/* * Simulate a SPI flash * * Copyright (c) 2011-2013 The Chromium OS Authors. * See file CREDITS for list of people who contributed to this * project. * * Licensed under the GPL-2 or later. */ #include #include #include #include #include #include #include "sf_internal.h" #include #include #include #include #include #include /* * The different states that our SPI flash transitions between. * We need to keep track of this across multiple xfer calls since * the SPI bus could possibly call down into us multiple times. */ enum sandbox_sf_state { SF_CMD, /* default state -- we're awaiting a command */ SF_ID, /* read the flash's (jedec) ID code */ SF_ADDR, /* processing the offset in the flash to read/etc... */ SF_READ, /* reading data from the flash */ SF_WRITE, /* writing data to the flash, i.e. page programming */ SF_ERASE, /* erase the flash */ SF_READ_STATUS, /* read the flash's status register */ SF_READ_STATUS1, /* read the flash's status register upper 8 bits*/ SF_WRITE_STATUS, /* write the flash's status register */ }; static const char *sandbox_sf_state_name(enum sandbox_sf_state state) { static const char * const states[] = { "CMD", "ID", "ADDR", "READ", "WRITE", "ERASE", "READ_STATUS", "READ_STATUS1", "WRITE_STATUS", }; return states[state]; } /* Bits for the status register */ #define STAT_WIP (1 << 0) #define STAT_WEL (1 << 1) /* Assume all SPI flashes have 3 byte addresses since they do atm */ #define SF_ADDR_LEN 3 #define IDCODE_LEN 3 /* Used to quickly bulk erase backing store */ static u8 sandbox_sf_0xff[0x1000]; /* Internal state data for each SPI flash */ struct sandbox_spi_flash { unsigned int cs; /* Chip select we are attached to */ /* * As we receive data over the SPI bus, our flash transitions * between states. For example, we start off in the SF_CMD * state where the first byte tells us what operation to perform * (such as read or write the flash). But the operation itself * can go through a few states such as first reading in the * offset in the flash to perform the requested operation. * Thus "state" stores the exact state that our machine is in * while "cmd" stores the overall command we're processing. */ enum sandbox_sf_state state; uint cmd; /* Erase size of current erase command */ uint erase_size; /* Current position in the flash; used when reading/writing/etc... */ uint off; /* How many address bytes we've consumed */ uint addr_bytes, pad_addr_bytes; /* The current flash status (see STAT_XXX defines above) */ u16 status; /* Data describing the flash we're emulating */ const struct spi_flash_info *data; /* The file on disk to serv up data from */ int fd; }; struct sandbox_spi_flash_plat_data { const char *filename; const char *device_name; int bus; int cs; }; /** * This is a very strange probe function. If it has platform data (which may * have come from the device tree) then this function gets the filename and * device type from there. */ static int sandbox_sf_probe(struct udevice *dev) { /* spec = idcode:file */ struct sandbox_spi_flash *sbsf = dev_get_priv(dev); size_t len, idname_len; const struct spi_flash_info *data; struct sandbox_spi_flash_plat_data *pdata = dev_get_platdata(dev); struct sandbox_state *state = state_get_current(); struct udevice *bus = dev->parent; const char *spec = NULL; int ret = 0; int cs = -1; int i; debug("%s: bus %d, looking for emul=%p: ", __func__, bus->seq, dev); if (bus->seq >= 0 && bus->seq < CONFIG_SANDBOX_SPI_MAX_BUS) { for (i = 0; i < CONFIG_SANDBOX_SPI_MAX_CS; i++) { if (state->spi[bus->seq][i].emul == dev) cs = i; } } if (cs == -1) { printf("Error: Unknown chip select for device '%s'\n", dev->name); return -EINVAL; } debug("found at cs %d\n", cs); if (!pdata->filename) { printf("Error: No filename available\n"); return -EINVAL; } spec = strchr(pdata->device_name, ','); if (spec) spec++; else spec = pdata->device_name; idname_len = strlen(spec); debug("%s: device='%s'\n", __func__, spec); for (data = spi_flash_ids; data->name; data++) { len = strlen(data->name); if (idname_len != len) continue; if (!strncasecmp(spec, data->name, len)) break; } if (!data->name) { printf("%s: unknown flash '%*s'\n", __func__, (int)idname_len, spec); ret = -EINVAL; goto error; } if (sandbox_sf_0xff[0] == 0x00) memset(sandbox_sf_0xff, 0xff, sizeof(sandbox_sf_0xff)); sbsf->fd = os_open(pdata->filename, 02); if (sbsf->fd == -1) { printf("%s: unable to open file '%s'\n", __func__, pdata->filename); ret = -EIO; goto error; } sbsf->data = data; sbsf->cs = cs; return 0; error: debug("%s: Got error %d\n", __func__, ret); return ret; } static int sandbox_sf_remove(struct udevice *dev) { struct sandbox_spi_flash *sbsf = dev_get_priv(dev); os_close(sbsf->fd); return 0; } static void sandbox_sf_cs_activate(struct udevice *dev) { struct sandbox_spi_flash *sbsf = dev_get_priv(dev); debug("sandbox_sf: CS activated; state is fresh!\n"); /* CS is asserted, so reset state */ sbsf->off = 0; sbsf->addr_bytes = 0; sbsf->pad_addr_bytes = 0; sbsf->state = SF_CMD; sbsf->cmd = SF_CMD; } static void sandbox_sf_cs_deactivate(struct udevice *dev) { debug("sandbox_sf: CS deactivated; cmd done processing!\n"); } /* * There are times when the data lines are allowed to tristate. What * is actually sensed on the line depends on the hardware. It could * always be 0xFF/0x00 (if there are pull ups/downs), or things could * float and so we'd get garbage back. This func encapsulates that * scenario so we can worry about the details here. */ static void sandbox_spi_tristate(u8 *buf, uint len) { /* XXX: make this into a user config option ? */ memset(buf, 0xff, len); } /* Figure out what command this stream is telling us to do */ static int sandbox_sf_process_cmd(struct sandbox_spi_flash *sbsf, const u8 *rx, u8 *tx) { enum sandbox_sf_state oldstate = sbsf->state; /* We need to output a byte for the cmd byte we just ate */ if (tx) sandbox_spi_tristate(tx, 1); sbsf->cmd = rx[0]; switch (sbsf->cmd) { case CMD_READ_ID: sbsf->state = SF_ID; sbsf->cmd = SF_ID; break; case CMD_READ_ARRAY_FAST: sbsf->pad_addr_bytes = 1; case CMD_READ_ARRAY_SLOW: case CMD_PAGE_PROGRAM: sbsf->state = SF_ADDR; break; case CMD_WRITE_DISABLE: debug(" write disabled\n"); sbsf->status &= ~STAT_WEL; break; case CMD_READ_STATUS: sbsf->state = SF_READ_STATUS; break; case CMD_READ_STATUS1: sbsf->state = SF_READ_STATUS1; break; case CMD_WRITE_ENABLE: debug(" write enabled\n"); sbsf->status |= STAT_WEL; break; case CMD_WRITE_STATUS: sbsf->state = SF_WRITE_STATUS; break; default: { int flags = sbsf->data->flags; /* we only support erase here */ if (sbsf->cmd == CMD_ERASE_CHIP) { sbsf->erase_size = sbsf->data->sector_size * sbsf->data->n_sectors; } else if (sbsf->cmd == CMD_ERASE_4K && (flags & SECT_4K)) { sbsf->erase_size = 4 << 10; } else if (sbsf->cmd == CMD_ERASE_64K && !(flags & SECT_4K)) { sbsf->erase_size = 64 << 10; } else { debug(" cmd unknown: %#x\n", sbsf->cmd); return -EIO; } sbsf->state = SF_ADDR; break; } } if (oldstate != sbsf->state) debug(" cmd: transition to %s state\n", sandbox_sf_state_name(sbsf->state)); return 0; } int sandbox_erase_part(struct sandbox_spi_flash *sbsf, int size) { int todo; int ret; while (size > 0) { todo = min(size, (int)sizeof(sandbox_sf_0xff)); ret = os_write(sbsf->fd, sandbox_sf_0xff, todo); if (ret != todo) return ret; size -= todo; } return 0; } static int sandbox_sf_xfer(struct udevice *dev, unsigned int bitlen, const void *rxp, void *txp, unsigned long flags) { struct sandbox_spi_flash *sbsf = dev_get_priv(dev); const uint8_t *rx = rxp; uint8_t *tx = txp; uint cnt, pos = 0; int bytes = bitlen / 8; int ret; debug("sandbox_sf: state:%x(%s) bytes:%u\n", sbsf->state, sandbox_sf_state_name(sbsf->state), bytes); if ((flags & SPI_XFER_BEGIN)) sandbox_sf_cs_activate(dev); if (sbsf->state == SF_CMD) { /* Figure out the initial state */ ret = sandbox_sf_process_cmd(sbsf, rx, tx); if (ret) return ret; ++pos; } /* Process the remaining data */ while (pos < bytes) { switch (sbsf->state) { case SF_ID: { u8 id; debug(" id: off:%u tx:", sbsf->off); if (sbsf->off < IDCODE_LEN) { /* Extract correct byte from ID 0x00aabbcc */ id = ((JEDEC_MFR(sbsf->data) << 16) | JEDEC_ID(sbsf->data)) >> (8 * (IDCODE_LEN - 1 - sbsf->off)); } else { id = 0; } debug("%d %02x\n", sbsf->off, id); tx[pos++] = id; ++sbsf->off; break; } case SF_ADDR: debug(" addr: bytes:%u rx:%02x ", sbsf->addr_bytes, rx[pos]); if (sbsf->addr_bytes++ < SF_ADDR_LEN) sbsf->off = (sbsf->off << 8) | rx[pos]; debug("addr:%06x\n", sbsf->off); if (tx) sandbox_spi_tristate(&tx[pos], 1); pos++; /* See if we're done processing */ if (sbsf->addr_bytes < SF_ADDR_LEN + sbsf->pad_addr_bytes) break; /* Next state! */ if (os_lseek(sbsf->fd, sbsf->off, OS_SEEK_SET) < 0) { puts("sandbox_sf: os_lseek() failed"); return -EIO; } switch (sbsf->cmd) { case CMD_READ_ARRAY_FAST: case CMD_READ_ARRAY_SLOW: sbsf->state = SF_READ; break; case CMD_PAGE_PROGRAM: sbsf->state = SF_WRITE; break; default: /* assume erase state ... */ sbsf->state = SF_ERASE; goto case_sf_erase; } debug(" cmd: transition to %s state\n", sandbox_sf_state_name(sbsf->state)); break; case SF_READ: /* * XXX: need to handle exotic behavior: * - reading past end of device */ cnt = bytes - pos; debug(" tx: read(%u)\n", cnt); assert(tx); ret = os_read(sbsf->fd, tx + pos, cnt); if (ret < 0) { puts("sandbox_sf: os_read() failed\n"); return -EIO; } pos += ret; break; case SF_READ_STATUS: debug(" read status: %#x\n", sbsf->status); cnt = bytes - pos; memset(tx + pos, sbsf->status, cnt); pos += cnt; break; case SF_READ_STATUS1: debug(" read status: %#x\n", sbsf->status); cnt = bytes - pos; memset(tx + pos, sbsf->status >> 8, cnt); pos += cnt; break; case SF_WRITE_STATUS: debug(" write status: %#x (ignored)\n", rx[pos]); pos = bytes; break; case SF_WRITE: /* * XXX: need to handle exotic behavior: * - unaligned addresses * - more than a page (256) worth of data * - reading past end of device */ if (!(sbsf->status & STAT_WEL)) { puts("sandbox_sf: write enable not set before write\n"); goto done; } cnt = bytes - pos; debug(" rx: write(%u)\n", cnt); if (tx) sandbox_spi_tristate(&tx[pos], cnt); ret = os_write(sbsf->fd, rx + pos, cnt); if (ret < 0) { puts("sandbox_spi: os_write() failed\n"); return -EIO; } pos += ret; sbsf->status &= ~STAT_WEL; break; case SF_ERASE: case_sf_erase: { if (!(sbsf->status & STAT_WEL)) { puts("sandbox_sf: write enable not set before erase\n"); goto done; } /* verify address is aligned */ if (sbsf->off & (sbsf->erase_size - 1)) { debug(" sector erase: cmd:%#x needs align:%#x, but we got %#x\n", sbsf->cmd, sbsf->erase_size, sbsf->off); sbsf->status &= ~STAT_WEL; goto done; } debug(" sector erase addr: %u, size: %u\n", sbsf->off, sbsf->erase_size); cnt = bytes - pos; if (tx) sandbox_spi_tristate(&tx[pos], cnt); pos += cnt; /* * TODO(vapier@gentoo.org): latch WIP in status, and * delay before clearing it ? */ ret = sandbox_erase_part(sbsf, sbsf->erase_size); sbsf->status &= ~STAT_WEL; if (ret) { debug("sandbox_sf: Erase failed\n"); goto done; } goto done; } default: debug(" ??? no idea what to do ???\n"); goto done; } } done: if (flags & SPI_XFER_END) sandbox_sf_cs_deactivate(dev); return pos == bytes ? 0 : -EIO; } int sandbox_sf_ofdata_to_platdata(struct udevice *dev) { struct sandbox_spi_flash_plat_data *pdata = dev_get_platdata(dev); pdata->filename = dev_read_string(dev, "sandbox,filename"); pdata->device_name = dev_read_string(dev, "compatible"); if (!pdata->filename || !pdata->device_name) { debug("%s: Missing properties, filename=%s, device_name=%s\n", __func__, pdata->filename, pdata->device_name); return -EINVAL; } return 0; } static const struct dm_spi_emul_ops sandbox_sf_emul_ops = { .xfer = sandbox_sf_xfer, }; #ifdef CONFIG_SPI_FLASH int sandbox_sf_bind_emul(struct sandbox_state *state, int busnum, int cs, struct udevice *bus, ofnode node, const char *spec) { struct udevice *emul; char name[20], *str; struct driver *drv; int ret; /* now the emulator */ strncpy(name, spec, sizeof(name) - 6); name[sizeof(name) - 6] = '\0'; strcat(name, "-emul"); drv = lists_driver_lookup_name("sandbox_sf_emul"); if (!drv) { puts("Cannot find sandbox_sf_emul driver\n"); return -ENOENT; } str = strdup(name); if (!str) return -ENOMEM; ret = device_bind_ofnode(bus, drv, str, NULL, node, &emul); if (ret) { free(str); printf("Cannot create emul device for spec '%s' (err=%d)\n", spec, ret); return ret; } state->spi[busnum][cs].emul = emul; return 0; } void sandbox_sf_unbind_emul(struct sandbox_state *state, int busnum, int cs) { struct udevice *dev; dev = state->spi[busnum][cs].emul; device_remove(dev, DM_REMOVE_NORMAL); device_unbind(dev); state->spi[busnum][cs].emul = NULL; } int sandbox_spi_get_emul(struct sandbox_state *state, struct udevice *bus, struct udevice *slave, struct udevice **emulp) { struct sandbox_spi_info *info; int busnum = bus->seq; int cs = spi_chip_select(slave); int ret; info = &state->spi[busnum][cs]; if (!info->emul) { /* Use the same device tree node as the SPI flash device */ debug("%s: busnum=%u, cs=%u: binding SPI flash emulation: ", __func__, busnum, cs); ret = sandbox_sf_bind_emul(state, busnum, cs, bus, dev_ofnode(slave), slave->name); if (ret) { debug("failed (err=%d)\n", ret); return ret; } debug("OK\n"); } *emulp = info->emul; return 0; } #endif static const struct udevice_id sandbox_sf_ids[] = { { .compatible = "sandbox,spi-flash" }, { } }; U_BOOT_DRIVER(sandbox_sf_emul) = { .name = "sandbox_sf_emul", .id = UCLASS_SPI_EMUL, .of_match = sandbox_sf_ids, .ofdata_to_platdata = sandbox_sf_ofdata_to_platdata, .probe = sandbox_sf_probe, .remove = sandbox_sf_remove, .priv_auto_alloc_size = sizeof(struct sandbox_spi_flash), .platdata_auto_alloc_size = sizeof(struct sandbox_spi_flash_plat_data), .ops = &sandbox_sf_emul_ops, };