// SPDX-License-Identifier: GPL-2.0+ /* * Copyright 2021 NXP */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include DECLARE_GLOBAL_DATA_PTR; struct rom_api *g_rom_api = (struct rom_api *)0x1980; bool is_usb_boot(void) { return get_boot_device() == USB_BOOT; } #ifdef CONFIG_ENV_IS_IN_MMC __weak int board_mmc_get_env_dev(int devno) { return devno; } int mmc_get_env_dev(void) { int ret; u32 boot; u16 boot_type; u8 boot_instance; ret = rom_api_query_boot_infor(QUERY_BT_DEV, &boot); if (ret != ROM_API_OKAY) { puts("ROMAPI: failure at query_boot_info\n"); return CONFIG_SYS_MMC_ENV_DEV; } boot_type = boot >> 16; boot_instance = (boot >> 8) & 0xff; /* If not boot from sd/mmc, use default value */ if (boot_type != BOOT_TYPE_SD && boot_type != BOOT_TYPE_MMC) return env_get_ulong("mmcdev", 10, CONFIG_SYS_MMC_ENV_DEV); return board_mmc_get_env_dev(boot_instance); } #endif static void set_cpu_info(struct sentinel_get_info_data *info) { gd->arch.soc_rev = info->soc; gd->arch.lifecycle = info->lc; memcpy((void *)&gd->arch.uid, &info->uid, 4 * sizeof(u32)); } u32 get_cpu_rev(void) { u32 rev = (gd->arch.soc_rev >> 24) - 0xa0; return (MXC_CPU_IMX8ULP << 12) | (CHIP_REV_1_0 + rev); } enum bt_mode get_boot_mode(void) { u32 bt0_cfg = 0; bt0_cfg = readl(SIM_SEC_BASE_ADDR + 0x24); bt0_cfg &= (BT0CFG_LPBOOT_MASK | BT0CFG_DUALBOOT_MASK); if (!(bt0_cfg & BT0CFG_LPBOOT_MASK)) { /* No low power boot */ if (bt0_cfg & BT0CFG_DUALBOOT_MASK) return DUAL_BOOT; else return SINGLE_BOOT; } return LOW_POWER_BOOT; } bool m33_image_booted(void) { if (IS_ENABLED(CONFIG_SPL_BUILD)) { u32 gp6 = 0; /* DGO_GP6 */ gp6 = readl(SIM_SEC_BASE_ADDR + 0x28); if (gp6 & BIT(5)) return true; return false; } else { u32 gpr0 = readl(SIM1_BASE_ADDR); if (gpr0 & BIT(0)) return true; return false; } } bool rdc_enabled_in_boot(void) { if (IS_ENABLED(CONFIG_SPL_BUILD)) { u32 val = 0; int ret; bool rdc_en = true; /* Default assume DBD_EN is set */ /* Read DBD_EN fuse */ ret = fuse_read(8, 1, &val); if (!ret) rdc_en = !!(val & 0x200); /* only A1 part uses DBD_EN, so check DBD_EN new place*/ return rdc_en; } else { u32 gpr0 = readl(SIM1_BASE_ADDR); if (gpr0 & 0x2) return true; return false; } } static void spl_pass_boot_info(void) { if (IS_ENABLED(CONFIG_SPL_BUILD)) { bool m33_booted = m33_image_booted(); bool rdc_en = rdc_enabled_in_boot(); u32 val = 0; if (m33_booted) val |= 0x1; if (rdc_en) val |= 0x2; writel(val, SIM1_BASE_ADDR); } } bool is_m33_handshake_necessary(void) { /* Only need handshake in u-boot */ if (!IS_ENABLED(CONFIG_SPL_BUILD)) return (m33_image_booted() || rdc_enabled_in_boot()); else return false; } int m33_image_handshake(ulong timeout_ms) { u32 fsr; int ret; ulong timeout_us = timeout_ms * 1000; /* Notify m33 that it's ready to do init srtm(enable mu receive interrupt and so on) */ setbits_le32(MU0_B_BASE_ADDR + 0x100, BIT(0)); /* set FCR F0 flag of MU0_MUB */ /* * Wait m33 to set FCR F0 flag of MU0_MUA * Clear FCR F0 flag of MU0_MUB after m33 has set FCR F0 flag of MU0_MUA */ ret = readl_poll_sleep_timeout(MU0_B_BASE_ADDR + 0x104, fsr, fsr & BIT(0), 10, timeout_us); if (!ret) clrbits_le32(MU0_B_BASE_ADDR + 0x100, BIT(0)); return ret; } #define CMC_SRS_TAMPER BIT(31) #define CMC_SRS_SECURITY BIT(30) #define CMC_SRS_TZWDG BIT(29) #define CMC_SRS_JTAG_RST BIT(28) #define CMC_SRS_CORE1 BIT(16) #define CMC_SRS_LOCKUP BIT(15) #define CMC_SRS_SW BIT(14) #define CMC_SRS_WDG BIT(13) #define CMC_SRS_PIN_RESET BIT(8) #define CMC_SRS_WARM BIT(4) #define CMC_SRS_HVD BIT(3) #define CMC_SRS_LVD BIT(2) #define CMC_SRS_POR BIT(1) #define CMC_SRS_WUP BIT(0) static char *get_reset_cause(char *ret) { u32 cause1, cause = 0, srs = 0; void __iomem *reg_ssrs = (void __iomem *)(CMC1_BASE_ADDR + 0x88); void __iomem *reg_srs = (void __iomem *)(CMC1_BASE_ADDR + 0x80); if (!ret) return "null"; srs = readl(reg_srs); cause1 = readl(reg_ssrs); cause = srs & (CMC_SRS_POR | CMC_SRS_WUP | CMC_SRS_WARM); switch (cause) { case CMC_SRS_POR: sprintf(ret, "%s", "POR"); break; case CMC_SRS_WUP: sprintf(ret, "%s", "WUP"); break; case CMC_SRS_WARM: cause = srs & (CMC_SRS_WDG | CMC_SRS_SW | CMC_SRS_JTAG_RST); switch (cause) { case CMC_SRS_WDG: sprintf(ret, "%s", "WARM-WDG"); break; case CMC_SRS_SW: sprintf(ret, "%s", "WARM-SW"); break; case CMC_SRS_JTAG_RST: sprintf(ret, "%s", "WARM-JTAG"); break; default: sprintf(ret, "%s", "WARM-UNKN"); break; } break; default: sprintf(ret, "%s-%X", "UNKN", srs); break; } debug("[%X] SRS[%X] %X - ", cause1, srs, srs ^ cause1); return ret; } #if defined(CONFIG_DISPLAY_CPUINFO) const char *get_imx_type(u32 imxtype) { return "8ULP"; } int print_cpuinfo(void) { u32 cpurev; char cause[18]; cpurev = get_cpu_rev(); printf("CPU: i.MX%s rev%d.%d at %d MHz\n", get_imx_type((cpurev & 0xFF000) >> 12), (cpurev & 0x000F0) >> 4, (cpurev & 0x0000F) >> 0, mxc_get_clock(MXC_ARM_CLK) / 1000000); #if defined(CONFIG_IMX_PMC_TEMPERATURE) struct udevice *udev; int ret, temp; ret = uclass_get_device(UCLASS_THERMAL, 0, &udev); if (!ret) { ret = thermal_get_temp(udev, &temp); if (!ret) printf("CPU current temperature: %d\n", temp); else debug(" - failed to get CPU current temperature\n"); } else { debug(" - failed to get CPU current temperature\n"); } #endif printf("Reset cause: %s\n", get_reset_cause(cause)); printf("Boot mode: "); switch (get_boot_mode()) { case LOW_POWER_BOOT: printf("Low power boot\n"); break; case DUAL_BOOT: printf("Dual boot\n"); break; case SINGLE_BOOT: default: printf("Single boot\n"); break; } return 0; } #endif #define UNLOCK_WORD0 0xC520 /* 1st unlock word */ #define UNLOCK_WORD1 0xD928 /* 2nd unlock word */ #define REFRESH_WORD0 0xA602 /* 1st refresh word */ #define REFRESH_WORD1 0xB480 /* 2nd refresh word */ static void disable_wdog(void __iomem *wdog_base) { u32 val_cs = readl(wdog_base + 0x00); if (!(val_cs & 0x80)) return; dmb(); __raw_writel(REFRESH_WORD0, (wdog_base + 0x04)); /* Refresh the CNT */ __raw_writel(REFRESH_WORD1, (wdog_base + 0x04)); dmb(); if (!(val_cs & 800)) { dmb(); __raw_writel(UNLOCK_WORD0, (wdog_base + 0x04)); __raw_writel(UNLOCK_WORD1, (wdog_base + 0x04)); dmb(); while (!(readl(wdog_base + 0x00) & 0x800)) ; } writel(0x0, (wdog_base + 0x0C)); /* Set WIN to 0 */ writel(0x400, (wdog_base + 0x08)); /* Set timeout to default 0x400 */ writel(0x120, (wdog_base + 0x00)); /* Disable it and set update */ while (!(readl(wdog_base + 0x00) & 0x400)) ; } void init_wdog(void) { disable_wdog((void __iomem *)WDG3_RBASE); } static struct mm_region imx8ulp_arm64_mem_map[] = { { /* ROM */ .virt = 0x0, .phys = 0x0, .size = 0x40000UL, .attrs = PTE_BLOCK_MEMTYPE(MT_NORMAL) | PTE_BLOCK_OUTER_SHARE }, { /* FLEXSPI0 */ .virt = 0x04000000, .phys = 0x04000000, .size = 0x08000000UL, .attrs = PTE_BLOCK_MEMTYPE(MT_DEVICE_NGNRNE) | PTE_BLOCK_NON_SHARE | PTE_BLOCK_PXN | PTE_BLOCK_UXN }, { /* SSRAM (align with 2M) */ .virt = 0x1FE00000UL, .phys = 0x1FE00000UL, .size = 0x400000UL, .attrs = PTE_BLOCK_MEMTYPE(MT_NORMAL) | PTE_BLOCK_OUTER_SHARE | PTE_BLOCK_PXN | PTE_BLOCK_UXN }, { /* SRAM1 (align with 2M) */ .virt = 0x21000000UL, .phys = 0x21000000UL, .size = 0x200000UL, .attrs = PTE_BLOCK_MEMTYPE(MT_NORMAL) | PTE_BLOCK_OUTER_SHARE | PTE_BLOCK_PXN | PTE_BLOCK_UXN }, { /* SRAM0 (align with 2M) */ .virt = 0x22000000UL, .phys = 0x22000000UL, .size = 0x200000UL, .attrs = PTE_BLOCK_MEMTYPE(MT_NORMAL) | PTE_BLOCK_OUTER_SHARE | PTE_BLOCK_PXN | PTE_BLOCK_UXN }, { /* Peripherals */ .virt = 0x27000000UL, .phys = 0x27000000UL, .size = 0x3000000UL, .attrs = PTE_BLOCK_MEMTYPE(MT_DEVICE_NGNRNE) | PTE_BLOCK_NON_SHARE | PTE_BLOCK_PXN | PTE_BLOCK_UXN }, { /* Peripherals */ .virt = 0x2D000000UL, .phys = 0x2D000000UL, .size = 0x1600000UL, .attrs = PTE_BLOCK_MEMTYPE(MT_DEVICE_NGNRNE) | PTE_BLOCK_NON_SHARE | PTE_BLOCK_PXN | PTE_BLOCK_UXN }, { /* FLEXSPI1-2 */ .virt = 0x40000000UL, .phys = 0x40000000UL, .size = 0x40000000UL, .attrs = PTE_BLOCK_MEMTYPE(MT_DEVICE_NGNRNE) | PTE_BLOCK_NON_SHARE | PTE_BLOCK_PXN | PTE_BLOCK_UXN }, { /* DRAM1 */ .virt = 0x80000000UL, .phys = 0x80000000UL, .size = PHYS_SDRAM_SIZE, .attrs = PTE_BLOCK_MEMTYPE(MT_NORMAL) | PTE_BLOCK_OUTER_SHARE }, { /* * empty entrie to split table entry 5 * if needed when TEEs are used */ 0, }, { /* List terminator */ 0, } }; struct mm_region *mem_map = imx8ulp_arm64_mem_map; static unsigned int imx8ulp_find_dram_entry_in_mem_map(void) { int i; for (i = 0; i < ARRAY_SIZE(imx8ulp_arm64_mem_map); i++) if (imx8ulp_arm64_mem_map[i].phys == CFG_SYS_SDRAM_BASE) return i; hang(); /* Entry not found, this must never happen. */ } /* simplify the page table size to enhance boot speed */ #define MAX_PTE_ENTRIES 512 #define MAX_MEM_MAP_REGIONS 16 u64 get_page_table_size(void) { u64 one_pt = MAX_PTE_ENTRIES * sizeof(u64); u64 size = 0; /* * For each memory region, the max table size: * 2 level 3 tables + 2 level 2 tables + 1 level 1 table */ size = (2 + 2 + 1) * one_pt * MAX_MEM_MAP_REGIONS + one_pt; /* * We need to duplicate our page table once to have an emergency pt to * resort to when splitting page tables later on */ size *= 2; /* * We may need to split page tables later on if dcache settings change, * so reserve up to 4 (random pick) page tables for that. */ size += one_pt * 4; return size; } void enable_caches(void) { /* If OPTEE runs, remove OPTEE memory from MMU table to avoid speculative prefetch */ if (rom_pointer[1]) { /* * TEE are loaded, So the ddr bank structures * have been modified update mmu table accordingly */ int i = 0; int entry = imx8ulp_find_dram_entry_in_mem_map(); u64 attrs = imx8ulp_arm64_mem_map[entry].attrs; while (i < CONFIG_NR_DRAM_BANKS && entry < ARRAY_SIZE(imx8ulp_arm64_mem_map)) { if (gd->bd->bi_dram[i].start == 0) break; imx8ulp_arm64_mem_map[entry].phys = gd->bd->bi_dram[i].start; imx8ulp_arm64_mem_map[entry].virt = gd->bd->bi_dram[i].start; imx8ulp_arm64_mem_map[entry].size = gd->bd->bi_dram[i].size; imx8ulp_arm64_mem_map[entry].attrs = attrs; debug("Added memory mapping (%d): %llx %llx\n", entry, imx8ulp_arm64_mem_map[entry].phys, imx8ulp_arm64_mem_map[entry].size); i++; entry++; } } icache_enable(); dcache_enable(); } __weak int board_phys_sdram_size(phys_size_t *size) { if (!size) return -EINVAL; *size = PHYS_SDRAM_SIZE; return 0; } int dram_init(void) { unsigned int entry = imx8ulp_find_dram_entry_in_mem_map(); phys_size_t sdram_size; int ret; ret = board_phys_sdram_size(&sdram_size); if (ret) return ret; /* rom_pointer[1] contains the size of TEE occupies */ if (rom_pointer[1]) gd->ram_size = sdram_size - rom_pointer[1]; else gd->ram_size = sdram_size; /* also update the SDRAM size in the mem_map used externally */ imx8ulp_arm64_mem_map[entry].size = sdram_size; return 0; } int dram_init_banksize(void) { int bank = 0; int ret; phys_size_t sdram_size; ret = board_phys_sdram_size(&sdram_size); if (ret) return ret; gd->bd->bi_dram[bank].start = PHYS_SDRAM; if (rom_pointer[1]) { phys_addr_t optee_start = (phys_addr_t)rom_pointer[0]; phys_size_t optee_size = (size_t)rom_pointer[1]; gd->bd->bi_dram[bank].size = optee_start - gd->bd->bi_dram[bank].start; if ((optee_start + optee_size) < (PHYS_SDRAM + sdram_size)) { if (++bank >= CONFIG_NR_DRAM_BANKS) { puts("CONFIG_NR_DRAM_BANKS is not enough\n"); return -1; } gd->bd->bi_dram[bank].start = optee_start + optee_size; gd->bd->bi_dram[bank].size = PHYS_SDRAM + sdram_size - gd->bd->bi_dram[bank].start; } } else { gd->bd->bi_dram[bank].size = sdram_size; } return 0; } phys_size_t get_effective_memsize(void) { /* return the first bank as effective memory */ if (rom_pointer[1]) return ((phys_addr_t)rom_pointer[0] - PHYS_SDRAM); return gd->ram_size; } #ifdef CONFIG_ENV_VARS_UBOOT_RUNTIME_CONFIG void get_board_serial(struct tag_serialnr *serialnr) { u32 uid[4]; u32 res; int ret; ret = ahab_read_common_fuse(1, uid, 4, &res); if (ret) printf("ahab read fuse failed %d, 0x%x\n", ret, res); else printf("UID 0x%x,0x%x,0x%x,0x%x\n", uid[0], uid[1], uid[2], uid[3]); serialnr->low = uid[0]; serialnr->high = uid[3]; } #endif static void set_core0_reset_vector(u32 entry) { /* Update SIM1 DGO8 for reset vector base */ writel(entry, SIM1_BASE_ADDR + 0x5c); /* set update bit */ setbits_le32(SIM1_BASE_ADDR + 0x8, 0x1 << 24); /* polling the ack */ while ((readl(SIM1_BASE_ADDR + 0x8) & (0x1 << 26)) == 0) ; /* clear the update */ clrbits_le32(SIM1_BASE_ADDR + 0x8, (0x1 << 24)); /* clear the ack by set 1 */ setbits_le32(SIM1_BASE_ADDR + 0x8, (0x1 << 26)); } /* Not used now */ int trdc_set_access(void) { /* * TRDC mgr + 4 MBC + 2 MRC. */ trdc_mbc_set_access(2, 7, 0, 49, true); trdc_mbc_set_access(2, 7, 0, 50, true); trdc_mbc_set_access(2, 7, 0, 51, true); trdc_mbc_set_access(2, 7, 0, 52, true); trdc_mbc_set_access(2, 7, 0, 53, true); trdc_mbc_set_access(2, 7, 0, 54, true); /* 0x1fff8000 used for resource table by remoteproc */ trdc_mbc_set_access(0, 7, 2, 31, false); /* CGC0: PBridge0 slot 47 and PCC0 slot 48 */ trdc_mbc_set_access(2, 7, 0, 47, false); trdc_mbc_set_access(2, 7, 0, 48, false); /* PCC1 */ trdc_mbc_set_access(2, 7, 1, 17, false); trdc_mbc_set_access(2, 7, 1, 34, false); /* Iomuxc0: : PBridge1 slot 33 */ trdc_mbc_set_access(2, 7, 1, 33, false); /* flexspi0 */ trdc_mbc_set_access(2, 7, 0, 57, false); trdc_mrc_region_set_access(0, 7, 0x04000000, 0x0c000000, false); /* tpm0: PBridge1 slot 21 */ trdc_mbc_set_access(2, 7, 1, 21, false); /* lpi2c0: PBridge1 slot 24 */ trdc_mbc_set_access(2, 7, 1, 24, false); /* Allow M33 to access TRDC MGR */ trdc_mbc_set_access(2, 6, 0, 49, true); trdc_mbc_set_access(2, 6, 0, 50, true); trdc_mbc_set_access(2, 6, 0, 51, true); trdc_mbc_set_access(2, 6, 0, 52, true); trdc_mbc_set_access(2, 6, 0, 53, true); trdc_mbc_set_access(2, 6, 0, 54, true); /* Set SAI0 for eDMA 0, NS */ trdc_mbc_set_access(2, 0, 1, 28, false); /* Set SSRAM for eDMA0 access */ trdc_mbc_set_access(0, 0, 2, 0, false); trdc_mbc_set_access(0, 0, 2, 1, false); trdc_mbc_set_access(0, 0, 2, 2, false); trdc_mbc_set_access(0, 0, 2, 3, false); trdc_mbc_set_access(0, 0, 2, 4, false); trdc_mbc_set_access(0, 0, 2, 5, false); trdc_mbc_set_access(0, 0, 2, 6, false); trdc_mbc_set_access(0, 0, 2, 7, false); writel(0x800000a0, 0x28031840); return 0; } void lpav_configure(bool lpav_to_m33) { if (!lpav_to_m33) setbits_le32(SIM_SEC_BASE_ADDR + 0x44, BIT(7)); /* LPAV to APD */ /* PXP/GPU 2D/3D/DCNANO/MIPI_DSI/EPDC/HIFI4 to APD */ setbits_le32(SIM_SEC_BASE_ADDR + 0x4c, 0x7F); /* LPAV slave/dma2 ch allocation and request allocation to APD */ writel(0x1f, SIM_SEC_BASE_ADDR + 0x50); writel(0xffffffff, SIM_SEC_BASE_ADDR + 0x54); writel(0x003fffff, SIM_SEC_BASE_ADDR + 0x58); } void load_lposc_fuse(void) { int ret; u32 val = 0, val2 = 0, reg; ret = fuse_read(25, 0, &val); if (ret) return; /* failed */ ret = fuse_read(25, 1, &val2); if (ret) return; /* failed */ /* LPOSCCTRL */ reg = readl(0x2802f304); reg &= ~0xff; reg |= (val & 0xff); writel(reg, 0x2802f304); } void set_lpav_qos(void) { /* Set read QoS of dcnano on LPAV NIC */ writel(0xf, 0x2e447100); } int arch_cpu_init(void) { if (IS_ENABLED(CONFIG_SPL_BUILD)) { /* Enable System Reset Interrupt using WDOG_AD */ setbits_le32(CMC1_BASE_ADDR + 0x8C, BIT(13)); /* Clear AD_PERIPH Power switch domain out of reset interrupt flag */ setbits_le32(CMC1_BASE_ADDR + 0x70, BIT(4)); if (readl(CMC1_BASE_ADDR + 0x90) & BIT(13)) { /* Clear System Reset Interrupt Flag Register of WDOG_AD */ setbits_le32(CMC1_BASE_ADDR + 0x90, BIT(13)); /* Reset WDOG to clear reset request */ pcc_reset_peripheral(3, WDOG3_PCC3_SLOT, true); pcc_reset_peripheral(3, WDOG3_PCC3_SLOT, false); } /* Disable wdog */ init_wdog(); if (get_boot_mode() == SINGLE_BOOT) lpav_configure(false); else lpav_configure(true); /* Release xrdc, then allow A35 to write SRAM2 */ if (rdc_enabled_in_boot()) release_rdc(RDC_XRDC); xrdc_mrc_region_set_access(2, CONFIG_SPL_TEXT_BASE, 0xE00); clock_init_early(); spl_pass_boot_info(); } else { int ret; /* reconfigure core0 reset vector to ROM */ set_core0_reset_vector(0x1000); if (is_m33_handshake_necessary()) { /* Start handshake with M33 to ensure TRDC configuration completed */ ret = m33_image_handshake(1000); if (!ret) gd->arch.m33_handshake_done = true; else /* Skip and go through to panic in checkcpu as console is ready then */ gd->arch.m33_handshake_done = false; } } return 0; } int checkcpu(void) { if (is_m33_handshake_necessary()) { if (!gd->arch.m33_handshake_done) { puts("M33 Sync: Timeout, Boot Stop!\n"); hang(); } else { puts("M33 Sync: OK\n"); } } return 0; } int imx8ulp_dm_post_init(void) { struct udevice *devp; int ret; u32 res; struct sentinel_get_info_data *info = (struct sentinel_get_info_data *)SRAM0_BASE; ret = uclass_get_device_by_driver(UCLASS_MISC, DM_DRIVER_GET(imx8ulp_mu), &devp); if (ret) { printf("could not get S400 mu %d\n", ret); return ret; } ret = ahab_get_info(info, &res); if (ret) { printf("ahab_get_info failed %d\n", ret); /* fallback to A0.1 revision */ memset((void *)info, 0, sizeof(struct sentinel_get_info_data)); info->soc = 0xa000084d; } set_cpu_info(info); return 0; } static int imx8ulp_evt_dm_post_init(void *ctx, struct event *event) { return imx8ulp_dm_post_init(); } EVENT_SPY(EVT_DM_POST_INIT_F, imx8ulp_evt_dm_post_init); #if defined(CONFIG_SPL_BUILD) __weak void __noreturn jump_to_image_no_args(struct spl_image_info *spl_image) { debug("image entry point: 0x%lx\n", spl_image->entry_point); set_core0_reset_vector((u32)spl_image->entry_point); /* Enable the 512KB cache */ setbits_le32(SIM1_BASE_ADDR + 0x30, (0x1 << 4)); /* reset core */ setbits_le32(SIM1_BASE_ADDR + 0x30, (0x1 << 16)); while (1) ; } #endif void imx_get_mac_from_fuse(int dev_id, unsigned char *mac) { u32 val[2] = {}; int ret; ret = fuse_read(5, 3, &val[0]); if (ret) goto err; ret = fuse_read(5, 4, &val[1]); if (ret) goto err; mac[0] = val[0]; mac[1] = val[0] >> 8; mac[2] = val[0] >> 16; mac[3] = val[0] >> 24; mac[4] = val[1]; mac[5] = val[1] >> 8; debug("%s: MAC%d: %02x.%02x.%02x.%02x.%02x.%02x\n", __func__, dev_id, mac[0], mac[1], mac[2], mac[3], mac[4], mac[5]); return; err: memset(mac, 0, 6); printf("%s: fuse read err: %d\n", __func__, ret); } int (*card_emmc_is_boot_part_en)(void) = (void *)0x67cc; u32 spl_arch_boot_image_offset(u32 image_offset, u32 rom_bt_dev) { /* Hard code for eMMC image_offset on 8ULP ROM, need fix by ROM, temp workaround */ if (is_soc_rev(CHIP_REV_1_0) && ((rom_bt_dev >> 16) & 0xff) == BT_DEV_TYPE_MMC && card_emmc_is_boot_part_en()) image_offset = 0; return image_offset; } enum env_location env_get_location(enum env_operation op, int prio) { enum boot_device dev = get_boot_device(); enum env_location env_loc = ENVL_UNKNOWN; if (prio) return env_loc; switch (dev) { #ifdef CONFIG_ENV_IS_IN_SPI_FLASH case QSPI_BOOT: env_loc = ENVL_SPI_FLASH; break; #endif #ifdef CONFIG_ENV_IS_IN_MMC case SD1_BOOT: case SD2_BOOT: case SD3_BOOT: case MMC1_BOOT: case MMC2_BOOT: case MMC3_BOOT: env_loc = ENVL_MMC; break; #endif default: #if defined(CONFIG_ENV_IS_NOWHERE) env_loc = ENVL_NOWHERE; #endif break; } return env_loc; }