// SPDX-License-Identifier: GPL-2.0+ /* * Copyright 2016 General Electric Company */ #include "vpd_reader.h" #include <malloc.h> #include <i2c.h> #include <linux/bch.h> #include <stdlib.h> #include <dm/uclass.h> #include <i2c_eeprom.h> #include <hexdump.h> /* BCH configuration */ const struct { int header_ecc_capability_bits; int data_ecc_capability_bits; unsigned int prim_poly; struct { int min; int max; } galois_field_order; } bch_configuration = { .header_ecc_capability_bits = 4, .data_ecc_capability_bits = 16, .prim_poly = 0, .galois_field_order = { .min = 5, .max = 15, }, }; static int calculate_galois_field_order(size_t source_length) { int gfo = bch_configuration.galois_field_order.min; for (; gfo < bch_configuration.galois_field_order.max && ((((1 << gfo) - 1) - ((int)source_length * 8)) < 0); gfo++) { } if (gfo == bch_configuration.galois_field_order.max) return -1; return gfo + 1; } static int verify_bch(int ecc_bits, unsigned int prim_poly, u8 *data, size_t data_length, const u8 *ecc, size_t ecc_length) { int gfo = calculate_galois_field_order(data_length); if (gfo < 0) return -1; struct bch_control *bch = init_bch(gfo, ecc_bits, prim_poly); if (!bch) return -1; if (bch->ecc_bytes != ecc_length) { free_bch(bch); return -1; } unsigned int *errloc = (unsigned int *)calloc(data_length, sizeof(unsigned int)); int errors = decode_bch(bch, data, data_length, ecc, NULL, NULL, errloc); free_bch(bch); if (errors < 0) { free(errloc); return -1; } if (errors > 0) { for (int n = 0; n < errors; n++) { if (errloc[n] >= 8 * data_length) { /* * n-th error located in ecc (no need for data * correction) */ } else { /* n-th error located in data */ data[errloc[n] / 8] ^= 1 << (errloc[n] % 8); } } } free(errloc); return 0; } static const int ID; static const int LEN = 1; static const int VER = 2; static const int TYP = 3; static const int BLOCK_SIZE = 4; static const u8 HEADER_BLOCK_ID; static const u8 HEADER_BLOCK_LEN = 18; static const u32 HEADER_BLOCK_MAGIC = 0xca53ca53; static const size_t HEADER_BLOCK_VERIFY_LEN = 14; static const size_t HEADER_BLOCK_ECC_OFF = 14; static const size_t HEADER_BLOCK_ECC_LEN = 4; static const u8 ECC_BLOCK_ID = 0xFF; int vpd_reader(size_t size, u8 *data, struct vpd_cache *userdata, int (*fn)(struct vpd_cache *, u8 id, u8 version, u8 type, size_t size, u8 const *data)) { if (size < HEADER_BLOCK_LEN || !data || !fn) return -EINVAL; /* * +--------------------+----------------+--//--+--------------------+ * | header block | data block | ... | ecc block | * +--------------------+----------------+--//--+--------------------+ * : : : * +------+-------+-----+ +------+-------------+ * | id | magic | ecc | | ... | ecc | * | len | off | | +------+-------------+ * | ver | size | | : * | type | | | : * +------+-------+-----+ : * : : : : * <----- [1] ----> <--------- [2] ---------> * * Repair (if necessary) the contents of header block [1] by using a * 4 byte ECC located at the end of the header block. A successful * return value means that we can trust the header. */ int ret = verify_bch(bch_configuration.header_ecc_capability_bits, bch_configuration.prim_poly, data, HEADER_BLOCK_VERIFY_LEN, &data[HEADER_BLOCK_ECC_OFF], HEADER_BLOCK_ECC_LEN); if (ret < 0) return ret; /* Validate header block { id, length, version, type }. */ if (data[ID] != HEADER_BLOCK_ID || data[LEN] != HEADER_BLOCK_LEN || data[VER] != 0 || data[TYP] != 0 || ntohl(*(u32 *)(&data[4])) != HEADER_BLOCK_MAGIC) return -EINVAL; u32 offset = ntohl(*(u32 *)(&data[8])); u16 size_bits = ntohs(*(u16 *)(&data[12])); /* Check that ECC header fits. */ if (offset + 3 >= size) return -EINVAL; /* Validate ECC block. */ u8 *ecc = &data[offset]; if (ecc[ID] != ECC_BLOCK_ID || ecc[LEN] < BLOCK_SIZE || ecc[LEN] + offset > size || ecc[LEN] - BLOCK_SIZE != size_bits / 8 || ecc[VER] != 1 || ecc[TYP] != 1) return -EINVAL; /* * Use the header block to locate the ECC block and verify the data * blocks [2] against the ecc block ECC. */ ret = verify_bch(bch_configuration.data_ecc_capability_bits, bch_configuration.prim_poly, &data[data[LEN]], offset - data[LEN], &data[offset + BLOCK_SIZE], ecc[LEN] - BLOCK_SIZE); if (ret < 0) return ret; /* Stop after ECC. Ignore possible zero padding. */ size = offset; for (;;) { /* Move to next block. */ size -= data[LEN]; data += data[LEN]; if (size == 0) { /* Finished iterating through blocks. */ return 0; } if (size < BLOCK_SIZE || data[LEN] < BLOCK_SIZE) { /* Not enough data for a header, or short header. */ return -EINVAL; } ret = fn(userdata, data[ID], data[VER], data[TYP], data[LEN] - BLOCK_SIZE, &data[BLOCK_SIZE]); if (ret) return ret; } } int read_i2c_vpd(struct vpd_cache *cache, int (*process_block)(struct vpd_cache *, u8 id, u8 version, u8 type, size_t size, u8 const *data)) { struct udevice *dev; int ret; u8 *data; int size; ret = uclass_get_device_by_name(UCLASS_I2C_EEPROM, "vpd@0", &dev); if (ret) return ret; size = i2c_eeprom_size(dev); if (size < 0) { printf("Unable to get size of eeprom: %d\n", ret); return ret; } data = malloc(size); if (!data) return -ENOMEM; ret = i2c_eeprom_read(dev, 0, data, size); if (ret) { free(data); return ret; } ret = vpd_reader(size, data, cache, process_block); free(data); return ret; }