// SPDX-License-Identifier: GPL-2.0+ /* * Ethernet driver for TI K2HK EVM. * * (C) Copyright 2012-2014 * Texas Instruments Incorporated, */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "cpsw_mdio.h" DECLARE_GLOBAL_DATA_PTR; #ifdef KEYSTONE2_EMAC_GIG_ENABLE #define emac_gigabit_enable(x) keystone2_eth_gigabit_enable(x) #else #define emac_gigabit_enable(x) /* no gigabit to enable */ #endif #define RX_BUFF_NUMS 24 #define RX_BUFF_LEN 1520 #define MAX_SIZE_STREAM_BUFFER RX_BUFF_LEN #define SGMII_ANEG_TIMEOUT 4000 static u8 rx_buffs[RX_BUFF_NUMS * RX_BUFF_LEN] __aligned(16); enum link_type { LINK_TYPE_SGMII_MAC_TO_MAC_AUTO = 0, LINK_TYPE_SGMII_MAC_TO_PHY_MODE = 1, LINK_TYPE_SGMII_MAC_TO_MAC_FORCED_MODE = 2, LINK_TYPE_SGMII_MAC_TO_FIBRE_MODE = 3, LINK_TYPE_SGMII_MAC_TO_PHY_NO_MDIO_MODE = 4, LINK_TYPE_RGMII_LINK_MAC_PHY = 5, LINK_TYPE_RGMII_LINK_MAC_MAC_FORCED = 6, LINK_TYPE_RGMII_LINK_MAC_PHY_NO_MDIO = 7, LINK_TYPE_10G_MAC_TO_PHY_MODE = 10, LINK_TYPE_10G_MAC_TO_MAC_FORCED_MODE = 11, }; #define mac_hi(mac) (((mac)[0] << 0) | ((mac)[1] << 8) | \ ((mac)[2] << 16) | ((mac)[3] << 24)) #define mac_lo(mac) (((mac)[4] << 0) | ((mac)[5] << 8)) #ifdef CONFIG_KSNET_NETCP_V1_0 #define EMAC_EMACSW_BASE_OFS 0x90800 #define EMAC_EMACSW_PORT_BASE_OFS (EMAC_EMACSW_BASE_OFS + 0x60) /* CPSW Switch slave registers */ #define CPGMACSL_REG_SA_LO 0x10 #define CPGMACSL_REG_SA_HI 0x14 #define DEVICE_EMACSW_BASE(base, x) ((base) + EMAC_EMACSW_PORT_BASE_OFS + \ (x) * 0x30) #elif defined(CONFIG_KSNET_NETCP_V1_5) #define EMAC_EMACSW_PORT_BASE_OFS 0x222000 /* CPSW Switch slave registers */ #define CPGMACSL_REG_SA_LO 0x308 #define CPGMACSL_REG_SA_HI 0x30c #define DEVICE_EMACSW_BASE(base, x) ((base) + EMAC_EMACSW_PORT_BASE_OFS + \ (x) * 0x1000) #endif struct ks2_eth_priv { struct udevice *dev; struct phy_device *phydev; struct mii_dev *mdio_bus; int phy_addr; phy_interface_t phy_if; ofnode phy_ofnode; int sgmii_link_type; phys_addr_t mdio_base; struct rx_buff_desc net_rx_buffs; struct pktdma_cfg *netcp_pktdma; void *hd; int slave_port; enum link_type link_type; bool emac_open; bool has_mdio; }; static void __attribute__((unused)) keystone2_eth_gigabit_enable(struct udevice *dev) { struct ks2_eth_priv *priv = dev_get_priv(dev); /* * Check if link detected is giga-bit * If Gigabit mode detected, enable gigbit in MAC */ if (priv->has_mdio) { if (priv->phydev->speed != 1000) return; } writel(readl(DEVICE_EMACSL_BASE(priv->slave_port - 1) + CPGMACSL_REG_CTL) | EMAC_MACCONTROL_GIGFORCE | EMAC_MACCONTROL_GIGABIT_ENABLE, DEVICE_EMACSL_BASE(priv->slave_port - 1) + CPGMACSL_REG_CTL); } #ifdef CONFIG_SOC_K2G int keystone_rgmii_config(struct phy_device *phy_dev) { unsigned int i, status; i = 0; do { if (i > SGMII_ANEG_TIMEOUT) { puts(" TIMEOUT !\n"); phy_dev->link = 0; return 0; } if (ctrlc()) { puts("user interrupt!\n"); phy_dev->link = 0; return -EINTR; } if ((i++ % 500) == 0) printf("."); udelay(1000); /* 1 ms */ status = readl(RGMII_STATUS_REG); } while (!(status & RGMII_REG_STATUS_LINK)); puts(" done\n"); return 0; } #else int keystone_sgmii_config(struct phy_device *phy_dev, int port, int interface) { unsigned int i, status, mask; unsigned int mr_adv_ability, control; switch (interface) { case SGMII_LINK_MAC_MAC_AUTONEG: mr_adv_ability = (SGMII_REG_MR_ADV_ENABLE | SGMII_REG_MR_ADV_LINK | SGMII_REG_MR_ADV_FULL_DUPLEX | SGMII_REG_MR_ADV_GIG_MODE); control = (SGMII_REG_CONTROL_MASTER | SGMII_REG_CONTROL_AUTONEG); break; case SGMII_LINK_MAC_PHY: case SGMII_LINK_MAC_PHY_FORCED: mr_adv_ability = SGMII_REG_MR_ADV_ENABLE; control = SGMII_REG_CONTROL_AUTONEG; break; case SGMII_LINK_MAC_MAC_FORCED: mr_adv_ability = (SGMII_REG_MR_ADV_ENABLE | SGMII_REG_MR_ADV_LINK | SGMII_REG_MR_ADV_FULL_DUPLEX | SGMII_REG_MR_ADV_GIG_MODE); control = SGMII_REG_CONTROL_MASTER; break; case SGMII_LINK_MAC_FIBER: mr_adv_ability = 0x20; control = SGMII_REG_CONTROL_AUTONEG; break; default: mr_adv_ability = SGMII_REG_MR_ADV_ENABLE; control = SGMII_REG_CONTROL_AUTONEG; } __raw_writel(0, SGMII_CTL_REG(port)); /* * Wait for the SerDes pll to lock, * but don't trap if lock is never read */ for (i = 0; i < 1000; i++) { udelay(2000); status = __raw_readl(SGMII_STATUS_REG(port)); if ((status & SGMII_REG_STATUS_LOCK) != 0) break; } __raw_writel(mr_adv_ability, SGMII_MRADV_REG(port)); __raw_writel(control, SGMII_CTL_REG(port)); mask = SGMII_REG_STATUS_LINK; if (control & SGMII_REG_CONTROL_AUTONEG) mask |= SGMII_REG_STATUS_AUTONEG; status = __raw_readl(SGMII_STATUS_REG(port)); if ((status & mask) == mask) return 0; printf("\n%s Waiting for SGMII auto negotiation to complete", phy_dev->dev->name); while ((status & mask) != mask) { /* * Timeout reached ? */ if (i > SGMII_ANEG_TIMEOUT) { puts(" TIMEOUT !\n"); phy_dev->link = 0; return 0; } if (ctrlc()) { puts("user interrupt!\n"); phy_dev->link = 0; return -EINTR; } if ((i++ % 500) == 0) printf("."); udelay(1000); /* 1 ms */ status = __raw_readl(SGMII_STATUS_REG(port)); } puts(" done\n"); return 0; } #endif int mac_sl_reset(u32 port) { u32 i, v; if (port >= DEVICE_N_GMACSL_PORTS) return GMACSL_RET_INVALID_PORT; /* Set the soft reset bit */ writel(CPGMAC_REG_RESET_VAL_RESET, DEVICE_EMACSL_BASE(port) + CPGMACSL_REG_RESET); /* Wait for the bit to clear */ for (i = 0; i < DEVICE_EMACSL_RESET_POLL_COUNT; i++) { v = readl(DEVICE_EMACSL_BASE(port) + CPGMACSL_REG_RESET); if ((v & CPGMAC_REG_RESET_VAL_RESET_MASK) != CPGMAC_REG_RESET_VAL_RESET) return GMACSL_RET_OK; } /* Timeout on the reset */ return GMACSL_RET_WARN_RESET_INCOMPLETE; } int mac_sl_config(u_int16_t port, struct mac_sl_cfg *cfg) { u32 v, i; int ret = GMACSL_RET_OK; if (port >= DEVICE_N_GMACSL_PORTS) return GMACSL_RET_INVALID_PORT; if (cfg->max_rx_len > CPGMAC_REG_MAXLEN_LEN) { cfg->max_rx_len = CPGMAC_REG_MAXLEN_LEN; ret = GMACSL_RET_WARN_MAXLEN_TOO_BIG; } /* Must wait if the device is undergoing reset */ for (i = 0; i < DEVICE_EMACSL_RESET_POLL_COUNT; i++) { v = readl(DEVICE_EMACSL_BASE(port) + CPGMACSL_REG_RESET); if ((v & CPGMAC_REG_RESET_VAL_RESET_MASK) != CPGMAC_REG_RESET_VAL_RESET) break; } if (i == DEVICE_EMACSL_RESET_POLL_COUNT) return GMACSL_RET_CONFIG_FAIL_RESET_ACTIVE; writel(cfg->max_rx_len, DEVICE_EMACSL_BASE(port) + CPGMACSL_REG_MAXLEN); writel(cfg->ctl, DEVICE_EMACSL_BASE(port) + CPGMACSL_REG_CTL); #ifndef CONFIG_SOC_K2HK /* Map RX packet flow priority to 0 */ writel(0, DEVICE_EMACSL_BASE(port) + CPGMACSL_REG_RX_PRI_MAP); #endif return ret; } int ethss_config(u32 ctl, u32 max_pkt_size) { u32 i; /* Max length register */ writel(max_pkt_size, DEVICE_CPSW_BASE + CPSW_REG_MAXLEN); /* Control register */ writel(ctl, DEVICE_CPSW_BASE + CPSW_REG_CTL); /* All statistics enabled by default */ writel(CPSW_REG_VAL_STAT_ENABLE_ALL, DEVICE_CPSW_BASE + CPSW_REG_STAT_PORT_EN); /* Reset and enable the ALE */ writel(CPSW_REG_VAL_ALE_CTL_RESET_AND_ENABLE | CPSW_REG_VAL_ALE_CTL_BYPASS, DEVICE_CPSW_BASE + CPSW_REG_ALE_CONTROL); /* All ports put into forward mode */ for (i = 0; i < DEVICE_CPSW_NUM_PORTS; i++) writel(CPSW_REG_VAL_PORTCTL_FORWARD_MODE, DEVICE_CPSW_BASE + CPSW_REG_ALE_PORTCTL(i)); return 0; } int ethss_start(void) { int i; struct mac_sl_cfg cfg; cfg.max_rx_len = MAX_SIZE_STREAM_BUFFER; cfg.ctl = GMACSL_ENABLE | GMACSL_RX_ENABLE_EXT_CTL; for (i = 0; i < DEVICE_N_GMACSL_PORTS; i++) { mac_sl_reset(i); mac_sl_config(i, &cfg); } return 0; } int ethss_stop(void) { int i; for (i = 0; i < DEVICE_N_GMACSL_PORTS; i++) mac_sl_reset(i); return 0; } struct ks2_serdes ks2_serdes_sgmii_156p25mhz = { .clk = SERDES_CLOCK_156P25M, .rate = SERDES_RATE_5G, .rate_mode = SERDES_QUARTER_RATE, .intf = SERDES_PHY_SGMII, .loopback = 0, }; #ifndef CONFIG_SOC_K2G static void keystone2_net_serdes_setup(void) { ks2_serdes_init(CFG_KSNET_SERDES_SGMII_BASE, &ks2_serdes_sgmii_156p25mhz, CFG_KSNET_SERDES_LANES_PER_SGMII); #if defined(CONFIG_SOC_K2E) || defined(CONFIG_SOC_K2L) ks2_serdes_init(CFG_KSNET_SERDES_SGMII2_BASE, &ks2_serdes_sgmii_156p25mhz, CFG_KSNET_SERDES_LANES_PER_SGMII); #endif /* wait till setup */ udelay(5000); } #endif static int ks2_eth_start(struct udevice *dev) { struct ks2_eth_priv *priv = dev_get_priv(dev); #ifdef CONFIG_SOC_K2G keystone_rgmii_config(priv->phydev); #else keystone_sgmii_config(priv->phydev, priv->slave_port - 1, priv->sgmii_link_type); #endif udelay(10000); /* On chip switch configuration */ ethss_config(target_get_switch_ctl(), SWITCH_MAX_PKT_SIZE); qm_init(); if (ksnav_init(priv->netcp_pktdma, &priv->net_rx_buffs)) { pr_err("ksnav_init failed\n"); goto err_knav_init; } /* * Streaming switch configuration. If not present this * statement is defined to void in target.h. * If present this is usually defined to a series of register writes */ hw_config_streaming_switch(); if (priv->has_mdio) { phy_startup(priv->phydev); if (priv->phydev->link == 0) { pr_err("phy startup failed\n"); goto err_phy_start; } } emac_gigabit_enable(dev); ethss_start(); priv->emac_open = true; return 0; err_phy_start: ksnav_close(priv->netcp_pktdma); err_knav_init: qm_close(); return -EFAULT; } static int ks2_eth_send(struct udevice *dev, void *packet, int length) { struct ks2_eth_priv *priv = dev_get_priv(dev); genphy_update_link(priv->phydev); if (priv->phydev->link == 0) return -1; if (length < EMAC_MIN_ETHERNET_PKT_SIZE) length = EMAC_MIN_ETHERNET_PKT_SIZE; return ksnav_send(priv->netcp_pktdma, (u32 *)packet, length, (priv->slave_port) << 16); } static int ks2_eth_recv(struct udevice *dev, int flags, uchar **packetp) { struct ks2_eth_priv *priv = dev_get_priv(dev); int pkt_size; u32 *pkt = NULL; priv->hd = ksnav_recv(priv->netcp_pktdma, &pkt, &pkt_size); if (priv->hd == NULL) return -EAGAIN; *packetp = (uchar *)pkt; return pkt_size; } static int ks2_eth_free_pkt(struct udevice *dev, uchar *packet, int length) { struct ks2_eth_priv *priv = dev_get_priv(dev); ksnav_release_rxhd(priv->netcp_pktdma, priv->hd); return 0; } static void ks2_eth_stop(struct udevice *dev) { struct ks2_eth_priv *priv = dev_get_priv(dev); if (!priv->emac_open) return; ethss_stop(); ksnav_close(priv->netcp_pktdma); qm_close(); phy_shutdown(priv->phydev); priv->emac_open = false; } int ks2_eth_read_rom_hwaddr(struct udevice *dev) { struct ks2_eth_priv *priv = dev_get_priv(dev); struct eth_pdata *pdata = dev_get_plat(dev); u32 maca = 0; u32 macb = 0; /* Read the e-fuse mac address */ if (priv->slave_port == 1) { maca = __raw_readl(MAC_ID_BASE_ADDR); macb = __raw_readl(MAC_ID_BASE_ADDR + 4); } pdata->enetaddr[0] = (macb >> 8) & 0xff; pdata->enetaddr[1] = (macb >> 0) & 0xff; pdata->enetaddr[2] = (maca >> 24) & 0xff; pdata->enetaddr[3] = (maca >> 16) & 0xff; pdata->enetaddr[4] = (maca >> 8) & 0xff; pdata->enetaddr[5] = (maca >> 0) & 0xff; return 0; } int ks2_eth_write_hwaddr(struct udevice *dev) { struct ks2_eth_priv *priv = dev_get_priv(dev); struct eth_pdata *pdata = dev_get_plat(dev); writel(mac_hi(pdata->enetaddr), DEVICE_EMACSW_BASE(pdata->iobase, priv->slave_port - 1) + CPGMACSL_REG_SA_HI); writel(mac_lo(pdata->enetaddr), DEVICE_EMACSW_BASE(pdata->iobase, priv->slave_port - 1) + CPGMACSL_REG_SA_LO); return 0; } static int ks2_eth_probe(struct udevice *dev) { struct ks2_eth_priv *priv = dev_get_priv(dev); struct mii_dev *mdio_bus; priv->dev = dev; priv->emac_open = false; /* These clock enables has to be moved to common location */ if (cpu_is_k2g()) writel(KS2_ETHERNET_RGMII, KS2_ETHERNET_CFG); /* By default, select PA PLL clock as PA clock source */ #ifndef CONFIG_SOC_K2G if (psc_enable_module(KS2_LPSC_PA)) return -EACCES; #endif if (psc_enable_module(KS2_LPSC_CPGMAC)) return -EACCES; if (psc_enable_module(KS2_LPSC_CRYPTO)) return -EACCES; if (cpu_is_k2e() || cpu_is_k2l()) pll_pa_clk_sel(); priv->net_rx_buffs.buff_ptr = rx_buffs; priv->net_rx_buffs.num_buffs = RX_BUFF_NUMS; priv->net_rx_buffs.buff_len = RX_BUFF_LEN; if (priv->slave_port == 1) { #ifndef CONFIG_SOC_K2G keystone2_net_serdes_setup(); #endif /* * Register MDIO bus for slave 0 only, other slave have * to re-use the same */ mdio_bus = cpsw_mdio_init("ethernet-mdio", priv->mdio_base, EMAC_MDIO_CLOCK_FREQ, EMAC_MDIO_BUS_FREQ, false); if (!mdio_bus) { pr_err("MDIO alloc failed\n"); return -ENOMEM; } priv->mdio_bus = mdio_bus; } else { /* Get the MDIO bus from slave 0 device */ struct ks2_eth_priv *parent_priv; parent_priv = dev_get_priv(dev->parent); priv->mdio_bus = parent_priv->mdio_bus; priv->mdio_base = parent_priv->mdio_base; } priv->netcp_pktdma = &netcp_pktdma; if (priv->has_mdio) { priv->phydev = phy_connect(priv->mdio_bus, priv->phy_addr, dev, priv->phy_if); if (ofnode_valid(priv->phy_ofnode)) priv->phydev->node = priv->phy_ofnode; phy_config(priv->phydev); } return 0; } int ks2_eth_remove(struct udevice *dev) { struct ks2_eth_priv *priv = dev_get_priv(dev); cpsw_mdio_free(priv->mdio_bus); return 0; } static const struct eth_ops ks2_eth_ops = { .start = ks2_eth_start, .send = ks2_eth_send, .recv = ks2_eth_recv, .free_pkt = ks2_eth_free_pkt, .stop = ks2_eth_stop, .read_rom_hwaddr = ks2_eth_read_rom_hwaddr, .write_hwaddr = ks2_eth_write_hwaddr, }; static int ks2_bind_one_slave(struct udevice *dev, ofnode slave, ofnode *gbe_0) { char *slave_name; u32 slave_no; int ret; if (ofnode_read_u32(slave, "slave-port", &slave_no)) return 0; if (gbe_0 && slave_no == 0) { /* This is the current eth device */ *gbe_0 = slave; return 0; } /* Slave devices to be registered */ slave_name = malloc(20); snprintf(slave_name, 20, "netcp@slave-%d", slave_no); ret = device_bind_driver_to_node(dev, "eth_ks2_sl", slave_name, slave, NULL); if (ret) pr_err("ks2_net - not able to bind slave interfaces\n"); return ret; } static int ks2_eth_bind_slaves(struct udevice *dev, ofnode gbe, ofnode *gbe_0) { ofnode interfaces, sec_slave, slave; int ret; interfaces = ofnode_find_subnode(gbe, "interfaces"); ofnode_for_each_subnode(slave, interfaces) { ret = ks2_bind_one_slave(dev, slave, gbe_0); if (ret) return ret; } sec_slave = ofnode_find_subnode(gbe, "secondary-slave-ports"); ofnode_for_each_subnode(slave, sec_slave) { ret = ks2_bind_one_slave(dev, slave, NULL); if (ret) return ret; } return 0; } static int ks2_eth_parse_slave_interface(ofnode netcp, ofnode slave, struct ks2_eth_priv *priv, struct eth_pdata *pdata) { struct ofnode_phandle_args dma_args; ofnode phy, mdio; int dma_count; priv->slave_port = ofnode_read_s32_default(slave, "slave-port", -1); priv->net_rx_buffs.rx_flow = priv->slave_port * 8; /* U-Boot slave port number starts with 1 instead of 0 */ priv->slave_port += 1; dma_count = ofnode_count_phandle_with_args(netcp, "ti,navigator-dmas", NULL, 1); if (priv->slave_port < dma_count && !ofnode_parse_phandle_with_args(netcp, "ti,navigator-dmas", NULL, 1, priv->slave_port - 1, &dma_args)) priv->net_rx_buffs.rx_flow = dma_args.args[0]; priv->link_type = ofnode_read_s32_default(slave, "link-interface", -1); phy = ofnode_get_phy_node(slave); priv->phy_ofnode = phy; if (ofnode_valid(phy)) { priv->phy_addr = ofnode_read_s32_default(phy, "reg", -1); mdio = ofnode_get_parent(phy); if (!ofnode_valid(mdio)) { pr_err("mdio dt not found\n"); return -ENODEV; } priv->mdio_base = ofnode_get_addr(mdio); } if (priv->link_type == LINK_TYPE_SGMII_MAC_TO_PHY_MODE) { priv->phy_if = PHY_INTERFACE_MODE_SGMII; pdata->phy_interface = priv->phy_if; priv->sgmii_link_type = SGMII_LINK_MAC_PHY; priv->has_mdio = true; } else if (priv->link_type == LINK_TYPE_RGMII_LINK_MAC_PHY) { priv->phy_if = ofnode_read_phy_mode(slave); if (priv->phy_if == PHY_INTERFACE_MODE_NA) priv->phy_if = PHY_INTERFACE_MODE_RGMII; pdata->phy_interface = priv->phy_if; if (priv->phy_if != PHY_INTERFACE_MODE_RGMII && priv->phy_if != PHY_INTERFACE_MODE_RGMII_ID && priv->phy_if != PHY_INTERFACE_MODE_RGMII_RXID && priv->phy_if != PHY_INTERFACE_MODE_RGMII_TXID) { pr_err("invalid phy-mode\n"); return -EINVAL; } priv->has_mdio = true; } return 0; } static int ks2_sl_eth_of_to_plat(struct udevice *dev) { ofnode slave, interfaces, gbe, netcp_devices, netcp; struct ks2_eth_priv *priv = dev_get_priv(dev); struct eth_pdata *pdata = dev_get_plat(dev); slave = dev_ofnode(dev); interfaces = ofnode_get_parent(slave); gbe = ofnode_get_parent(interfaces); netcp_devices = ofnode_get_parent(gbe); netcp = ofnode_get_parent(netcp_devices); ks2_eth_parse_slave_interface(netcp, slave, priv, pdata); pdata->iobase = ofnode_get_addr(netcp); return 0; } static int ks2_eth_of_to_plat(struct udevice *dev) { struct ks2_eth_priv *priv = dev_get_priv(dev); struct eth_pdata *pdata = dev_get_plat(dev); ofnode netcp_devices, gbe, gbe_0; netcp_devices = dev_read_subnode(dev, "netcp-devices"); gbe = ofnode_find_subnode(netcp_devices, "gbe"); gbe_0 = ofnode_null(); ks2_eth_bind_slaves(dev, gbe, &gbe_0); ks2_eth_parse_slave_interface(dev_ofnode(dev), gbe_0, priv, pdata); pdata->iobase = dev_read_addr(dev); return 0; } static const struct udevice_id ks2_eth_ids[] = { { .compatible = "ti,netcp-1.0" }, { } }; U_BOOT_DRIVER(eth_ks2_slave) = { .name = "eth_ks2_sl", .id = UCLASS_ETH, .of_to_plat = ks2_sl_eth_of_to_plat, .probe = ks2_eth_probe, .remove = ks2_eth_remove, .ops = &ks2_eth_ops, .priv_auto = sizeof(struct ks2_eth_priv), .plat_auto = sizeof(struct eth_pdata), .flags = DM_FLAG_ALLOC_PRIV_DMA, }; U_BOOT_DRIVER(eth_ks2) = { .name = "eth_ks2", .id = UCLASS_ETH, .of_match = ks2_eth_ids, .of_to_plat = ks2_eth_of_to_plat, .probe = ks2_eth_probe, .remove = ks2_eth_remove, .ops = &ks2_eth_ops, .priv_auto = sizeof(struct ks2_eth_priv), .plat_auto = sizeof(struct eth_pdata), .flags = DM_FLAG_ALLOC_PRIV_DMA, };