cdata->lanecfg1_grf_reg) rk_setreg(dsi->grf + dsi->cdata->lanecfg1_grf_reg, dsi->cdata->lanecfg1); if (dsi->cdata->lanecfg2_grf_reg) rk_setreg(dsi->grf + dsi->cdata->lanecfg2_grf_reg, dsi->cdata->lanecfg2); if (dsi->cdata->enable_grf_reg) rk_setreg(dsi->grf + dsi->cdata->enable_grf_reg, dsi->cdata->enable); } static int dw_mipi_dsi_rockchip_bind(struct udevice *dev) { int ret; ret = device_bind_driver_to_node(dev, "dw_mipi_dsi", "dsihost", dev_ofnode(dev), NULL); if (ret) { dev_err(dev, "failed to bind driver to node\n"); return ret; } return dm_scan_fdt_dev(dev); } static int dw_mipi_dsi_rockchip_probe(struct udevice *dev) { struct dw_rockchip_dsi_priv *priv = dev_get_priv(dev); struct mipi_dsi_device *device = &priv->device; int ret, i; const struct rockchip_dw_dsi_chip_data *cdata = (const struct rockchip_dw_dsi_chip_data *)dev_get_driver_data(dev); device->dev = dev; priv->base = (void *)dev_read_addr(dev); if ((fdt_addr_t)priv->base == FDT_ADDR_T_NONE) { dev_err(dev, "dsi dt register address error\n"); return -EINVAL; } priv->grf = syscon_get_first_range(ROCKCHIP_SYSCON_GRF); i = 0; while (cdata[i].reg) { if (cdata[i].reg == (fdt_addr_t)priv->base) { priv->cdata = &cdata[i]; break; } i++; } if (!priv->cdata) { dev_err(dev, "no dsi-config for %s node\n", dev->name); return -EINVAL; } /* * Get an optional external dphy. The external dphy stays as * NULL if it's not initialized. */ ret = generic_phy_get_by_name(dev, "dphy", &priv->phy); if (ret && ret != -ENODATA) { dev_err(dev, "failed to get mipi dphy: %d\n", ret); return ret; } priv->pclk = devm_clk_get(dev, "pclk"); if (IS_ERR(priv->pclk)) { ret = PTR_ERR(priv->pclk); dev_err(dev, "peripheral clock get error %d\n", ret); return ret; } /* Get a ref clock only if not using an external phy. */ if (generic_phy_valid(&priv->phy)) { dev_dbg(dev, "setting priv->ref to NULL\n"); priv->ref = NULL; } else { priv->ref = devm_clk_get(dev, "ref"); if (IS_ERR(priv->ref)) { ret = PTR_ERR(priv->ref); dev_err(dev, "pll reference clock get error %d\n", ret); return ret; } } if (cdata->flags & DW_MIPI_NEEDS_PHY_CFG_CLK) { priv->phy_cfg_clk = devm_clk_get(dev, "phy_cfg"); if (IS_ERR(priv->phy_cfg_clk)) { ret = PTR_ERR(priv->phy_cfg_clk); dev_err(dev, "phy_cfg_clk clock get error %d\n", ret); return ret; } clk_enable(priv->phy_cfg_clk); } if (cdata->flags & DW_MIPI_NEEDS_GRF_CLK) { priv->grf_clk = devm_clk_get(dev, "grf"); if (IS_ERR(priv->grf_clk)) { ret = PTR_ERR(priv->grf_clk); dev_err(dev, "grf_clk clock get error %d\n", ret); return ret; } clk_enable(priv->grf_clk); } priv->rst = devm_reset_control_get_by_index(device->dev, 0); if (IS_ERR(priv->rst)) { ret = PTR_ERR(priv->rst); dev_err(dev, "missing dsi hardware reset %d\n", ret); return ret; } /* Reset */ reset_deassert(priv->rst); dw_mipi_dsi_rockchip_config(priv); return 0; } struct video_bridge_ops dw_mipi_dsi_rockchip_ops = { .attach = dw_mipi_dsi_rockchip_attach, .set_backlight = dw_mipi_dsi_rockchip_set_bl, }; static const struct rockchip_dw_dsi_chip_data rk3399_chip_data[] = { { .reg = 0xff960000, .lcdsel_grf_reg = RK3399_GRF_SOC_CON20, .lcdsel_big = HIWORD_UPDATE(0, RK3399_DSI0_LCDC_SEL), .lcdsel_lit = HIWORD_UPDATE(RK3399_DSI0_LCDC_SEL, RK3399_DSI0_LCDC_SEL), .lanecfg1_grf_reg = RK3399_GRF_SOC_CON22, .lanecfg1 = HIWORD_UPDATE(0, RK3399_DSI0_TURNREQUEST | RK3399_DSI0_TURNDISABLE | RK3399_DSI0_FORCETXSTOPMODE | RK3399_DSI0_FORCERXMODE), .flags = DW_MIPI_NEEDS_PHY_CFG_CLK | DW_MIPI_NEEDS_GRF_CLK, .max_data_lanes = 4, }, { .reg = 0xff968000, .lcdsel_grf_reg = RK3399_GRF_SOC_CON20, .lcdsel_big = HIWORD_UPDATE(0, RK3399_DSI1_LCDC_SEL), .lcdsel_lit = HIWORD_UPDATE(RK3399_DSI1_LCDC_SEL, RK3399_DSI1_LCDC_SEL), .lanecfg1_grf_reg = RK3399_GRF_SOC_CON23, .lanecfg1 = HIWORD_UPDATE(0, RK3399_DSI1_TURNDISABLE | RK3399_DSI1_FORCETXSTOPMODE | RK3399_DSI1_FORCERXMODE | RK3399_DSI1_ENABLE), .lanecfg2_grf_reg = RK3399_GRF_SOC_CON24, .lanecfg2 = HIWORD_UPDATE(RK3399_TXRX_MASTERSLAVEZ | RK3399_TXRX_ENABLECLK, RK3399_TXRX_MASTERSLAVEZ | RK3399_TXRX_ENABLECLK | RK3399_TXRX_BASEDIR), .enable_grf_reg = RK3399_GRF_SOC_CON23, .enable = HIWORD_UPDATE(RK3399_DSI1_ENABLE, RK3399_DSI1_ENABLE), .flags = DW_MIPI_NEEDS_PHY_CFG_CLK | DW_MIPI_NEEDS_GRF_CLK, .max_data_lanes = 4, }, { /* sentinel */ } }; static const struct rockchip_dw_dsi_chip_data rk3568_chip_data[] = { { .reg = 0xfe060000, .lanecfg1_grf_reg = RK3568_GRF_VO_CON2, .lanecfg1 = HIWORD_UPDATE(0, RK3568_DSI0_SKEWCALHS | RK3568_DSI0_FORCETXSTOPMODE | RK3568_DSI0_TURNDISABLE | RK3568_DSI0_FORCERXMODE), .max_data_lanes = 4, }, { .reg = 0xfe070000, .lanecfg1_grf_reg = RK3568_GRF_VO_CON3, .lanecfg1 = HIWORD_UPDATE(0, RK3568_DSI1_SKEWCALHS | RK3568_DSI1_FORCETXSTOPMODE | RK3568_DSI1_TURNDISABLE | RK3568_DSI1_FORCERXMODE), .max_data_lanes = 4, }, { /* sentinel */ } }; static const struct udevice_id dw_mipi_dsi_rockchip_dt_ids[] = { { .compatible = "rockchip,rk3399-mipi-dsi", .data = (long)&rk3399_chip_data, }, { .compatible = "rockchip,rk3568-mipi-dsi", .data = (long)&rk3568_chip_data, }, { /* sentinel */ } }; U_BOOT_DRIVER(dw_mipi_dsi_rockchip) = { .name = "dw-mipi-dsi-rockchip", .id = UCLASS_VIDEO_BRIDGE, .of_match = dw_mipi_dsi_rockchip_dt_ids, .bind = dw_mipi_dsi_rockchip_bind, .probe = dw_mipi_dsi_rockchip_probe, .ops = &dw_mipi_dsi_rockchip_ops, .priv_auto = sizeof(struct dw_rockchip_dsi_priv), };