// SPDX-License-Identifier: GPL-2.0+ /* * Copyright (C) 2006 Freescale Semiconductor, Inc. * Dave Liu * * Copyright (C) 2007 Logic Product Development, Inc. * Peter Barada * * Copyright (C) 2007 MontaVista Software, Inc. * Anton Vorontsov * * (C) Copyright 2008 - 2010 * Heiko Schocher, DENX Software Engineering, hs@denx.de. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "../common/common.h" DECLARE_GLOBAL_DATA_PTR; static uchar ivm_content[CONFIG_SYS_IVM_EEPROM_MAX_LEN]; static int piggy_present(void) { struct km_bec_fpga __iomem *base = (struct km_bec_fpga __iomem *)CFG_SYS_KMBEC_FPGA_BASE; return in_8(&base->bprth) & PIGGY_PRESENT; } int ethernet_present(void) { return piggy_present(); } int board_early_init_r(void) { struct km_bec_fpga *base = (struct km_bec_fpga *)CFG_SYS_KMBEC_FPGA_BASE; #if defined(CONFIG_ARCH_MPC8360) unsigned short svid; /* * Because of errata in the UCCs, we have to write to the reserved * registers to slow the clocks down. */ svid = SVR_REV(mfspr(SVR)); switch (svid) { case 0x0020: /* * MPC8360ECE.pdf QE_ENET10 table 4: * IMMR + 0x14A8[4:5] = 11 (clk delay for UCC 2) * IMMR + 0x14A8[18:19] = 11 (clk delay for UCC 1) */ setbits_be32((void *)(CONFIG_SYS_IMMR + 0x14a8), 0x0c003000); break; case 0x0021: /* * MPC8360ECE.pdf QE_ENET10 table 4: * IMMR + 0x14AC[24:27] = 1010 */ clrsetbits_be32((void *)(CONFIG_SYS_IMMR + 0x14ac), 0x00000050, 0x000000a0); break; } #endif /* enable the PHY on the PIGGY */ setbits_8(&base->pgy_eth, 0x01); /* enable the Unit LED (green) */ setbits_8(&base->oprth, WRL_BOOT); /* enable Application Buffer */ setbits_8(&base->oprtl, OPRTL_XBUFENA); return 0; } int misc_init_r(void) { ivm_read_eeprom(ivm_content, CONFIG_SYS_IVM_EEPROM_MAX_LEN, CONFIG_PIGGY_MAC_ADDRESS_OFFSET); return 0; } int last_stage_init(void) { #if defined(CONFIG_TARGET_KMCOGE5NE) /* * BFTIC3 on the local bus CS4 */ struct bfticu_iomap *base = (struct bfticu_iomap *)0xB0000000; u8 dip_switch = in_8((u8 *)&(base->mswitch)) & BFTICU_DIPSWITCH_MASK; if (dip_switch != 0) { /* start bootloader */ puts("DIP: Enabled\n"); env_set("actual_bank", "0"); } #endif set_km_env(); return 0; } static int fixed_sdram(void) { immap_t *im = (immap_t *)CONFIG_SYS_IMMR; u32 msize = 0; u32 ddr_size; u32 ddr_size_log2; out_be32(&im->sysconf.ddrlaw[0].ar, (LAWAR_EN | 0x1e)); out_be32(&im->ddr.csbnds[0].csbnds, (CFG_SYS_DDR_CS0_BNDS) | 0x7f); out_be32(&im->ddr.cs_config[0], CFG_SYS_DDR_CS0_CONFIG); out_be32(&im->ddr.timing_cfg_0, CFG_SYS_DDR_TIMING_0); out_be32(&im->ddr.timing_cfg_1, CFG_SYS_DDR_TIMING_1); out_be32(&im->ddr.timing_cfg_2, CFG_SYS_DDR_TIMING_2); out_be32(&im->ddr.timing_cfg_3, CFG_SYS_DDR_TIMING_3); out_be32(&im->ddr.sdram_cfg, CFG_SYS_DDR_SDRAM_CFG); out_be32(&im->ddr.sdram_cfg2, CFG_SYS_DDR_SDRAM_CFG2); out_be32(&im->ddr.sdram_mode, CFG_SYS_DDR_MODE); out_be32(&im->ddr.sdram_mode2, CFG_SYS_DDR_MODE2); out_be32(&im->ddr.sdram_interval, CFG_SYS_DDR_INTERVAL); out_be32(&im->ddr.sdram_clk_cntl, CFG_SYS_DDR_CLK_CNTL); udelay(200); setbits_be32(&im->ddr.sdram_cfg, SDRAM_CFG_MEM_EN); disable_addr_trans(); msize = get_ram_size(CFG_SYS_SDRAM_BASE, CFG_SYS_SDRAM_SIZE); enable_addr_trans(); msize /= (1024 * 1024); if (CFG_SYS_SDRAM_SIZE >> 20 != msize) { for (ddr_size = msize << 20, ddr_size_log2 = 0; (ddr_size > 1); ddr_size = ddr_size >> 1, ddr_size_log2++) if (ddr_size & 1) return -1; out_be32(&im->sysconf.ddrlaw[0].ar, (LAWAR_EN | ((ddr_size_log2 - 1) & LAWAR_SIZE))); out_be32(&im->ddr.csbnds[0].csbnds, (((msize / 16) - 1) & 0xff)); } return msize; } int dram_init(void) { immap_t *im = (immap_t *)CONFIG_SYS_IMMR; u32 msize = 0; if ((in_be32(&im->sysconf.immrbar) & IMMRBAR_BASE_ADDR) != (u32)im) return -ENXIO; out_be32(&im->sysconf.ddrlaw[0].bar, CFG_SYS_SDRAM_BASE & LAWBAR_BAR); msize = fixed_sdram(); #if defined(CONFIG_DDR_ECC) && !defined(CONFIG_ECC_INIT_VIA_DDRCONTROLLER) /* * Initialize DDR ECC byte */ ddr_enable_ecc(msize * 1024 * 1024); #endif /* return total bus SDRAM size(bytes) -- DDR */ gd->ram_size = msize * 1024 * 1024; return 0; } int checkboard(void) { puts("Board: Hitachi " CONFIG_SYS_CONFIG_NAME); if (piggy_present()) puts(" with PIGGY."); puts("\n"); return 0; } int ft_board_setup(void *blob, struct bd_info *bd) { ft_cpu_setup(blob, bd); return 0; } #if defined(CONFIG_HUSH_INIT_VAR) int hush_init_var(void) { ivm_analyze_eeprom(ivm_content, CONFIG_SYS_IVM_EEPROM_MAX_LEN); return 0; } #endif #if defined(CONFIG_POST) int post_hotkeys_pressed(void) { int testpin = 0; struct km_bec_fpga *base = (struct km_bec_fpga *)CFG_SYS_KMBEC_FPGA_BASE; int testpin_reg = in_8(&base->CFG_TESTPIN_REG); testpin = (testpin_reg & CFG_TESTPIN_MASK) != 0; debug("post_hotkeys_pressed: %d\n", !testpin); return testpin; } ulong post_word_load(void) { void* addr = (ulong *) (CPM_POST_WORD_ADDR); debug("post_word_load 0x%08lX: 0x%08X\n", (ulong)addr, in_le32(addr)); return in_le32(addr); } void post_word_store(ulong value) { void* addr = (ulong *) (CPM_POST_WORD_ADDR); debug("post_word_store 0x%08lX: 0x%08lX\n", (ulong)addr, value); out_le32(addr, value); } int arch_memory_test_prepare(u32 *vstart, u32 *size, phys_addr_t *phys_offset) { *vstart = CONFIG_SYS_MEMTEST_START; *size = CONFIG_SYS_MEMTEST_END - CONFIG_SYS_MEMTEST_START; debug("arch_memory_test_prepare 0x%08X 0x%08X\n", *vstart, *size); return 0; } #endif