// SPDX-License-Identifier: GPL-2.0+ /* * Copyright (C) 2015-2016 Marvell International Ltd. */ #include #include #include #include #include #include #include #include #include #include "comphy_core.h" #include "sata.h" #include "utmi_phy.h" DECLARE_GLOBAL_DATA_PTR; /* Firmware related definitions used for SMC calls */ #define MV_SIP_COMPHY_POWER_ON 0x82000001 #define MV_SIP_COMPHY_POWER_OFF 0x82000002 #define MV_SIP_COMPHY_PLL_LOCK 0x82000003 #define MV_SIP_COMPHY_XFI_TRAIN 0x82000004 /* Used to distinguish between different possible callers (U-Boot/Linux) */ #define COMPHY_CALLER_UBOOT (0x1 << 21) #define COMPHY_FW_MODE_FORMAT(mode) ((mode) << 12) #define COMPHY_FW_FORMAT(mode, idx, speeds) \ (((mode) << 12) | ((idx) << 8) | ((speeds) << 2)) #define COMPHY_FW_PCIE_FORMAT(pcie_width, clk_src, mode, speeds) \ (COMPHY_CALLER_UBOOT | ((pcie_width) << 18) | \ ((clk_src) << 17) | COMPHY_FW_FORMAT(mode, 0, speeds)) /* Invert polarity are bits 1-0 of the mode */ #define COMPHY_FW_SATA_FORMAT(mode, invert) \ ((invert) | COMPHY_FW_MODE_FORMAT(mode)) #define COMPHY_SATA_MODE 0x1 #define COMPHY_SGMII_MODE 0x2 /* SGMII 1G */ #define COMPHY_HS_SGMII_MODE 0x3 /* SGMII 2.5G */ #define COMPHY_USB3H_MODE 0x4 #define COMPHY_USB3D_MODE 0x5 #define COMPHY_PCIE_MODE 0x6 #define COMPHY_RXAUI_MODE 0x7 #define COMPHY_XFI_MODE 0x8 #define COMPHY_SFI_MODE 0x9 #define COMPHY_USB3_MODE 0xa #define COMPHY_AP_MODE 0xb /* Comphy unit index macro */ #define COMPHY_UNIT_ID0 0 #define COMPHY_UNIT_ID1 1 #define COMPHY_UNIT_ID2 2 #define COMPHY_UNIT_ID3 3 struct utmi_phy_data { void __iomem *utmi_pll_addr; void __iomem *utmi_base_addr; void __iomem *usb_cfg_addr; void __iomem *utmi_cfg_addr; u32 utmi_phy_port; }; static u32 polling_with_timeout(void __iomem *addr, u32 val, u32 mask, unsigned long usec_timout) { u32 data; do { udelay(1); data = readl(addr) & mask; } while (data != val && --usec_timout > 0); if (usec_timout == 0) return data; return 0; } static int comphy_smc(u32 function_id, void __iomem *comphy_base_addr, u32 lane, u32 mode) { struct pt_regs pregs = {0}; pregs.regs[0] = function_id; pregs.regs[1] = (unsigned long)comphy_base_addr; pregs.regs[2] = lane; pregs.regs[3] = mode; smc_call(&pregs); /* * TODO: Firmware return 0 on success, temporary map it to u-boot * convention, but after all comphy will be reworked the convention in * u-boot should be change and this conversion removed */ return pregs.regs[0] ? 0 : 1; } /* This function performs RX training for all FFE possible values. * We get the result for each FFE and eventually the best FFE will * be used and set to the HW. * * Return '1' on succsess. * Return '0' on failure. */ int comphy_cp110_sfi_rx_training(struct chip_serdes_phy_config *ptr_chip_cfg, u32 lane) { int ret; u32 type = ptr_chip_cfg->comphy_map_data[lane].type; debug_enter(); if (type != COMPHY_TYPE_SFI0 && type != COMPHY_TYPE_SFI1) { pr_err("Comphy %d isn't configured to SFI\n", lane); return 0; } /* Mode is not relevant for xfi training */ ret = comphy_smc(MV_SIP_COMPHY_XFI_TRAIN, ptr_chip_cfg->comphy_base_addr, lane, 0); debug_exit(); return ret; } static int comphy_sata_power_up(u32 lane, void __iomem *hpipe_base, void __iomem *comphy_base_addr, int cp_index, u32 type) { u32 mask, data, i, ret = 1; void __iomem *sata_base = NULL; int sata_node = -1; /* Set to -1 in order to read the first sata node */ debug_enter(); /* * Assumption - each CP has only one SATA controller * Calling fdt_node_offset_by_compatible first time (with sata_node = -1 * will return the first node always. * In order to parse each CPs SATA node, fdt_node_offset_by_compatible * must be called again (according to the CP id) */ for (i = 0; i < (cp_index + 1); i++) sata_node = fdt_node_offset_by_compatible( gd->fdt_blob, sata_node, "marvell,armada-8k-ahci"); if (sata_node == 0) { pr_err("SATA node not found in FDT\n"); return 0; } sata_base = (void __iomem *)fdtdec_get_addr_size_auto_noparent( gd->fdt_blob, sata_node, "reg", 0, NULL, true); if (sata_base == NULL) { pr_err("SATA address not found in FDT\n"); return 0; } debug("SATA address found in FDT %p\n", sata_base); debug("stage: MAC configuration - power down comphy\n"); /* * MAC configuration powe down comphy use indirect address for * vendor spesific SATA control register */ reg_set(sata_base + SATA3_VENDOR_ADDRESS, SATA_CONTROL_REG << SATA3_VENDOR_ADDR_OFSSET, SATA3_VENDOR_ADDR_MASK); /* SATA 0 power down */ mask = SATA3_CTRL_SATA0_PD_MASK; data = 0x1 << SATA3_CTRL_SATA0_PD_OFFSET; /* SATA 1 power down */ mask |= SATA3_CTRL_SATA1_PD_MASK; data |= 0x1 << SATA3_CTRL_SATA1_PD_OFFSET; /* SATA SSU disable */ mask |= SATA3_CTRL_SATA1_ENABLE_MASK; data |= 0x0 << SATA3_CTRL_SATA1_ENABLE_OFFSET; /* SATA port 1 disable */ mask |= SATA3_CTRL_SATA_SSU_MASK; data |= 0x0 << SATA3_CTRL_SATA_SSU_OFFSET; reg_set(sata_base + SATA3_VENDOR_DATA, data, mask); ret = comphy_smc(MV_SIP_COMPHY_POWER_ON, comphy_base_addr, lane, type); /* * MAC configuration power up comphy - power up PLL/TX/RX * use indirect address for vendor spesific SATA control register */ reg_set(sata_base + SATA3_VENDOR_ADDRESS, SATA_CONTROL_REG << SATA3_VENDOR_ADDR_OFSSET, SATA3_VENDOR_ADDR_MASK); /* SATA 0 power up */ mask = SATA3_CTRL_SATA0_PD_MASK; data = 0x0 << SATA3_CTRL_SATA0_PD_OFFSET; /* SATA 1 power up */ mask |= SATA3_CTRL_SATA1_PD_MASK; data |= 0x0 << SATA3_CTRL_SATA1_PD_OFFSET; /* SATA SSU enable */ mask |= SATA3_CTRL_SATA1_ENABLE_MASK; data |= 0x1 << SATA3_CTRL_SATA1_ENABLE_OFFSET; /* SATA port 1 enable */ mask |= SATA3_CTRL_SATA_SSU_MASK; data |= 0x1 << SATA3_CTRL_SATA_SSU_OFFSET; reg_set(sata_base + SATA3_VENDOR_DATA, data, mask); /* MBUS request size and interface select register */ reg_set(sata_base + SATA3_VENDOR_ADDRESS, SATA_MBUS_SIZE_SELECT_REG << SATA3_VENDOR_ADDR_OFSSET, SATA3_VENDOR_ADDR_MASK); /* Mbus regret enable */ reg_set(sata_base + SATA3_VENDOR_DATA, 0x1 << SATA_MBUS_REGRET_EN_OFFSET, SATA_MBUS_REGRET_EN_MASK); ret = comphy_smc(MV_SIP_COMPHY_PLL_LOCK, comphy_base_addr, lane, type); debug_exit(); return ret; } static void comphy_utmi_power_down(u32 utmi_index, void __iomem *utmi_base_addr, void __iomem *usb_cfg_addr, void __iomem *utmi_cfg_addr, u32 utmi_phy_port) { u32 mask, data; debug_enter(); debug("stage: UTMI %d - Power down transceiver (power down Phy), Power down PLL, and SuspendDM\n", utmi_index); /* Power down UTMI PHY */ reg_set(utmi_cfg_addr, 0x0 << UTMI_PHY_CFG_PU_OFFSET, UTMI_PHY_CFG_PU_MASK); /* * If UTMI connected to USB Device, configure mux prior to PHY init * (Device can be connected to UTMI0 or to UTMI1) */ if (utmi_phy_port == UTMI_PHY_TO_USB3_DEVICE0) { debug("stage: UTMI %d - Enable Device mode and configure UTMI mux\n", utmi_index); /* USB3 Device UTMI enable */ mask = UTMI_USB_CFG_DEVICE_EN_MASK; data = 0x1 << UTMI_USB_CFG_DEVICE_EN_OFFSET; /* USB3 Device UTMI MUX */ mask |= UTMI_USB_CFG_DEVICE_MUX_MASK; data |= utmi_index << UTMI_USB_CFG_DEVICE_MUX_OFFSET; reg_set(usb_cfg_addr, data, mask); } /* Set Test suspendm mode */ mask = UTMI_CTRL_STATUS0_SUSPENDM_MASK; data = 0x1 << UTMI_CTRL_STATUS0_SUSPENDM_OFFSET; /* Enable Test UTMI select */ mask |= UTMI_CTRL_STATUS0_TEST_SEL_MASK; data |= 0x1 << UTMI_CTRL_STATUS0_TEST_SEL_OFFSET; reg_set(utmi_base_addr + UTMI_CTRL_STATUS0_REG, data, mask); /* Wait for UTMI power down */ mdelay(1); debug_exit(); return; } static void comphy_utmi_phy_config(u32 utmi_index, void __iomem *utmi_pll_addr, void __iomem *utmi_base_addr, void __iomem *usb_cfg_addr, void __iomem *utmi_cfg_addr, u32 utmi_phy_port) { u32 mask, data; debug_exit(); debug("stage: Configure UTMI PHY %d registers\n", utmi_index); /* Reference Clock Divider Select */ mask = UTMI_PLL_CTRL_REFDIV_MASK; data = 0x5 << UTMI_PLL_CTRL_REFDIV_OFFSET; /* Feedback Clock Divider Select - 90 for 25Mhz*/ mask |= UTMI_PLL_CTRL_FBDIV_MASK; data |= 0x60 << UTMI_PLL_CTRL_FBDIV_OFFSET; /* Select LPFR - 0x0 for 25Mhz/5=5Mhz*/ mask |= UTMI_PLL_CTRL_SEL_LPFR_MASK; data |= 0x0 << UTMI_PLL_CTRL_SEL_LPFR_OFFSET; reg_set(utmi_pll_addr + UTMI_PLL_CTRL_REG, data, mask); /* Impedance Calibration Threshold Setting */ mask = UTMI_CALIB_CTRL_IMPCAL_VTH_MASK; data = 0x7 << UTMI_CALIB_CTRL_IMPCAL_VTH_OFFSET; reg_set(utmi_pll_addr + UTMI_CALIB_CTRL_REG, data, mask); /* Start Impedance and PLL Calibration */ mask = UTMI_CALIB_CTRL_PLLCAL_START_MASK; data = (0x1 << UTMI_CALIB_CTRL_PLLCAL_START_OFFSET); mask |= UTMI_CALIB_CTRL_IMPCAL_START_MASK; data |= (0x1 << UTMI_CALIB_CTRL_IMPCAL_START_OFFSET); reg_set(utmi_pll_addr + UTMI_CALIB_CTRL_REG, data, mask); /* Set LS TX driver strength coarse control */ mask = UTMI_TX_CH_CTRL_AMP_MASK; data = 0x4 << UTMI_TX_CH_CTRL_AMP_OFFSET; mask |= UTMI_TX_CH_CTRL_IMP_SEL_LS_MASK; data |= 0x3 << UTMI_TX_CH_CTRL_IMP_SEL_LS_OFFSET; mask |= UTMI_TX_CH_CTRL_DRV_EN_LS_MASK; data |= 0x3 << UTMI_TX_CH_CTRL_DRV_EN_LS_OFFSET; reg_set(utmi_base_addr + UTMI_TX_CH_CTRL_REG, data, mask); /* Enable SQ */ mask = UTMI_RX_CH_CTRL0_SQ_DET_MASK; data = 0x1 << UTMI_RX_CH_CTRL0_SQ_DET_OFFSET; /* Enable analog squelch detect */ mask |= UTMI_RX_CH_CTRL0_SQ_ANA_DTC_MASK; data |= 0x0 << UTMI_RX_CH_CTRL0_SQ_ANA_DTC_OFFSET; mask |= UTMI_RX_CH_CTRL0_DISCON_THRESH_MASK; data |= 0x0 << UTMI_RX_CH_CTRL0_DISCON_THRESH_OFFSET; reg_set(utmi_base_addr + UTMI_RX_CH_CTRL0_REG, data, mask); /* Set External squelch calibration number */ mask = UTMI_RX_CH_CTRL1_SQ_AMP_CAL_MASK; data = 0x1 << UTMI_RX_CH_CTRL1_SQ_AMP_CAL_OFFSET; /* Enable the External squelch calibration */ mask |= UTMI_RX_CH_CTRL1_SQ_AMP_CAL_EN_MASK; data |= 0x1 << UTMI_RX_CH_CTRL1_SQ_AMP_CAL_EN_OFFSET; reg_set(utmi_base_addr + UTMI_RX_CH_CTRL1_REG, data, mask); /* Set Control VDAT Reference Voltage - 0.325V */ mask = UTMI_CHGDTC_CTRL_VDAT_MASK; data = 0x1 << UTMI_CHGDTC_CTRL_VDAT_OFFSET; /* Set Control VSRC Reference Voltage - 0.6V */ mask |= UTMI_CHGDTC_CTRL_VSRC_MASK; data |= 0x1 << UTMI_CHGDTC_CTRL_VSRC_OFFSET; reg_set(utmi_base_addr + UTMI_CHGDTC_CTRL_REG, data, mask); debug_exit(); return; } static int comphy_utmi_power_up(u32 utmi_index, void __iomem *utmi_pll_addr, void __iomem *utmi_base_addr, void __iomem *usb_cfg_addr, void __iomem *utmi_cfg_addr, u32 utmi_phy_port) { u32 data, mask, ret = 1; void __iomem *addr; debug_enter(); debug("stage: UTMI %d - Power up transceiver(Power up Phy), and exit SuspendDM\n", utmi_index); /* Power UP UTMI PHY */ reg_set(utmi_cfg_addr, 0x1 << UTMI_PHY_CFG_PU_OFFSET, UTMI_PHY_CFG_PU_MASK); /* Disable Test UTMI select */ reg_set(utmi_base_addr + UTMI_CTRL_STATUS0_REG, 0x0 << UTMI_CTRL_STATUS0_TEST_SEL_OFFSET, UTMI_CTRL_STATUS0_TEST_SEL_MASK); debug("stage: Polling for PLL and impedance calibration done, and PLL ready done\n"); addr = utmi_pll_addr + UTMI_CALIB_CTRL_REG; data = UTMI_CALIB_CTRL_IMPCAL_DONE_MASK; mask = data; data = polling_with_timeout(addr, data, mask, 100); if (data != 0) { pr_err("Impedance calibration is not done\n"); debug("Read from reg = %p - value = 0x%x\n", addr, data); ret = 0; } data = UTMI_CALIB_CTRL_PLLCAL_DONE_MASK; mask = data; data = polling_with_timeout(addr, data, mask, 100); if (data != 0) { pr_err("PLL calibration is not done\n"); debug("Read from reg = %p - value = 0x%x\n", addr, data); ret = 0; } addr = utmi_pll_addr + UTMI_PLL_CTRL_REG; data = UTMI_PLL_CTRL_PLL_RDY_MASK; mask = data; data = polling_with_timeout(addr, data, mask, 100); if (data != 0) { pr_err("PLL is not ready\n"); debug("Read from reg = %p - value = 0x%x\n", addr, data); ret = 0; } if (ret) debug("Passed\n"); else debug("\n"); debug_exit(); return ret; } /* * comphy_utmi_phy_init initialize the UTMI PHY * the init split in 3 parts: * 1. Power down transceiver and PLL * 2. UTMI PHY configure * 3. Power up transceiver and PLL * Note: - Power down/up should be once for both UTMI PHYs * - comphy_dedicated_phys_init call this function if at least there is * one UTMI PHY exists in FDT blob. access to cp110_utmi_data[0] is * legal */ static void comphy_utmi_phy_init(u32 utmi_phy_count, struct utmi_phy_data *cp110_utmi_data) { u32 i; debug_enter(); /* UTMI Power down */ for (i = 0; i < utmi_phy_count; i++) { comphy_utmi_power_down(i, cp110_utmi_data[i].utmi_base_addr, cp110_utmi_data[i].usb_cfg_addr, cp110_utmi_data[i].utmi_cfg_addr, cp110_utmi_data[i].utmi_phy_port); } /* PLL Power down */ debug("stage: UTMI PHY power down PLL\n"); for (i = 0; i < utmi_phy_count; i++) { reg_set(cp110_utmi_data[i].usb_cfg_addr, 0x0 << UTMI_USB_CFG_PLL_OFFSET, UTMI_USB_CFG_PLL_MASK); } /* UTMI configure */ for (i = 0; i < utmi_phy_count; i++) { comphy_utmi_phy_config(i, cp110_utmi_data[i].utmi_pll_addr, cp110_utmi_data[i].utmi_base_addr, cp110_utmi_data[i].usb_cfg_addr, cp110_utmi_data[i].utmi_cfg_addr, cp110_utmi_data[i].utmi_phy_port); } /* UTMI Power up */ for (i = 0; i < utmi_phy_count; i++) { if (!comphy_utmi_power_up(i, cp110_utmi_data[i].utmi_pll_addr, cp110_utmi_data[i].utmi_base_addr, cp110_utmi_data[i].usb_cfg_addr, cp110_utmi_data[i].utmi_cfg_addr, cp110_utmi_data[i].utmi_phy_port)) { pr_err("Failed to initialize UTMI PHY %d\n", i); continue; } printf("UTMI PHY %d initialized to ", i); if (cp110_utmi_data[i].utmi_phy_port == UTMI_PHY_TO_USB3_DEVICE0) printf("USB Device\n"); else printf("USB Host%d\n", cp110_utmi_data[i].utmi_phy_port); } /* PLL Power up */ debug("stage: UTMI PHY power up PLL\n"); for (i = 0; i < utmi_phy_count; i++) { reg_set(cp110_utmi_data[i].usb_cfg_addr, 0x1 << UTMI_USB_CFG_PLL_OFFSET, UTMI_USB_CFG_PLL_MASK); } debug_exit(); return; } /* * comphy_dedicated_phys_init initialize the dedicated PHYs * - not muxed SerDes lanes e.g. UTMI PHY */ void comphy_dedicated_phys_init(void) { struct utmi_phy_data cp110_utmi_data[MAX_UTMI_PHY_COUNT]; int node = -1; int node_idx; int parent = -1; debug_enter(); debug("Initialize USB UTMI PHYs\n"); for (node_idx = 0; node_idx < MAX_UTMI_PHY_COUNT;) { /* Find the UTMI phy node in device tree */ node = fdt_node_offset_by_compatible(gd->fdt_blob, node, "marvell,mvebu-utmi-2.6.0"); if (node <= 0) break; /* check if node is enabled */ if (!fdtdec_get_is_enabled(gd->fdt_blob, node)) continue; parent = fdt_parent_offset(gd->fdt_blob, node); if (parent <= 0) break; /* get base address of UTMI PLL */ cp110_utmi_data[node_idx].utmi_pll_addr = (void __iomem *)fdtdec_get_addr_size_auto_noparent( gd->fdt_blob, parent, "reg", 0, NULL, true); if (!cp110_utmi_data[node_idx].utmi_pll_addr) { pr_err("UTMI PHY PLL address is invalid\n"); continue; } /* get base address of UTMI phy */ cp110_utmi_data[node_idx].utmi_base_addr = (void __iomem *)fdtdec_get_addr_size_auto_noparent( gd->fdt_blob, node, "reg", 0, NULL, true); if (!cp110_utmi_data[node_idx].utmi_base_addr) { pr_err("UTMI PHY base address is invalid\n"); continue; } /* get usb config address */ cp110_utmi_data[node_idx].usb_cfg_addr = (void __iomem *)fdtdec_get_addr_size_auto_noparent( gd->fdt_blob, node, "reg", 1, NULL, true); if (!cp110_utmi_data[node_idx].usb_cfg_addr) { pr_err("UTMI PHY base address is invalid\n"); continue; } /* get UTMI config address */ cp110_utmi_data[node_idx].utmi_cfg_addr = (void __iomem *)fdtdec_get_addr_size_auto_noparent( gd->fdt_blob, node, "reg", 2, NULL, true); if (!cp110_utmi_data[node_idx].utmi_cfg_addr) { pr_err("UTMI PHY base address is invalid\n"); continue; } /* * get the port number (to check if the utmi connected to * host/device) */ cp110_utmi_data[node_idx].utmi_phy_port = fdtdec_get_int( gd->fdt_blob, node, "utmi-port", UTMI_PHY_INVALID); if (cp110_utmi_data[node_idx].utmi_phy_port == UTMI_PHY_INVALID) { pr_err("UTMI PHY port type is invalid\n"); continue; } /* count valid UTMI unit */ node_idx++; } if (node_idx > 0) comphy_utmi_phy_init(node_idx, cp110_utmi_data); debug_exit(); } int comphy_cp110_init_serdes_map(int node, struct chip_serdes_phy_config *cfg) { int lane, subnode; cfg->comphy_lanes_count = fdtdec_get_int(gd->fdt_blob, node, "max-lanes", 0); if (cfg->comphy_lanes_count <= 0) { printf("comphy max lanes is wrong\n"); return -EINVAL; } cfg->comphy_mux_bitcount = fdtdec_get_int(gd->fdt_blob, node, "mux-bitcount", 0); if (cfg->comphy_mux_bitcount <= 0) { printf("comphy mux bit count is wrong\n"); return -EINVAL; } cfg->comphy_mux_lane_order = fdtdec_locate_array(gd->fdt_blob, node, "mux-lane-order", cfg->comphy_lanes_count); lane = 0; fdt_for_each_subnode(subnode, gd->fdt_blob, node) { /* Skip disabled ports */ if (!fdtdec_get_is_enabled(gd->fdt_blob, subnode)) continue; cfg->comphy_map_data[lane].type = fdtdec_get_int(gd->fdt_blob, subnode, "phy-type", COMPHY_TYPE_INVALID); if (cfg->comphy_map_data[lane].type == COMPHY_TYPE_INVALID) { printf("no phy type for lane %d, setting lane as unconnected\n", lane + 1); continue; } cfg->comphy_map_data[lane].speed = fdtdec_get_int(gd->fdt_blob, subnode, "phy-speed", COMPHY_SPEED_INVALID); cfg->comphy_map_data[lane].invert = fdtdec_get_int(gd->fdt_blob, subnode, "phy-invert", COMPHY_POLARITY_NO_INVERT); cfg->comphy_map_data[lane].clk_src = fdtdec_get_bool(gd->fdt_blob, subnode, "clk-src"); cfg->comphy_map_data[lane].end_point = fdtdec_get_bool(gd->fdt_blob, subnode, "end_point"); lane++; } return 0; } int comphy_cp110_init(struct chip_serdes_phy_config *ptr_chip_cfg, struct comphy_map *serdes_map) { struct comphy_map *ptr_comphy_map; void __iomem *comphy_base_addr, *hpipe_base_addr; u32 comphy_max_count, lane, id, ret = 0; u32 pcie_width = 0; u32 mode; debug_enter(); comphy_max_count = ptr_chip_cfg->comphy_lanes_count; comphy_base_addr = ptr_chip_cfg->comphy_base_addr; hpipe_base_addr = ptr_chip_cfg->hpipe3_base_addr; /* Check if the first 4 lanes configured as By-4 */ for (lane = 0, ptr_comphy_map = serdes_map; lane < 4; lane++, ptr_comphy_map++) { if (ptr_comphy_map->type != COMPHY_TYPE_PEX0) break; pcie_width++; } for (lane = 0, ptr_comphy_map = serdes_map; lane < comphy_max_count; lane++, ptr_comphy_map++) { debug("Initialize serdes number %d\n", lane); debug("Serdes type = 0x%x\n", ptr_comphy_map->type); if (lane == 4) { /* * PCIe lanes above the first 4 lanes, can be only * by1 */ pcie_width = 1; } switch (ptr_comphy_map->type) { case COMPHY_TYPE_UNCONNECTED: mode = COMPHY_TYPE_UNCONNECTED | COMPHY_CALLER_UBOOT; ret = comphy_smc(MV_SIP_COMPHY_POWER_OFF, ptr_chip_cfg->comphy_base_addr, lane, mode); case COMPHY_TYPE_IGNORE: continue; break; case COMPHY_TYPE_PEX0: case COMPHY_TYPE_PEX1: case COMPHY_TYPE_PEX2: case COMPHY_TYPE_PEX3: mode = COMPHY_FW_PCIE_FORMAT(pcie_width, ptr_comphy_map->clk_src, COMPHY_PCIE_MODE, ptr_comphy_map->speed); ret = comphy_smc(MV_SIP_COMPHY_POWER_ON, ptr_chip_cfg->comphy_base_addr, lane, mode); break; case COMPHY_TYPE_SATA0: case COMPHY_TYPE_SATA1: mode = COMPHY_FW_SATA_FORMAT(COMPHY_SATA_MODE, serdes_map[lane].invert); ret = comphy_sata_power_up(lane, hpipe_base_addr, comphy_base_addr, ptr_chip_cfg->cp_index, mode); break; case COMPHY_TYPE_USB3_HOST0: case COMPHY_TYPE_USB3_HOST1: mode = COMPHY_FW_MODE_FORMAT(COMPHY_USB3H_MODE); ret = comphy_smc(MV_SIP_COMPHY_POWER_ON, ptr_chip_cfg->comphy_base_addr, lane, mode); break; case COMPHY_TYPE_USB3_DEVICE: mode = COMPHY_FW_MODE_FORMAT(COMPHY_USB3D_MODE); ret = comphy_smc(MV_SIP_COMPHY_POWER_ON, ptr_chip_cfg->comphy_base_addr, lane, mode); break; case COMPHY_TYPE_SGMII0: case COMPHY_TYPE_SGMII1: case COMPHY_TYPE_SGMII2: /* Calculate SGMII ID */ id = ptr_comphy_map->type - COMPHY_TYPE_SGMII0; if (ptr_comphy_map->speed == COMPHY_SPEED_INVALID) { debug("Warning: SGMII PHY speed in lane %d is invalid, set PHY speed to 1.25G\n", lane); ptr_comphy_map->speed = COMPHY_SPEED_1_25G; } mode = COMPHY_FW_FORMAT(COMPHY_SGMII_MODE, id, ptr_comphy_map->speed); ret = comphy_smc(MV_SIP_COMPHY_POWER_ON, ptr_chip_cfg->comphy_base_addr, lane, mode); break; case COMPHY_TYPE_SFI0: case COMPHY_TYPE_SFI1: /* Calculate SFI id */ id = ptr_comphy_map->type - COMPHY_TYPE_SFI0; mode = COMPHY_FW_FORMAT(COMPHY_SFI_MODE, id, ptr_comphy_map->speed); ret = comphy_smc(MV_SIP_COMPHY_POWER_ON, ptr_chip_cfg->comphy_base_addr, lane, mode); break; case COMPHY_TYPE_RXAUI0: case COMPHY_TYPE_RXAUI1: mode = COMPHY_FW_MODE_FORMAT(COMPHY_RXAUI_MODE); ret = comphy_smc(MV_SIP_COMPHY_POWER_ON, ptr_chip_cfg->comphy_base_addr, lane, mode); break; default: debug("Unknown SerDes type, skip initialize SerDes %d\n", lane); break; } if (ret == 0) { /* * If interface wans't initialized, set the lane to * COMPHY_TYPE_UNCONNECTED state. */ ptr_comphy_map->type = COMPHY_TYPE_UNCONNECTED; pr_err("PLL is not locked - Failed to initialize lane %d\n", lane); } } debug_exit(); return 0; }