// SPDX-License-Identifier: GPL-2.0 /* * Based on m25p80.c, by Mike Lavender (mike@steroidmicros.com), with * influence from lart.c (Abraham Van Der Merwe) and mtd_dataflash.c * * Copyright (C) 2005, Intec Automation Inc. * Copyright (C) 2014, Freescale Semiconductor, Inc. * * Synced from Linux v4.19 */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "sf_internal.h" /* Define max times to check status register before we give up. */ /* * For everything but full-chip erase; probably could be much smaller, but kept * around for safety for now */ #define HZ CONFIG_SYS_HZ #define DEFAULT_READY_WAIT_JIFFIES (40UL * HZ) #define ROUND_UP_TO(x, y) (((x) + (y) - 1) / (y) * (y)) struct sfdp_parameter_header { u8 id_lsb; u8 minor; u8 major; u8 length; /* in double words */ u8 parameter_table_pointer[3]; /* byte address */ u8 id_msb; }; #define SFDP_PARAM_HEADER_ID(p) (((p)->id_msb << 8) | (p)->id_lsb) #define SFDP_PARAM_HEADER_PTP(p) \ (((p)->parameter_table_pointer[2] << 16) | \ ((p)->parameter_table_pointer[1] << 8) | \ ((p)->parameter_table_pointer[0] << 0)) #define SFDP_BFPT_ID 0xff00 /* Basic Flash Parameter Table */ #define SFDP_SECTOR_MAP_ID 0xff81 /* Sector Map Table */ #define SFDP_SST_ID 0x01bf /* Manufacturer specific Table */ #define SFDP_PROFILE1_ID 0xff05 /* xSPI Profile 1.0 Table */ #define SFDP_SCCR_MAP_ID 0xff87 /* * Status, Control and Configuration * Register Map. */ #define SFDP_SIGNATURE 0x50444653U #define SFDP_JESD216_MAJOR 1 #define SFDP_JESD216_MINOR 0 #define SFDP_JESD216A_MINOR 5 #define SFDP_JESD216B_MINOR 6 struct sfdp_header { u32 signature; /* Ox50444653U <=> "SFDP" */ u8 minor; u8 major; u8 nph; /* 0-base number of parameter headers */ u8 unused; /* Basic Flash Parameter Table. */ struct sfdp_parameter_header bfpt_header; }; /* Basic Flash Parameter Table */ /* * JESD216 rev D defines a Basic Flash Parameter Table of 20 DWORDs. * They are indexed from 1 but C arrays are indexed from 0. */ #define BFPT_DWORD(i) ((i) - 1) #define BFPT_DWORD_MAX 20 /* The first version of JESB216 defined only 9 DWORDs. */ #define BFPT_DWORD_MAX_JESD216 9 #define BFPT_DWORD_MAX_JESD216B 16 /* 1st DWORD. */ #define BFPT_DWORD1_FAST_READ_1_1_2 BIT(16) #define BFPT_DWORD1_ADDRESS_BYTES_MASK GENMASK(18, 17) #define BFPT_DWORD1_ADDRESS_BYTES_3_ONLY (0x0UL << 17) #define BFPT_DWORD1_ADDRESS_BYTES_3_OR_4 (0x1UL << 17) #define BFPT_DWORD1_ADDRESS_BYTES_4_ONLY (0x2UL << 17) #define BFPT_DWORD1_DTR BIT(19) #define BFPT_DWORD1_FAST_READ_1_2_2 BIT(20) #define BFPT_DWORD1_FAST_READ_1_4_4 BIT(21) #define BFPT_DWORD1_FAST_READ_1_1_4 BIT(22) /* 5th DWORD. */ #define BFPT_DWORD5_FAST_READ_2_2_2 BIT(0) #define BFPT_DWORD5_FAST_READ_4_4_4 BIT(4) /* 11th DWORD. */ #define BFPT_DWORD11_PAGE_SIZE_SHIFT 4 #define BFPT_DWORD11_PAGE_SIZE_MASK GENMASK(7, 4) /* 15th DWORD. */ /* * (from JESD216 rev B) * Quad Enable Requirements (QER): * - 000b: Device does not have a QE bit. Device detects 1-1-4 and 1-4-4 * reads based on instruction. DQ3/HOLD# functions are hold during * instruction phase. * - 001b: QE is bit 1 of status register 2. It is set via Write Status with * two data bytes where bit 1 of the second byte is one. * [...] * Writing only one byte to the status register has the side-effect of * clearing status register 2, including the QE bit. The 100b code is * used if writing one byte to the status register does not modify * status register 2. * - 010b: QE is bit 6 of status register 1. It is set via Write Status with * one data byte where bit 6 is one. * [...] * - 011b: QE is bit 7 of status register 2. It is set via Write status * register 2 instruction 3Eh with one data byte where bit 7 is one. * [...] * The status register 2 is read using instruction 3Fh. * - 100b: QE is bit 1 of status register 2. It is set via Write Status with * two data bytes where bit 1 of the second byte is one. * [...] * In contrast to the 001b code, writing one byte to the status * register does not modify status register 2. * - 101b: QE is bit 1 of status register 2. Status register 1 is read using * Read Status instruction 05h. Status register2 is read using * instruction 35h. QE is set via Writ Status instruction 01h with * two data bytes where bit 1 of the second byte is one. * [...] */ #define BFPT_DWORD15_QER_MASK GENMASK(22, 20) #define BFPT_DWORD15_QER_NONE (0x0UL << 20) /* Micron */ #define BFPT_DWORD15_QER_SR2_BIT1_BUGGY (0x1UL << 20) #define BFPT_DWORD15_QER_SR1_BIT6 (0x2UL << 20) /* Macronix */ #define BFPT_DWORD15_QER_SR2_BIT7 (0x3UL << 20) #define BFPT_DWORD15_QER_SR2_BIT1_NO_RD (0x4UL << 20) #define BFPT_DWORD15_QER_SR2_BIT1 (0x5UL << 20) /* Spansion */ #define BFPT_DWORD16_SOFT_RST BIT(12) #define BFPT_DWORD16_EX4B_PWRCYC BIT(21) #define BFPT_DWORD18_CMD_EXT_MASK GENMASK(30, 29) #define BFPT_DWORD18_CMD_EXT_REP (0x0UL << 29) /* Repeat */ #define BFPT_DWORD18_CMD_EXT_INV (0x1UL << 29) /* Invert */ #define BFPT_DWORD18_CMD_EXT_RES (0x2UL << 29) /* Reserved */ #define BFPT_DWORD18_CMD_EXT_16B (0x3UL << 29) /* 16-bit opcode */ /* xSPI Profile 1.0 table (from JESD216D.01). */ #define PROFILE1_DWORD1_RD_FAST_CMD GENMASK(15, 8) #define PROFILE1_DWORD1_RDSR_DUMMY BIT(28) #define PROFILE1_DWORD1_RDSR_ADDR_BYTES BIT(29) #define PROFILE1_DWORD4_DUMMY_200MHZ GENMASK(11, 7) #define PROFILE1_DWORD5_DUMMY_166MHZ GENMASK(31, 27) #define PROFILE1_DWORD5_DUMMY_133MHZ GENMASK(21, 17) #define PROFILE1_DWORD5_DUMMY_100MHZ GENMASK(11, 7) #define PROFILE1_DUMMY_DEFAULT 20 /* Status, Control and Configuration Register Map(SCCR) */ #define SCCR_DWORD22_OCTAL_DTR_EN_VOLATILE BIT(31) struct sfdp_bfpt { u32 dwords[BFPT_DWORD_MAX]; }; /** * struct spi_nor_fixups - SPI NOR fixup hooks * @default_init: called after default flash parameters init. Used to tweak * flash parameters when information provided by the flash_info * table is incomplete or wrong. * @post_bfpt: called after the BFPT table has been parsed * @post_sfdp: called after SFDP has been parsed (is also called for SPI NORs * that do not support RDSFDP). Typically used to tweak various * parameters that could not be extracted by other means (i.e. * when information provided by the SFDP/flash_info tables are * incomplete or wrong). * * Those hooks can be used to tweak the SPI NOR configuration when the SFDP * table is broken or not available. */ struct spi_nor_fixups { void (*default_init)(struct spi_nor *nor); int (*post_bfpt)(struct spi_nor *nor, const struct sfdp_parameter_header *bfpt_header, const struct sfdp_bfpt *bfpt, struct spi_nor_flash_parameter *params); void (*post_sfdp)(struct spi_nor *nor, struct spi_nor_flash_parameter *params); }; #define SPI_NOR_SRST_SLEEP_LEN 200 /** * spi_nor_get_cmd_ext() - Get the command opcode extension based on the * extension type. * @nor: pointer to a 'struct spi_nor' * @op: pointer to the 'struct spi_mem_op' whose properties * need to be initialized. * * Right now, only "repeat" and "invert" are supported. * * Return: The opcode extension. */ static u8 spi_nor_get_cmd_ext(const struct spi_nor *nor, const struct spi_mem_op *op) { switch (nor->cmd_ext_type) { case SPI_NOR_EXT_INVERT: return ~op->cmd.opcode; case SPI_NOR_EXT_REPEAT: return op->cmd.opcode; default: dev_dbg(nor->dev, "Unknown command extension type\n"); return 0; } } /** * spi_nor_setup_op() - Set up common properties of a spi-mem op. * @nor: pointer to a 'struct spi_nor' * @op: pointer to the 'struct spi_mem_op' whose properties * need to be initialized. * @proto: the protocol from which the properties need to be set. */ void spi_nor_setup_op(const struct spi_nor *nor, struct spi_mem_op *op, const enum spi_nor_protocol proto) { u8 ext; op->cmd.buswidth = spi_nor_get_protocol_inst_nbits(proto); if (op->addr.nbytes) op->addr.buswidth = spi_nor_get_protocol_addr_nbits(proto); if (op->dummy.nbytes) op->dummy.buswidth = spi_nor_get_protocol_addr_nbits(proto); if (op->data.nbytes) op->data.buswidth = spi_nor_get_protocol_data_nbits(proto); if (spi_nor_protocol_is_dtr(proto)) { /* * spi-mem supports mixed DTR modes, but right now we can only * have all phases either DTR or STR. IOW, spi-mem can have * something like 4S-4D-4D, but spi-nor can't. So, set all 4 * phases to either DTR or STR. */ op->cmd.dtr = op->addr.dtr = op->dummy.dtr = op->data.dtr = true; /* 2 bytes per clock cycle in DTR mode. */ op->dummy.nbytes *= 2; ext = spi_nor_get_cmd_ext(nor, op); op->cmd.opcode = (op->cmd.opcode << 8) | ext; op->cmd.nbytes = 2; } } static int spi_nor_read_write_reg(struct spi_nor *nor, struct spi_mem_op *op, void *buf) { if (op->data.dir == SPI_MEM_DATA_IN) op->data.buf.in = buf; else op->data.buf.out = buf; return spi_mem_exec_op(nor->spi, op); } static int spi_nor_read_reg(struct spi_nor *nor, u8 code, u8 *val, int len) { struct spi_mem_op op = SPI_MEM_OP(SPI_MEM_OP_CMD(code, 0), SPI_MEM_OP_NO_ADDR, SPI_MEM_OP_NO_DUMMY, SPI_MEM_OP_DATA_IN(len, NULL, 0)); int ret; spi_nor_setup_op(nor, &op, nor->reg_proto); ret = spi_nor_read_write_reg(nor, &op, val); if (ret < 0) dev_dbg(nor->dev, "error %d reading %x\n", ret, code); return ret; } static int spi_nor_write_reg(struct spi_nor *nor, u8 opcode, u8 *buf, int len) { struct spi_mem_op op = SPI_MEM_OP(SPI_MEM_OP_CMD(opcode, 0), SPI_MEM_OP_NO_ADDR, SPI_MEM_OP_NO_DUMMY, SPI_MEM_OP_DATA_OUT(len, NULL, 0)); spi_nor_setup_op(nor, &op, nor->reg_proto); if (len == 0) op.data.dir = SPI_MEM_NO_DATA; return spi_nor_read_write_reg(nor, &op, buf); } #ifdef CONFIG_SPI_FLASH_SPANSION static int spansion_read_any_reg(struct spi_nor *nor, u32 addr, u8 dummy, u8 *val) { struct spi_mem_op op = SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_RDAR, 1), SPI_MEM_OP_ADDR(nor->addr_mode_nbytes, addr, 1), SPI_MEM_OP_DUMMY(dummy / 8, 1), SPI_MEM_OP_DATA_IN(1, NULL, 1)); return spi_nor_read_write_reg(nor, &op, val); } static int spansion_write_any_reg(struct spi_nor *nor, u32 addr, u8 val) { struct spi_mem_op op = SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_WRAR, 1), SPI_MEM_OP_ADDR(nor->addr_mode_nbytes, addr, 1), SPI_MEM_OP_NO_DUMMY, SPI_MEM_OP_DATA_OUT(1, NULL, 1)); return spi_nor_read_write_reg(nor, &op, &val); } #endif static ssize_t spi_nor_read_data(struct spi_nor *nor, loff_t from, size_t len, u_char *buf) { struct spi_mem_op op = SPI_MEM_OP(SPI_MEM_OP_CMD(nor->read_opcode, 0), SPI_MEM_OP_ADDR(nor->addr_width, from, 0), SPI_MEM_OP_DUMMY(nor->read_dummy, 0), SPI_MEM_OP_DATA_IN(len, buf, 0)); size_t remaining = len; int ret; spi_nor_setup_op(nor, &op, nor->read_proto); /* convert the dummy cycles to the number of bytes */ op.dummy.nbytes = (nor->read_dummy * op.dummy.buswidth) / 8; if (spi_nor_protocol_is_dtr(nor->read_proto)) op.dummy.nbytes *= 2; while (remaining) { op.data.nbytes = remaining < UINT_MAX ? remaining : UINT_MAX; if (CONFIG_IS_ENABLED(SPI_DIRMAP) && nor->dirmap.rdesc) { /* * Record current operation information which may be used * when the address or data length exceeds address mapping. */ memcpy(&nor->dirmap.rdesc->info.op_tmpl, &op, sizeof(struct spi_mem_op)); ret = spi_mem_dirmap_read(nor->dirmap.rdesc, op.addr.val, op.data.nbytes, op.data.buf.in); if (ret < 0) return ret; op.data.nbytes = ret; } else { ret = spi_mem_adjust_op_size(nor->spi, &op); if (ret) return ret; ret = spi_mem_exec_op(nor->spi, &op); if (ret) return ret; } op.addr.val += op.data.nbytes; remaining -= op.data.nbytes; op.data.buf.in += op.data.nbytes; } return len; } static ssize_t spi_nor_write_data(struct spi_nor *nor, loff_t to, size_t len, const u_char *buf) { struct spi_mem_op op = SPI_MEM_OP(SPI_MEM_OP_CMD(nor->program_opcode, 0), SPI_MEM_OP_ADDR(nor->addr_width, to, 0), SPI_MEM_OP_NO_DUMMY, SPI_MEM_OP_DATA_OUT(len, buf, 0)); int ret; if (nor->program_opcode == SPINOR_OP_AAI_WP && nor->sst_write_second) op.addr.nbytes = 0; spi_nor_setup_op(nor, &op, nor->write_proto); if (CONFIG_IS_ENABLED(SPI_DIRMAP) && nor->dirmap.wdesc) { memcpy(&nor->dirmap.wdesc->info.op_tmpl, &op, sizeof(struct spi_mem_op)); op.data.nbytes = spi_mem_dirmap_write(nor->dirmap.wdesc, op.addr.val, op.data.nbytes, op.data.buf.out); } else { ret = spi_mem_adjust_op_size(nor->spi, &op); if (ret) return ret; op.data.nbytes = len < op.data.nbytes ? len : op.data.nbytes; ret = spi_mem_exec_op(nor->spi, &op); if (ret) return ret; } return op.data.nbytes; } /* * Read the status register, returning its value in the location * Return the status register value. * Returns negative if error occurred. */ static int read_sr(struct spi_nor *nor) { struct spi_mem_op op; int ret; u8 val[2]; u8 addr_nbytes, dummy; if (nor->reg_proto == SNOR_PROTO_8_8_8_DTR) { addr_nbytes = nor->rdsr_addr_nbytes; dummy = nor->rdsr_dummy; } else { addr_nbytes = 0; dummy = 0; } op = (struct spi_mem_op)SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_RDSR, 0), SPI_MEM_OP_ADDR(addr_nbytes, 0, 0), SPI_MEM_OP_DUMMY(dummy, 0), SPI_MEM_OP_DATA_IN(1, NULL, 0)); spi_nor_setup_op(nor, &op, nor->reg_proto); /* * We don't want to read only one byte in DTR mode. So, read 2 and then * discard the second byte. */ if (spi_nor_protocol_is_dtr(nor->reg_proto)) op.data.nbytes = 2; ret = spi_nor_read_write_reg(nor, &op, val); if (ret < 0) { pr_debug("error %d reading SR\n", (int)ret); return ret; } return *val; } /* * Read the flag status register, returning its value in the location * Return the status register value. * Returns negative if error occurred. */ static int read_fsr(struct spi_nor *nor) { struct spi_mem_op op; int ret; u8 val[2]; u8 addr_nbytes, dummy; if (nor->reg_proto == SNOR_PROTO_8_8_8_DTR) { addr_nbytes = nor->rdsr_addr_nbytes; dummy = nor->rdsr_dummy; } else { addr_nbytes = 0; dummy = 0; } op = (struct spi_mem_op)SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_RDFSR, 0), SPI_MEM_OP_ADDR(addr_nbytes, 0, 0), SPI_MEM_OP_DUMMY(dummy, 0), SPI_MEM_OP_DATA_IN(1, NULL, 0)); spi_nor_setup_op(nor, &op, nor->reg_proto); /* * We don't want to read only one byte in DTR mode. So, read 2 and then * discard the second byte. */ if (spi_nor_protocol_is_dtr(nor->reg_proto)) op.data.nbytes = 2; ret = spi_nor_read_write_reg(nor, &op, val); if (ret < 0) { pr_debug("error %d reading FSR\n", ret); return ret; } return *val; } /* * Read configuration register, returning its value in the * location. Return the configuration register value. * Returns negative if error occurred. */ #if defined(CONFIG_SPI_FLASH_SPANSION) || defined(CONFIG_SPI_FLASH_WINBOND) static int read_cr(struct spi_nor *nor) { int ret; u8 val; ret = nor->read_reg(nor, SPINOR_OP_RDCR, &val, 1); if (ret < 0) { dev_dbg(nor->dev, "error %d reading CR\n", ret); return ret; } return val; } #endif /* * Write status register 1 byte * Returns negative if error occurred. */ static int write_sr(struct spi_nor *nor, u8 val) { nor->cmd_buf[0] = val; return nor->write_reg(nor, SPINOR_OP_WRSR, nor->cmd_buf, 1); } /* * Set write enable latch with Write Enable command. * Returns negative if error occurred. */ static int write_enable(struct spi_nor *nor) { return nor->write_reg(nor, SPINOR_OP_WREN, NULL, 0); } /* * Send write disable instruction to the chip. */ static int write_disable(struct spi_nor *nor) { return nor->write_reg(nor, SPINOR_OP_WRDI, NULL, 0); } static struct spi_nor *mtd_to_spi_nor(struct mtd_info *mtd) { return mtd->priv; } #ifndef CONFIG_SPI_FLASH_BAR static u8 spi_nor_convert_opcode(u8 opcode, const u8 table[][2], size_t size) { size_t i; for (i = 0; i < size; i++) if (table[i][0] == opcode) return table[i][1]; /* No conversion found, keep input op code. */ return opcode; } static u8 spi_nor_convert_3to4_read(u8 opcode) { static const u8 spi_nor_3to4_read[][2] = { { SPINOR_OP_READ, SPINOR_OP_READ_4B }, { SPINOR_OP_READ_FAST, SPINOR_OP_READ_FAST_4B }, { SPINOR_OP_READ_1_1_2, SPINOR_OP_READ_1_1_2_4B }, { SPINOR_OP_READ_1_2_2, SPINOR_OP_READ_1_2_2_4B }, { SPINOR_OP_READ_1_1_4, SPINOR_OP_READ_1_1_4_4B }, { SPINOR_OP_READ_1_4_4, SPINOR_OP_READ_1_4_4_4B }, { SPINOR_OP_READ_1_1_8, SPINOR_OP_READ_1_1_8_4B }, { SPINOR_OP_READ_1_8_8, SPINOR_OP_READ_1_8_8_4B }, { SPINOR_OP_READ_1_1_1_DTR, SPINOR_OP_READ_1_1_1_DTR_4B }, { SPINOR_OP_READ_1_2_2_DTR, SPINOR_OP_READ_1_2_2_DTR_4B }, { SPINOR_OP_READ_1_4_4_DTR, SPINOR_OP_READ_1_4_4_DTR_4B }, }; return spi_nor_convert_opcode(opcode, spi_nor_3to4_read, ARRAY_SIZE(spi_nor_3to4_read)); } static u8 spi_nor_convert_3to4_program(u8 opcode) { static const u8 spi_nor_3to4_program[][2] = { { SPINOR_OP_PP, SPINOR_OP_PP_4B }, { SPINOR_OP_PP_1_1_4, SPINOR_OP_PP_1_1_4_4B }, { SPINOR_OP_PP_1_4_4, SPINOR_OP_PP_1_4_4_4B }, { SPINOR_OP_PP_1_1_8, SPINOR_OP_PP_1_1_8_4B }, { SPINOR_OP_PP_1_8_8, SPINOR_OP_PP_1_8_8_4B }, }; return spi_nor_convert_opcode(opcode, spi_nor_3to4_program, ARRAY_SIZE(spi_nor_3to4_program)); } static u8 spi_nor_convert_3to4_erase(u8 opcode) { static const u8 spi_nor_3to4_erase[][2] = { { SPINOR_OP_BE_4K, SPINOR_OP_BE_4K_4B }, { SPINOR_OP_BE_32K, SPINOR_OP_BE_32K_4B }, { SPINOR_OP_SE, SPINOR_OP_SE_4B }, }; return spi_nor_convert_opcode(opcode, spi_nor_3to4_erase, ARRAY_SIZE(spi_nor_3to4_erase)); } static void spi_nor_set_4byte_opcodes(struct spi_nor *nor, const struct flash_info *info) { /* Do some manufacturer fixups first */ switch (JEDEC_MFR(info)) { case SNOR_MFR_SPANSION: /* No small sector erase for 4-byte command set */ nor->erase_opcode = SPINOR_OP_SE; nor->mtd.erasesize = info->sector_size; break; default: break; } nor->read_opcode = spi_nor_convert_3to4_read(nor->read_opcode); nor->program_opcode = spi_nor_convert_3to4_program(nor->program_opcode); nor->erase_opcode = spi_nor_convert_3to4_erase(nor->erase_opcode); } #endif /* !CONFIG_SPI_FLASH_BAR */ /* Enable/disable 4-byte addressing mode. */ static int set_4byte(struct spi_nor *nor, const struct flash_info *info, int enable) { int status; bool need_wren = false; u8 cmd; switch (JEDEC_MFR(info)) { case SNOR_MFR_ST: case SNOR_MFR_MICRON: /* Some Micron need WREN command; all will accept it */ need_wren = true; case SNOR_MFR_ISSI: case SNOR_MFR_MACRONIX: case SNOR_MFR_WINBOND: if (need_wren) write_enable(nor); cmd = enable ? SPINOR_OP_EN4B : SPINOR_OP_EX4B; status = nor->write_reg(nor, cmd, NULL, 0); if (need_wren) write_disable(nor); if (!status && !enable && JEDEC_MFR(info) == SNOR_MFR_WINBOND) { /* * On Winbond W25Q256FV, leaving 4byte mode causes * the Extended Address Register to be set to 1, so all * 3-byte-address reads come from the second 16M. * We must clear the register to enable normal behavior. */ write_enable(nor); nor->cmd_buf[0] = 0; nor->write_reg(nor, SPINOR_OP_WREAR, nor->cmd_buf, 1); write_disable(nor); } return status; case SNOR_MFR_CYPRESS: cmd = enable ? SPINOR_OP_EN4B : SPINOR_OP_EX4B_CYPRESS; return nor->write_reg(nor, cmd, NULL, 0); default: /* Spansion style */ nor->cmd_buf[0] = enable << 7; return nor->write_reg(nor, SPINOR_OP_BRWR, nor->cmd_buf, 1); } } #ifdef CONFIG_SPI_FLASH_SPANSION /* * Read status register 1 by using Read Any Register command to support multi * die package parts. */ static int spansion_sr_ready(struct spi_nor *nor, u32 addr_base, u8 dummy) { u32 reg_addr = addr_base + SPINOR_REG_ADDR_STR1V; u8 sr; int ret; ret = spansion_read_any_reg(nor, reg_addr, dummy, &sr); if (ret < 0) return ret; if (sr & (SR_E_ERR | SR_P_ERR)) { if (sr & SR_E_ERR) dev_dbg(nor->dev, "Erase Error occurred\n"); else dev_dbg(nor->dev, "Programming Error occurred\n"); nor->write_reg(nor, SPINOR_OP_CLSR, NULL, 0); return -EIO; } return !(sr & SR_WIP); } #endif static int spi_nor_sr_ready(struct spi_nor *nor) { int sr = read_sr(nor); if (sr < 0) return sr; if (nor->flags & SNOR_F_USE_CLSR && sr & (SR_E_ERR | SR_P_ERR)) { if (sr & SR_E_ERR) dev_dbg(nor->dev, "Erase Error occurred\n"); else dev_dbg(nor->dev, "Programming Error occurred\n"); nor->write_reg(nor, SPINOR_OP_CLSR, NULL, 0); return -EIO; } return !(sr & SR_WIP); } static int spi_nor_fsr_ready(struct spi_nor *nor) { int fsr = read_fsr(nor); if (fsr < 0) return fsr; if (fsr & (FSR_E_ERR | FSR_P_ERR)) { if (fsr & FSR_E_ERR) dev_err(nor->dev, "Erase operation failed.\n"); else dev_err(nor->dev, "Program operation failed.\n"); if (fsr & FSR_PT_ERR) dev_err(nor->dev, "Attempted to modify a protected sector.\n"); nor->write_reg(nor, SPINOR_OP_CLFSR, NULL, 0); return -EIO; } return fsr & FSR_READY; } static int spi_nor_default_ready(struct spi_nor *nor) { int sr, fsr; sr = spi_nor_sr_ready(nor); if (sr < 0) return sr; fsr = nor->flags & SNOR_F_USE_FSR ? spi_nor_fsr_ready(nor) : 1; if (fsr < 0) return fsr; return sr && fsr; } static int spi_nor_ready(struct spi_nor *nor) { if (nor->ready) return nor->ready(nor); return spi_nor_default_ready(nor); } /* * Service routine to read status register until ready, or timeout occurs. * Returns non-zero if error. */ static int spi_nor_wait_till_ready_with_timeout(struct spi_nor *nor, unsigned long timeout) { unsigned long timebase; int ret; timebase = get_timer(0); while (get_timer(timebase) < timeout) { ret = spi_nor_ready(nor); if (ret < 0) return ret; if (ret) return 0; } dev_err(nor->dev, "flash operation timed out\n"); return -ETIMEDOUT; } static int spi_nor_wait_till_ready(struct spi_nor *nor) { return spi_nor_wait_till_ready_with_timeout(nor, DEFAULT_READY_WAIT_JIFFIES); } #ifdef CONFIG_SPI_FLASH_BAR /* * This "clean_bar" is necessary in a situation when one was accessing * spi flash memory > 16 MiB by using Bank Address Register's BA24 bit. * * After it the BA24 bit shall be cleared to allow access to correct * memory region after SW reset (by calling "reset" command). * * Otherwise, the BA24 bit may be left set and then after reset, the * ROM would read/write/erase SPL from 16 MiB * bank_sel address. */ static int clean_bar(struct spi_nor *nor) { u8 cmd, bank_sel = 0; if (nor->bank_curr == 0) return 0; cmd = nor->bank_write_cmd; nor->bank_curr = 0; write_enable(nor); return nor->write_reg(nor, cmd, &bank_sel, 1); } static int write_bar(struct spi_nor *nor, u32 offset) { u8 cmd, bank_sel; int ret; bank_sel = offset / SZ_16M; if (bank_sel == nor->bank_curr) goto bar_end; cmd = nor->bank_write_cmd; write_enable(nor); ret = nor->write_reg(nor, cmd, &bank_sel, 1); if (ret < 0) { debug("SF: fail to write bank register\n"); return ret; } bar_end: nor->bank_curr = bank_sel; return nor->bank_curr; } static int read_bar(struct spi_nor *nor, const struct flash_info *info) { u8 curr_bank = 0; int ret; switch (JEDEC_MFR(info)) { case SNOR_MFR_SPANSION: nor->bank_read_cmd = SPINOR_OP_BRRD; nor->bank_write_cmd = SPINOR_OP_BRWR; break; default: nor->bank_read_cmd = SPINOR_OP_RDEAR; nor->bank_write_cmd = SPINOR_OP_WREAR; } ret = nor->read_reg(nor, nor->bank_read_cmd, &curr_bank, 1); if (ret) { debug("SF: fail to read bank addr register\n"); return ret; } nor->bank_curr = curr_bank; return 0; } #endif /* * Initiate the erasure of a single sector. Returns the number of bytes erased * on success, a negative error code on error. */ static int spi_nor_erase_sector(struct spi_nor *nor, u32 addr) { struct spi_mem_op op = SPI_MEM_OP(SPI_MEM_OP_CMD(nor->erase_opcode, 0), SPI_MEM_OP_ADDR(nor->addr_width, addr, 0), SPI_MEM_OP_NO_DUMMY, SPI_MEM_OP_NO_DATA); int ret; spi_nor_setup_op(nor, &op, nor->write_proto); if (nor->erase) return nor->erase(nor, addr); /* * Default implementation, if driver doesn't have a specialized HW * control */ ret = spi_mem_exec_op(nor->spi, &op); if (ret) return ret; return nor->mtd.erasesize; } /* * Erase an address range on the nor chip. The address range may extend * one or more erase sectors. Return an error is there is a problem erasing. */ static int spi_nor_erase(struct mtd_info *mtd, struct erase_info *instr) { struct spi_nor *nor = mtd_to_spi_nor(mtd); bool addr_known = false; u32 addr, len, rem; int ret, err; dev_dbg(nor->dev, "at 0x%llx, len %lld\n", (long long)instr->addr, (long long)instr->len); div_u64_rem(instr->len, mtd->erasesize, &rem); if (rem) { ret = -EINVAL; goto err; } addr = instr->addr; len = instr->len; instr->state = MTD_ERASING; addr_known = true; while (len) { schedule(); if (!IS_ENABLED(CONFIG_SPL_BUILD) && ctrlc()) { addr_known = false; ret = -EINTR; goto erase_err; } #ifdef CONFIG_SPI_FLASH_BAR ret = write_bar(nor, addr); if (ret < 0) goto erase_err; #endif ret = write_enable(nor); if (ret < 0) goto erase_err; ret = spi_nor_erase_sector(nor, addr); if (ret < 0) goto erase_err; addr += ret; len -= ret; ret = spi_nor_wait_till_ready(nor); if (ret) goto erase_err; } addr_known = false; erase_err: #ifdef CONFIG_SPI_FLASH_BAR err = clean_bar(nor); if (!ret) ret = err; #endif err = write_disable(nor); if (!ret) ret = err; err: if (ret) { instr->fail_addr = addr_known ? addr : MTD_FAIL_ADDR_UNKNOWN; instr->state = MTD_ERASE_FAILED; } else { instr->state = MTD_ERASE_DONE; } return ret; } #ifdef CONFIG_SPI_FLASH_SPANSION /** * spansion_erase_non_uniform() - erase non-uniform sectors for Spansion/Cypress * chips * @nor: pointer to a 'struct spi_nor' * @addr: address of the sector to erase * @opcode_4k: opcode for 4K sector erase * @ovlsz_top: size of overlaid portion at the top address * @ovlsz_btm: size of overlaid portion at the bottom address * * Erase an address range on the nor chip that can contain 4KB sectors overlaid * on top and/or bottom. The appropriate erase opcode and size are chosen by * address to erase and size of overlaid portion. * * Return: number of bytes erased on success, -errno otherwise. */ static int spansion_erase_non_uniform(struct spi_nor *nor, u32 addr, u8 opcode_4k, u32 ovlsz_top, u32 ovlsz_btm) { struct spi_mem_op op = SPI_MEM_OP(SPI_MEM_OP_CMD(nor->erase_opcode, 0), SPI_MEM_OP_ADDR(nor->addr_width, addr, 0), SPI_MEM_OP_NO_DUMMY, SPI_MEM_OP_NO_DATA); struct mtd_info *mtd = &nor->mtd; u32 erasesize; int ret; /* 4KB sectors */ if (op.addr.val < ovlsz_btm || op.addr.val >= mtd->size - ovlsz_top) { op.cmd.opcode = opcode_4k; erasesize = SZ_4K; /* Non-overlaid portion in the normal sector at the bottom */ } else if (op.addr.val == ovlsz_btm) { op.cmd.opcode = nor->erase_opcode; erasesize = mtd->erasesize - ovlsz_btm; /* Non-overlaid portion in the normal sector at the top */ } else if (op.addr.val == mtd->size - mtd->erasesize) { op.cmd.opcode = nor->erase_opcode; erasesize = mtd->erasesize - ovlsz_top; /* Normal sectors */ } else { op.cmd.opcode = nor->erase_opcode; erasesize = mtd->erasesize; } spi_nor_setup_op(nor, &op, nor->write_proto); ret = spi_mem_exec_op(nor->spi, &op); if (ret) return ret; return erasesize; } #endif #if defined(CONFIG_SPI_FLASH_STMICRO) || defined(CONFIG_SPI_FLASH_SST) /* Write status register and ensure bits in mask match written values */ static int write_sr_and_check(struct spi_nor *nor, u8 status_new, u8 mask) { int ret; write_enable(nor); ret = write_sr(nor, status_new); if (ret) return ret; ret = spi_nor_wait_till_ready(nor); if (ret) return ret; ret = read_sr(nor); if (ret < 0) return ret; return ((ret & mask) != (status_new & mask)) ? -EIO : 0; } static void stm_get_locked_range(struct spi_nor *nor, u8 sr, loff_t *ofs, uint64_t *len) { struct mtd_info *mtd = &nor->mtd; u8 mask = SR_BP2 | SR_BP1 | SR_BP0; int shift = ffs(mask) - 1; int pow; if (!(sr & mask)) { /* No protection */ *ofs = 0; *len = 0; } else { pow = ((sr & mask) ^ mask) >> shift; *len = mtd->size >> pow; if (nor->flags & SNOR_F_HAS_SR_TB && sr & SR_TB) *ofs = 0; else *ofs = mtd->size - *len; } } /* * Return 1 if the entire region is locked (if @locked is true) or unlocked (if * @locked is false); 0 otherwise */ static int stm_check_lock_status_sr(struct spi_nor *nor, loff_t ofs, u64 len, u8 sr, bool locked) { loff_t lock_offs; uint64_t lock_len; if (!len) return 1; stm_get_locked_range(nor, sr, &lock_offs, &lock_len); if (locked) /* Requested range is a sub-range of locked range */ return (ofs + len <= lock_offs + lock_len) && (ofs >= lock_offs); else /* Requested range does not overlap with locked range */ return (ofs >= lock_offs + lock_len) || (ofs + len <= lock_offs); } static int stm_is_locked_sr(struct spi_nor *nor, loff_t ofs, uint64_t len, u8 sr) { return stm_check_lock_status_sr(nor, ofs, len, sr, true); } static int stm_is_unlocked_sr(struct spi_nor *nor, loff_t ofs, uint64_t len, u8 sr) { return stm_check_lock_status_sr(nor, ofs, len, sr, false); } /* * Lock a region of the flash. Compatible with ST Micro and similar flash. * Supports the block protection bits BP{0,1,2} in the status register * (SR). Does not support these features found in newer SR bitfields: * - SEC: sector/block protect - only handle SEC=0 (block protect) * - CMP: complement protect - only support CMP=0 (range is not complemented) * * Support for the following is provided conditionally for some flash: * - TB: top/bottom protect * * Sample table portion for 8MB flash (Winbond w25q64fw): * * SEC | TB | BP2 | BP1 | BP0 | Prot Length | Protected Portion * -------------------------------------------------------------------------- * X | X | 0 | 0 | 0 | NONE | NONE * 0 | 0 | 0 | 0 | 1 | 128 KB | Upper 1/64 * 0 | 0 | 0 | 1 | 0 | 256 KB | Upper 1/32 * 0 | 0 | 0 | 1 | 1 | 512 KB | Upper 1/16 * 0 | 0 | 1 | 0 | 0 | 1 MB | Upper 1/8 * 0 | 0 | 1 | 0 | 1 | 2 MB | Upper 1/4 * 0 | 0 | 1 | 1 | 0 | 4 MB | Upper 1/2 * X | X | 1 | 1 | 1 | 8 MB | ALL * ------|-------|-------|-------|-------|---------------|------------------- * 0 | 1 | 0 | 0 | 1 | 128 KB | Lower 1/64 * 0 | 1 | 0 | 1 | 0 | 256 KB | Lower 1/32 * 0 | 1 | 0 | 1 | 1 | 512 KB | Lower 1/16 * 0 | 1 | 1 | 0 | 0 | 1 MB | Lower 1/8 * 0 | 1 | 1 | 0 | 1 | 2 MB | Lower 1/4 * 0 | 1 | 1 | 1 | 0 | 4 MB | Lower 1/2 * * Returns negative on errors, 0 on success. */ static int stm_lock(struct spi_nor *nor, loff_t ofs, uint64_t len) { struct mtd_info *mtd = &nor->mtd; int status_old, status_new; u8 mask = SR_BP2 | SR_BP1 | SR_BP0; u8 shift = ffs(mask) - 1, pow, val; loff_t lock_len; bool can_be_top = true, can_be_bottom = nor->flags & SNOR_F_HAS_SR_TB; bool use_top; status_old = read_sr(nor); if (status_old < 0) return status_old; /* If nothing in our range is unlocked, we don't need to do anything */ if (stm_is_locked_sr(nor, ofs, len, status_old)) return 0; /* If anything below us is unlocked, we can't use 'bottom' protection */ if (!stm_is_locked_sr(nor, 0, ofs, status_old)) can_be_bottom = false; /* If anything above us is unlocked, we can't use 'top' protection */ if (!stm_is_locked_sr(nor, ofs + len, mtd->size - (ofs + len), status_old)) can_be_top = false; if (!can_be_bottom && !can_be_top) return -EINVAL; /* Prefer top, if both are valid */ use_top = can_be_top; /* lock_len: length of region that should end up locked */ if (use_top) lock_len = mtd->size - ofs; else lock_len = ofs + len; /* * Need smallest pow such that: * * 1 / (2^pow) <= (len / size) * * so (assuming power-of-2 size) we do: * * pow = ceil(log2(size / len)) = log2(size) - floor(log2(len)) */ pow = ilog2(mtd->size) - ilog2(lock_len); val = mask - (pow << shift); if (val & ~mask) return -EINVAL; /* Don't "lock" with no region! */ if (!(val & mask)) return -EINVAL; status_new = (status_old & ~mask & ~SR_TB) | val; /* Disallow further writes if WP pin is asserted */ status_new |= SR_SRWD; if (!use_top) status_new |= SR_TB; /* Don't bother if they're the same */ if (status_new == status_old) return 0; /* Only modify protection if it will not unlock other areas */ if ((status_new & mask) < (status_old & mask)) return -EINVAL; return write_sr_and_check(nor, status_new, mask); } /* * Unlock a region of the flash. See stm_lock() for more info * * Returns negative on errors, 0 on success. */ static int stm_unlock(struct spi_nor *nor, loff_t ofs, uint64_t len) { struct mtd_info *mtd = &nor->mtd; int status_old, status_new; u8 mask = SR_BP2 | SR_BP1 | SR_BP0; u8 shift = ffs(mask) - 1, pow, val; loff_t lock_len; bool can_be_top = true, can_be_bottom = nor->flags & SNOR_F_HAS_SR_TB; bool use_top; status_old = read_sr(nor); if (status_old < 0) return status_old; /* If nothing in our range is locked, we don't need to do anything */ if (stm_is_unlocked_sr(nor, ofs, len, status_old)) return 0; /* If anything below us is locked, we can't use 'top' protection */ if (!stm_is_unlocked_sr(nor, 0, ofs, status_old)) can_be_top = false; /* If anything above us is locked, we can't use 'bottom' protection */ if (!stm_is_unlocked_sr(nor, ofs + len, mtd->size - (ofs + len), status_old)) can_be_bottom = false; if (!can_be_bottom && !can_be_top) return -EINVAL; /* Prefer top, if both are valid */ use_top = can_be_top; /* lock_len: length of region that should remain locked */ if (use_top) lock_len = mtd->size - (ofs + len); else lock_len = ofs; /* * Need largest pow such that: * * 1 / (2^pow) >= (len / size) * * so (assuming power-of-2 size) we do: * * pow = floor(log2(size / len)) = log2(size) - ceil(log2(len)) */ pow = ilog2(mtd->size) - order_base_2(lock_len); if (lock_len == 0) { val = 0; /* fully unlocked */ } else { val = mask - (pow << shift); /* Some power-of-two sizes are not supported */ if (val & ~mask) return -EINVAL; } status_new = (status_old & ~mask & ~SR_TB) | val; /* Don't protect status register if we're fully unlocked */ if (lock_len == 0) status_new &= ~SR_SRWD; if (!use_top) status_new |= SR_TB; /* Don't bother if they're the same */ if (status_new == status_old) return 0; /* Only modify protection if it will not lock other areas */ if ((status_new & mask) > (status_old & mask)) return -EINVAL; return write_sr_and_check(nor, status_new, mask); } /* * Check if a region of the flash is (completely) unlocked. See stm_lock() for * more info. * * Returns 1 if entire region is unlocked, 0 if any portion is locked, and * negative on errors. */ static int stm_is_unlocked(struct spi_nor *nor, loff_t ofs, uint64_t len) { int status; status = read_sr(nor); if (status < 0) return status; return stm_is_unlocked_sr(nor, ofs, len, status); } #endif /* CONFIG_SPI_FLASH_STMICRO */ static const struct flash_info *spi_nor_read_id(struct spi_nor *nor) { int tmp; u8 id[SPI_NOR_MAX_ID_LEN]; const struct flash_info *info; tmp = nor->read_reg(nor, SPINOR_OP_RDID, id, SPI_NOR_MAX_ID_LEN); if (tmp < 0) { dev_dbg(nor->dev, "error %d reading JEDEC ID\n", tmp); return ERR_PTR(tmp); } info = spi_nor_ids; for (; info->name; info++) { if (info->id_len) { if (!memcmp(info->id, id, info->id_len)) return info; } } dev_err(nor->dev, "unrecognized JEDEC id bytes: %02x, %02x, %02x\n", id[0], id[1], id[2]); return ERR_PTR(-ENODEV); } static int spi_nor_read(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf) { struct spi_nor *nor = mtd_to_spi_nor(mtd); int ret; dev_dbg(nor->dev, "from 0x%08x, len %zd\n", (u32)from, len); while (len) { loff_t addr = from; size_t read_len = len; #ifdef CONFIG_SPI_FLASH_BAR u32 remain_len; ret = write_bar(nor, addr); if (ret < 0) return log_ret(ret); remain_len = (SZ_16M * (nor->bank_curr + 1)) - addr; if (len < remain_len) read_len = len; else read_len = remain_len; #endif ret = nor->read(nor, addr, read_len, buf); if (ret == 0) { /* We shouldn't see 0-length reads */ ret = -EIO; goto read_err; } if (ret < 0) goto read_err; *retlen += ret; buf += ret; from += ret; len -= ret; } ret = 0; read_err: #ifdef CONFIG_SPI_FLASH_BAR ret = clean_bar(nor); #endif return ret; } #ifdef CONFIG_SPI_FLASH_SST /* * sst26 flash series has its own block protection implementation: * 4x - 8 KByte blocks - read & write protection bits - upper addresses * 1x - 32 KByte blocks - write protection bits * rest - 64 KByte blocks - write protection bits * 1x - 32 KByte blocks - write protection bits * 4x - 8 KByte blocks - read & write protection bits - lower addresses * * We'll support only per 64k lock/unlock so lower and upper 64 KByte region * will be treated as single block. */ #define SST26_BPR_8K_NUM 4 #define SST26_MAX_BPR_REG_LEN (18 + 1) #define SST26_BOUND_REG_SIZE ((32 + SST26_BPR_8K_NUM * 8) * SZ_1K) enum lock_ctl { SST26_CTL_LOCK, SST26_CTL_UNLOCK, SST26_CTL_CHECK }; static bool sst26_process_bpr(u32 bpr_size, u8 *cmd, u32 bit, enum lock_ctl ctl) { switch (ctl) { case SST26_CTL_LOCK: cmd[bpr_size - (bit / 8) - 1] |= BIT(bit % 8); break; case SST26_CTL_UNLOCK: cmd[bpr_size - (bit / 8) - 1] &= ~BIT(bit % 8); break; case SST26_CTL_CHECK: return !!(cmd[bpr_size - (bit / 8) - 1] & BIT(bit % 8)); } return false; } /* * Lock, unlock or check lock status of the flash region of the flash (depending * on the lock_ctl value) */ static int sst26_lock_ctl(struct spi_nor *nor, loff_t ofs, uint64_t len, enum lock_ctl ctl) { struct mtd_info *mtd = &nor->mtd; u32 i, bpr_ptr, rptr_64k, lptr_64k, bpr_size; bool lower_64k = false, upper_64k = false; u8 bpr_buff[SST26_MAX_BPR_REG_LEN] = {}; int ret; /* Check length and offset for 64k alignment */ if ((ofs & (SZ_64K - 1)) || (len & (SZ_64K - 1))) { dev_err(nor->dev, "length or offset is not 64KiB allighned\n"); return -EINVAL; } if (ofs + len > mtd->size) { dev_err(nor->dev, "range is more than device size: %#llx + %#llx > %#llx\n", ofs, len, mtd->size); return -EINVAL; } /* SST26 family has only 16 Mbit, 32 Mbit and 64 Mbit IC */ if (mtd->size != SZ_2M && mtd->size != SZ_4M && mtd->size != SZ_8M) return -EINVAL; bpr_size = 2 + (mtd->size / SZ_64K / 8); ret = nor->read_reg(nor, SPINOR_OP_READ_BPR, bpr_buff, bpr_size); if (ret < 0) { dev_err(nor->dev, "fail to read block-protection register\n"); return ret; } rptr_64k = min_t(u32, ofs + len, mtd->size - SST26_BOUND_REG_SIZE); lptr_64k = max_t(u32, ofs, SST26_BOUND_REG_SIZE); upper_64k = ((ofs + len) > (mtd->size - SST26_BOUND_REG_SIZE)); lower_64k = (ofs < SST26_BOUND_REG_SIZE); /* Lower bits in block-protection register are about 64k region */ bpr_ptr = lptr_64k / SZ_64K - 1; /* Process 64K blocks region */ while (lptr_64k < rptr_64k) { if (sst26_process_bpr(bpr_size, bpr_buff, bpr_ptr, ctl)) return EACCES; bpr_ptr++; lptr_64k += SZ_64K; } /* 32K and 8K region bits in BPR are after 64k region bits */ bpr_ptr = (mtd->size - 2 * SST26_BOUND_REG_SIZE) / SZ_64K; /* Process lower 32K block region */ if (lower_64k) if (sst26_process_bpr(bpr_size, bpr_buff, bpr_ptr, ctl)) return EACCES; bpr_ptr++; /* Process upper 32K block region */ if (upper_64k) if (sst26_process_bpr(bpr_size, bpr_buff, bpr_ptr, ctl)) return EACCES; bpr_ptr++; /* Process lower 8K block regions */ for (i = 0; i < SST26_BPR_8K_NUM; i++) { if (lower_64k) if (sst26_process_bpr(bpr_size, bpr_buff, bpr_ptr, ctl)) return EACCES; /* In 8K area BPR has both read and write protection bits */ bpr_ptr += 2; } /* Process upper 8K block regions */ for (i = 0; i < SST26_BPR_8K_NUM; i++) { if (upper_64k) if (sst26_process_bpr(bpr_size, bpr_buff, bpr_ptr, ctl)) return EACCES; /* In 8K area BPR has both read and write protection bits */ bpr_ptr += 2; } /* If we check region status we don't need to write BPR back */ if (ctl == SST26_CTL_CHECK) return 0; ret = nor->write_reg(nor, SPINOR_OP_WRITE_BPR, bpr_buff, bpr_size); if (ret < 0) { dev_err(nor->dev, "fail to write block-protection register\n"); return ret; } return 0; } static int sst26_unlock(struct spi_nor *nor, loff_t ofs, uint64_t len) { return sst26_lock_ctl(nor, ofs, len, SST26_CTL_UNLOCK); } static int sst26_lock(struct spi_nor *nor, loff_t ofs, uint64_t len) { return sst26_lock_ctl(nor, ofs, len, SST26_CTL_LOCK); } /* * Returns EACCES (positive value) if region is (partially) locked, 0 if region * is completely unlocked, and negative on errors. */ static int sst26_is_unlocked(struct spi_nor *nor, loff_t ofs, uint64_t len) { /* * is_unlocked function is used for check before reading or erasing * flash region, so offset and length might be not 64k aligned, so * adjust them to be 64k aligned as sst26_lock_ctl works only with 64k * aligned regions. */ ofs -= ofs & (SZ_64K - 1); len = len & (SZ_64K - 1) ? (len & ~(SZ_64K - 1)) + SZ_64K : len; return !sst26_lock_ctl(nor, ofs, len, SST26_CTL_CHECK); } static int sst_write_byteprogram(struct spi_nor *nor, loff_t to, size_t len, size_t *retlen, const u_char *buf) { size_t actual; int ret = 0; for (actual = 0; actual < len; actual++) { nor->program_opcode = SPINOR_OP_BP; write_enable(nor); /* write one byte. */ ret = nor->write(nor, to, 1, buf + actual); if (ret < 0) goto sst_write_err; ret = spi_nor_wait_till_ready(nor); if (ret) goto sst_write_err; to++; } sst_write_err: write_disable(nor); return ret; } static int sst_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen, const u_char *buf) { struct spi_nor *nor = mtd_to_spi_nor(mtd); struct spi_slave *spi = nor->spi; size_t actual; int ret; dev_dbg(nor->dev, "to 0x%08x, len %zd\n", (u32)to, len); if (spi->mode & SPI_TX_BYTE) return sst_write_byteprogram(nor, to, len, retlen, buf); write_enable(nor); nor->sst_write_second = false; actual = to % 2; /* Start write from odd address. */ if (actual) { nor->program_opcode = SPINOR_OP_BP; /* write one byte. */ ret = nor->write(nor, to, 1, buf); if (ret < 0) goto sst_write_err; ret = spi_nor_wait_till_ready(nor); if (ret) goto sst_write_err; } to += actual; /* Write out most of the data here. */ for (; actual < len - 1; actual += 2) { nor->program_opcode = SPINOR_OP_AAI_WP; /* write two bytes. */ ret = nor->write(nor, to, 2, buf + actual); if (ret < 0) goto sst_write_err; ret = spi_nor_wait_till_ready(nor); if (ret) goto sst_write_err; to += 2; nor->sst_write_second = true; } nor->sst_write_second = false; write_disable(nor); ret = spi_nor_wait_till_ready(nor); if (ret) goto sst_write_err; /* Write out trailing byte if it exists. */ if (actual != len) { write_enable(nor); nor->program_opcode = SPINOR_OP_BP; ret = nor->write(nor, to, 1, buf + actual); if (ret < 0) goto sst_write_err; ret = spi_nor_wait_till_ready(nor); if (ret) goto sst_write_err; write_disable(nor); actual += 1; } sst_write_err: *retlen += actual; return ret; } #endif /* * Write an address range to the nor chip. Data must be written in * FLASH_PAGESIZE chunks. The address range may be any size provided * it is within the physical boundaries. */ static int spi_nor_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen, const u_char *buf) { struct spi_nor *nor = mtd_to_spi_nor(mtd); size_t page_offset, page_remain, i; ssize_t ret; #ifdef CONFIG_SPI_FLASH_SST /* sst nor chips use AAI word program */ if (nor->info->flags & SST_WRITE) return sst_write(mtd, to, len, retlen, buf); #endif dev_dbg(nor->dev, "to 0x%08x, len %zd\n", (u32)to, len); for (i = 0; i < len; ) { ssize_t written; loff_t addr = to + i; schedule(); /* * If page_size is a power of two, the offset can be quickly * calculated with an AND operation. On the other cases we * need to do a modulus operation (more expensive). */ if (is_power_of_2(nor->page_size)) { page_offset = addr & (nor->page_size - 1); } else { u64 aux = addr; page_offset = do_div(aux, nor->page_size); } /* the size of data remaining on the first page */ page_remain = min_t(size_t, nor->page_size - page_offset, len - i); #ifdef CONFIG_SPI_FLASH_BAR ret = write_bar(nor, addr); if (ret < 0) return ret; #endif write_enable(nor); ret = nor->write(nor, addr, page_remain, buf + i); if (ret < 0) goto write_err; written = ret; ret = spi_nor_wait_till_ready(nor); if (ret) goto write_err; *retlen += written; i += written; } write_err: #ifdef CONFIG_SPI_FLASH_BAR ret = clean_bar(nor); #endif return ret; } #if defined(CONFIG_SPI_FLASH_MACRONIX) || defined(CONFIG_SPI_FLASH_ISSI) /** * macronix_quad_enable() - set QE bit in Status Register. * @nor: pointer to a 'struct spi_nor' * * Set the Quad Enable (QE) bit in the Status Register. * * bit 6 of the Status Register is the QE bit for Macronix like QSPI memories. * * Return: 0 on success, -errno otherwise. */ static int macronix_quad_enable(struct spi_nor *nor) { int ret, val; val = read_sr(nor); if (val < 0) return val; if (val & SR_QUAD_EN_MX) return 0; write_enable(nor); write_sr(nor, val | SR_QUAD_EN_MX); ret = spi_nor_wait_till_ready(nor); if (ret) return ret; ret = read_sr(nor); if (!(ret > 0 && (ret & SR_QUAD_EN_MX))) { dev_err(nor->dev, "Macronix Quad bit not set\n"); return -EINVAL; } return 0; } #endif #ifdef CONFIG_SPI_FLASH_SPANSION /** * spansion_quad_enable_volatile() - enable Quad I/O mode in volatile register. * @nor: pointer to a 'struct spi_nor' * @addr_base: base address of register (can be >0 in multi-die parts) * @dummy: number of dummy cycles for register read * * It is recommended to update volatile registers in the field application due * to a risk of the non-volatile registers corruption by power interrupt. This * function sets Quad Enable bit in CFR1 volatile. * * Return: 0 on success, -errno otherwise. */ static int spansion_quad_enable_volatile(struct spi_nor *nor, u32 addr_base, u8 dummy) { u32 addr = addr_base + SPINOR_REG_ADDR_CFR1V; u8 cr; int ret; /* Check current Quad Enable bit value. */ ret = spansion_read_any_reg(nor, addr, dummy, &cr); if (ret < 0) { dev_dbg(nor->dev, "error while reading configuration register\n"); return -EINVAL; } if (cr & CR_QUAD_EN_SPAN) return 0; cr |= CR_QUAD_EN_SPAN; write_enable(nor); ret = spansion_write_any_reg(nor, addr, cr); if (ret < 0) { dev_dbg(nor->dev, "error while writing configuration register\n"); return -EINVAL; } /* Read back and check it. */ ret = spansion_read_any_reg(nor, addr, dummy, &cr); if (ret || !(cr & CR_QUAD_EN_SPAN)) { dev_dbg(nor->dev, "Spansion Quad bit not set\n"); return -EINVAL; } return 0; } #endif #if defined(CONFIG_SPI_FLASH_SPANSION) || defined(CONFIG_SPI_FLASH_WINBOND) /* * Write status Register and configuration register with 2 bytes * The first byte will be written to the status register, while the * second byte will be written to the configuration register. * Return negative if error occurred. */ static int write_sr_cr(struct spi_nor *nor, u8 *sr_cr) { int ret; write_enable(nor); ret = nor->write_reg(nor, SPINOR_OP_WRSR, sr_cr, 2); if (ret < 0) { dev_dbg(nor->dev, "error while writing configuration register\n"); return -EINVAL; } ret = spi_nor_wait_till_ready(nor); if (ret) { dev_dbg(nor->dev, "timeout while writing configuration register\n"); return ret; } return 0; } /** * spansion_read_cr_quad_enable() - set QE bit in Configuration Register. * @nor: pointer to a 'struct spi_nor' * * Set the Quad Enable (QE) bit in the Configuration Register. * This function should be used with QSPI memories supporting the Read * Configuration Register (35h) instruction. * * bit 1 of the Configuration Register is the QE bit for Spansion like QSPI * memories. * * Return: 0 on success, -errno otherwise. */ static int spansion_read_cr_quad_enable(struct spi_nor *nor) { u8 sr_cr[2]; int ret; /* Check current Quad Enable bit value. */ ret = read_cr(nor); if (ret < 0) { dev_dbg(nor->dev, "error while reading configuration register\n"); return -EINVAL; } if (ret & CR_QUAD_EN_SPAN) return 0; sr_cr[1] = ret | CR_QUAD_EN_SPAN; /* Keep the current value of the Status Register. */ ret = read_sr(nor); if (ret < 0) { dev_dbg(nor->dev, "error while reading status register\n"); return -EINVAL; } sr_cr[0] = ret; ret = write_sr_cr(nor, sr_cr); if (ret) return ret; /* Read back and check it. */ ret = read_cr(nor); if (!(ret > 0 && (ret & CR_QUAD_EN_SPAN))) { dev_dbg(nor->dev, "Spansion Quad bit not set\n"); return -EINVAL; } return 0; } #if CONFIG_IS_ENABLED(SPI_FLASH_SFDP_SUPPORT) /** * spansion_no_read_cr_quad_enable() - set QE bit in Configuration Register. * @nor: pointer to a 'struct spi_nor' * * Set the Quad Enable (QE) bit in the Configuration Register. * This function should be used with QSPI memories not supporting the Read * Configuration Register (35h) instruction. * * bit 1 of the Configuration Register is the QE bit for Spansion like QSPI * memories. * * Return: 0 on success, -errno otherwise. */ static int spansion_no_read_cr_quad_enable(struct spi_nor *nor) { u8 sr_cr[2]; int ret; /* Keep the current value of the Status Register. */ ret = read_sr(nor); if (ret < 0) { dev_dbg(nor->dev, "error while reading status register\n"); return -EINVAL; } sr_cr[0] = ret; sr_cr[1] = CR_QUAD_EN_SPAN; return write_sr_cr(nor, sr_cr); } #endif /* CONFIG_SPI_FLASH_SFDP_SUPPORT */ #endif /* CONFIG_SPI_FLASH_SPANSION */ static void spi_nor_set_read_settings(struct spi_nor_read_command *read, u8 num_mode_clocks, u8 num_wait_states, u8 opcode, enum spi_nor_protocol proto) { read->num_mode_clocks = num_mode_clocks; read->num_wait_states = num_wait_states; read->opcode = opcode; read->proto = proto; } static void spi_nor_set_pp_settings(struct spi_nor_pp_command *pp, u8 opcode, enum spi_nor_protocol proto) { pp->opcode = opcode; pp->proto = proto; } #if CONFIG_IS_ENABLED(SPI_FLASH_SFDP_SUPPORT) /* * Serial Flash Discoverable Parameters (SFDP) parsing. */ /** * spi_nor_read_sfdp() - read Serial Flash Discoverable Parameters. * @nor: pointer to a 'struct spi_nor' * @addr: offset in the SFDP area to start reading data from * @len: number of bytes to read * @buf: buffer where the SFDP data are copied into (dma-safe memory) * * Whatever the actual numbers of bytes for address and dummy cycles are * for (Fast) Read commands, the Read SFDP (5Ah) instruction is always * followed by a 3-byte address and 8 dummy clock cycles. * * Return: 0 on success, -errno otherwise. */ static int spi_nor_read_sfdp(struct spi_nor *nor, u32 addr, size_t len, void *buf) { u8 addr_width, read_opcode, read_dummy; int ret; read_opcode = nor->read_opcode; addr_width = nor->addr_width; read_dummy = nor->read_dummy; nor->read_opcode = SPINOR_OP_RDSFDP; nor->addr_width = 3; nor->read_dummy = 8; while (len) { ret = nor->read(nor, addr, len, (u8 *)buf); if (!ret || ret > len) { ret = -EIO; goto read_err; } if (ret < 0) goto read_err; buf += ret; addr += ret; len -= ret; } ret = 0; read_err: nor->read_opcode = read_opcode; nor->addr_width = addr_width; nor->read_dummy = read_dummy; return ret; } /* Fast Read settings. */ static void spi_nor_set_read_settings_from_bfpt(struct spi_nor_read_command *read, u16 half, enum spi_nor_protocol proto) { read->num_mode_clocks = (half >> 5) & 0x07; read->num_wait_states = (half >> 0) & 0x1f; read->opcode = (half >> 8) & 0xff; read->proto = proto; } struct sfdp_bfpt_read { /* The Fast Read x-y-z hardware capability in params->hwcaps.mask. */ u32 hwcaps; /* * The bit in BFPT DWORD tells us * whether the Fast Read x-y-z command is supported. */ u32 supported_dword; u32 supported_bit; /* * The half-word at offset in BFPT DWORD * encodes the op code, the number of mode clocks and the number of wait * states to be used by Fast Read x-y-z command. */ u32 settings_dword; u32 settings_shift; /* The SPI protocol for this Fast Read x-y-z command. */ enum spi_nor_protocol proto; }; static const struct sfdp_bfpt_read sfdp_bfpt_reads[] = { /* Fast Read 1-1-2 */ { SNOR_HWCAPS_READ_1_1_2, BFPT_DWORD(1), BIT(16), /* Supported bit */ BFPT_DWORD(4), 0, /* Settings */ SNOR_PROTO_1_1_2, }, /* Fast Read 1-2-2 */ { SNOR_HWCAPS_READ_1_2_2, BFPT_DWORD(1), BIT(20), /* Supported bit */ BFPT_DWORD(4), 16, /* Settings */ SNOR_PROTO_1_2_2, }, /* Fast Read 2-2-2 */ { SNOR_HWCAPS_READ_2_2_2, BFPT_DWORD(5), BIT(0), /* Supported bit */ BFPT_DWORD(6), 16, /* Settings */ SNOR_PROTO_2_2_2, }, /* Fast Read 1-1-4 */ { SNOR_HWCAPS_READ_1_1_4, BFPT_DWORD(1), BIT(22), /* Supported bit */ BFPT_DWORD(3), 16, /* Settings */ SNOR_PROTO_1_1_4, }, /* Fast Read 1-4-4 */ { SNOR_HWCAPS_READ_1_4_4, BFPT_DWORD(1), BIT(21), /* Supported bit */ BFPT_DWORD(3), 0, /* Settings */ SNOR_PROTO_1_4_4, }, /* Fast Read 4-4-4 */ { SNOR_HWCAPS_READ_4_4_4, BFPT_DWORD(5), BIT(4), /* Supported bit */ BFPT_DWORD(7), 16, /* Settings */ SNOR_PROTO_4_4_4, }, }; struct sfdp_bfpt_erase { /* * The half-word at offset in DWORD encodes the * op code and erase sector size to be used by Sector Erase commands. */ u32 dword; u32 shift; }; static const struct sfdp_bfpt_erase sfdp_bfpt_erases[] = { /* Erase Type 1 in DWORD8 bits[15:0] */ {BFPT_DWORD(8), 0}, /* Erase Type 2 in DWORD8 bits[31:16] */ {BFPT_DWORD(8), 16}, /* Erase Type 3 in DWORD9 bits[15:0] */ {BFPT_DWORD(9), 0}, /* Erase Type 4 in DWORD9 bits[31:16] */ {BFPT_DWORD(9), 16}, }; static int spi_nor_hwcaps_read2cmd(u32 hwcaps); static int spi_nor_post_bfpt_fixups(struct spi_nor *nor, const struct sfdp_parameter_header *bfpt_header, const struct sfdp_bfpt *bfpt, struct spi_nor_flash_parameter *params) { if (nor->fixups && nor->fixups->post_bfpt) return nor->fixups->post_bfpt(nor, bfpt_header, bfpt, params); return 0; } /** * spi_nor_parse_bfpt() - read and parse the Basic Flash Parameter Table. * @nor: pointer to a 'struct spi_nor' * @bfpt_header: pointer to the 'struct sfdp_parameter_header' describing * the Basic Flash Parameter Table length and version * @params: pointer to the 'struct spi_nor_flash_parameter' to be * filled * * The Basic Flash Parameter Table is the main and only mandatory table as * defined by the SFDP (JESD216) specification. * It provides us with the total size (memory density) of the data array and * the number of address bytes for Fast Read, Page Program and Sector Erase * commands. * For Fast READ commands, it also gives the number of mode clock cycles and * wait states (regrouped in the number of dummy clock cycles) for each * supported instruction op code. * For Page Program, the page size is now available since JESD216 rev A, however * the supported instruction op codes are still not provided. * For Sector Erase commands, this table stores the supported instruction op * codes and the associated sector sizes. * Finally, the Quad Enable Requirements (QER) are also available since JESD216 * rev A. The QER bits encode the manufacturer dependent procedure to be * executed to set the Quad Enable (QE) bit in some internal register of the * Quad SPI memory. Indeed the QE bit, when it exists, must be set before * sending any Quad SPI command to the memory. Actually, setting the QE bit * tells the memory to reassign its WP# and HOLD#/RESET# pins to functions IO2 * and IO3 hence enabling 4 (Quad) I/O lines. * * Return: 0 on success, -errno otherwise. */ static int spi_nor_parse_bfpt(struct spi_nor *nor, const struct sfdp_parameter_header *bfpt_header, struct spi_nor_flash_parameter *params) { struct mtd_info *mtd = &nor->mtd; struct sfdp_bfpt bfpt; size_t len; int i, cmd, err; u32 addr; u16 half; /* JESD216 Basic Flash Parameter Table length is at least 9 DWORDs. */ if (bfpt_header->length < BFPT_DWORD_MAX_JESD216) return -EINVAL; /* Read the Basic Flash Parameter Table. */ len = min_t(size_t, sizeof(bfpt), bfpt_header->length * sizeof(u32)); addr = SFDP_PARAM_HEADER_PTP(bfpt_header); memset(&bfpt, 0, sizeof(bfpt)); err = spi_nor_read_sfdp(nor, addr, len, &bfpt); if (err < 0) return err; /* Fix endianness of the BFPT DWORDs. */ for (i = 0; i < BFPT_DWORD_MAX; i++) bfpt.dwords[i] = le32_to_cpu(bfpt.dwords[i]); /* Number of address bytes. */ switch (bfpt.dwords[BFPT_DWORD(1)] & BFPT_DWORD1_ADDRESS_BYTES_MASK) { case BFPT_DWORD1_ADDRESS_BYTES_3_ONLY: case BFPT_DWORD1_ADDRESS_BYTES_3_OR_4: nor->addr_width = 3; nor->addr_mode_nbytes = 3; break; case BFPT_DWORD1_ADDRESS_BYTES_4_ONLY: nor->addr_width = 4; nor->addr_mode_nbytes = 4; break; default: break; } /* Flash Memory Density (in bits). */ params->size = bfpt.dwords[BFPT_DWORD(2)]; if (params->size & BIT(31)) { params->size &= ~BIT(31); /* * Prevent overflows on params->size. Anyway, a NOR of 2^64 * bits is unlikely to exist so this error probably means * the BFPT we are reading is corrupted/wrong. */ if (params->size > 63) return -EINVAL; params->size = 1ULL << params->size; } else { params->size++; } params->size >>= 3; /* Convert to bytes. */ /* Fast Read settings. */ for (i = 0; i < ARRAY_SIZE(sfdp_bfpt_reads); i++) { const struct sfdp_bfpt_read *rd = &sfdp_bfpt_reads[i]; struct spi_nor_read_command *read; if (!(bfpt.dwords[rd->supported_dword] & rd->supported_bit)) { params->hwcaps.mask &= ~rd->hwcaps; continue; } params->hwcaps.mask |= rd->hwcaps; cmd = spi_nor_hwcaps_read2cmd(rd->hwcaps); read = ¶ms->reads[cmd]; half = bfpt.dwords[rd->settings_dword] >> rd->settings_shift; spi_nor_set_read_settings_from_bfpt(read, half, rd->proto); } /* Sector Erase settings. */ for (i = 0; i < ARRAY_SIZE(sfdp_bfpt_erases); i++) { const struct sfdp_bfpt_erase *er = &sfdp_bfpt_erases[i]; u32 erasesize; u8 opcode; half = bfpt.dwords[er->dword] >> er->shift; erasesize = half & 0xff; /* erasesize == 0 means this Erase Type is not supported. */ if (!erasesize) continue; erasesize = 1U << erasesize; opcode = (half >> 8) & 0xff; #ifdef CONFIG_SPI_FLASH_USE_4K_SECTORS if (erasesize == SZ_4K) { nor->erase_opcode = opcode; mtd->erasesize = erasesize; break; } #endif if (!mtd->erasesize || mtd->erasesize < erasesize) { nor->erase_opcode = opcode; mtd->erasesize = erasesize; } } /* Stop here if not JESD216 rev A or later. */ if (bfpt_header->length == BFPT_DWORD_MAX_JESD216) return spi_nor_post_bfpt_fixups(nor, bfpt_header, &bfpt, params); /* Page size: this field specifies 'N' so the page size = 2^N bytes. */ params->page_size = bfpt.dwords[BFPT_DWORD(11)]; params->page_size &= BFPT_DWORD11_PAGE_SIZE_MASK; params->page_size >>= BFPT_DWORD11_PAGE_SIZE_SHIFT; params->page_size = 1U << params->page_size; /* Quad Enable Requirements. */ switch (bfpt.dwords[BFPT_DWORD(15)] & BFPT_DWORD15_QER_MASK) { case BFPT_DWORD15_QER_NONE: params->quad_enable = NULL; break; #if defined(CONFIG_SPI_FLASH_SPANSION) || defined(CONFIG_SPI_FLASH_WINBOND) case BFPT_DWORD15_QER_SR2_BIT1_BUGGY: case BFPT_DWORD15_QER_SR2_BIT1_NO_RD: params->quad_enable = spansion_no_read_cr_quad_enable; break; #endif #if defined(CONFIG_SPI_FLASH_MACRONIX) || defined(CONFIG_SPI_FLASH_ISSI) case BFPT_DWORD15_QER_SR1_BIT6: params->quad_enable = macronix_quad_enable; break; #endif #if defined(CONFIG_SPI_FLASH_SPANSION) || defined(CONFIG_SPI_FLASH_WINBOND) case BFPT_DWORD15_QER_SR2_BIT1: params->quad_enable = spansion_read_cr_quad_enable; break; #endif default: dev_dbg(nor->dev, "BFPT QER reserved value used\n"); break; } /* Soft Reset support. */ if (bfpt.dwords[BFPT_DWORD(16)] & BFPT_DWORD16_SOFT_RST) nor->flags |= SNOR_F_SOFT_RESET; /* Stop here if JESD216 rev B. */ if (bfpt_header->length == BFPT_DWORD_MAX_JESD216B) return spi_nor_post_bfpt_fixups(nor, bfpt_header, &bfpt, params); /* 8D-8D-8D command extension. */ switch (bfpt.dwords[BFPT_DWORD(18)] & BFPT_DWORD18_CMD_EXT_MASK) { case BFPT_DWORD18_CMD_EXT_REP: nor->cmd_ext_type = SPI_NOR_EXT_REPEAT; break; case BFPT_DWORD18_CMD_EXT_INV: nor->cmd_ext_type = SPI_NOR_EXT_INVERT; break; case BFPT_DWORD18_CMD_EXT_RES: return -EINVAL; case BFPT_DWORD18_CMD_EXT_16B: dev_err(nor->dev, "16-bit opcodes not supported\n"); return -ENOTSUPP; } return spi_nor_post_bfpt_fixups(nor, bfpt_header, &bfpt, params); } /** * spi_nor_parse_microchip_sfdp() - parse the Microchip manufacturer specific * SFDP table. * @nor: pointer to a 'struct spi_nor'. * @param_header: pointer to the SFDP parameter header. * * Return: 0 on success, -errno otherwise. */ static int spi_nor_parse_microchip_sfdp(struct spi_nor *nor, const struct sfdp_parameter_header *param_header) { size_t size; u32 addr; int ret; size = param_header->length * sizeof(u32); addr = SFDP_PARAM_HEADER_PTP(param_header); nor->manufacturer_sfdp = devm_kmalloc(nor->dev, size, GFP_KERNEL); if (!nor->manufacturer_sfdp) return -ENOMEM; ret = spi_nor_read_sfdp(nor, addr, size, nor->manufacturer_sfdp); return ret; } /** * spi_nor_parse_profile1() - parse the xSPI Profile 1.0 table * @nor: pointer to a 'struct spi_nor' * @profile1_header: pointer to the 'struct sfdp_parameter_header' describing * the 4-Byte Address Instruction Table length and version. * @params: pointer to the 'struct spi_nor_flash_parameter' to be. * * Return: 0 on success, -errno otherwise. */ static int spi_nor_parse_profile1(struct spi_nor *nor, const struct sfdp_parameter_header *profile1_header, struct spi_nor_flash_parameter *params) { u32 *table, opcode, addr; size_t len; int ret, i; u8 dummy; len = profile1_header->length * sizeof(*table); table = kmalloc(len, GFP_KERNEL); if (!table) return -ENOMEM; addr = SFDP_PARAM_HEADER_PTP(profile1_header); ret = spi_nor_read_sfdp(nor, addr, len, table); if (ret) goto out; /* Fix endianness of the table DWORDs. */ for (i = 0; i < profile1_header->length; i++) table[i] = le32_to_cpu(table[i]); /* Get 8D-8D-8D fast read opcode and dummy cycles. */ opcode = FIELD_GET(PROFILE1_DWORD1_RD_FAST_CMD, table[0]); /* * We don't know what speed the controller is running at. Find the * dummy cycles for the fastest frequency the flash can run at to be * sure we are never short of dummy cycles. A value of 0 means the * frequency is not supported. * * Default to PROFILE1_DUMMY_DEFAULT if we don't find anything, and let * flashes set the correct value if needed in their fixup hooks. */ dummy = FIELD_GET(PROFILE1_DWORD4_DUMMY_200MHZ, table[3]); if (!dummy) dummy = FIELD_GET(PROFILE1_DWORD5_DUMMY_166MHZ, table[4]); if (!dummy) dummy = FIELD_GET(PROFILE1_DWORD5_DUMMY_133MHZ, table[4]); if (!dummy) dummy = FIELD_GET(PROFILE1_DWORD5_DUMMY_100MHZ, table[4]); if (!dummy) dummy = PROFILE1_DUMMY_DEFAULT; /* Round up to an even value to avoid tripping controllers up. */ dummy = ROUND_UP_TO(dummy, 2); /* Update the fast read settings. */ spi_nor_set_read_settings(¶ms->reads[SNOR_CMD_READ_8_8_8_DTR], 0, dummy, opcode, SNOR_PROTO_8_8_8_DTR); /* * Set the Read Status Register dummy cycles and dummy address bytes. */ if (table[0] & PROFILE1_DWORD1_RDSR_DUMMY) params->rdsr_dummy = 8; else params->rdsr_dummy = 4; if (table[0] & PROFILE1_DWORD1_RDSR_ADDR_BYTES) params->rdsr_addr_nbytes = 4; else params->rdsr_addr_nbytes = 0; out: kfree(table); return ret; } /** * spi_nor_parse_sccr() - Parse the Status, Control and Configuration Register * Map. * @nor: pointer to a 'struct spi_nor' * @sccr_header: pointer to the 'struct sfdp_parameter_header' describing * the SCCR Map table length and version. * * Return: 0 on success, -errno otherwise. */ static int spi_nor_parse_sccr(struct spi_nor *nor, const struct sfdp_parameter_header *sccr_header) { u32 *table, addr; size_t len; int ret, i; len = sccr_header->length * sizeof(*table); table = kmalloc(len, GFP_KERNEL); if (!table) return -ENOMEM; addr = SFDP_PARAM_HEADER_PTP(sccr_header); ret = spi_nor_read_sfdp(nor, addr, len, table); if (ret) goto out; /* Fix endianness of the table DWORDs. */ for (i = 0; i < sccr_header->length; i++) table[i] = le32_to_cpu(table[i]); if (FIELD_GET(SCCR_DWORD22_OCTAL_DTR_EN_VOLATILE, table[21])) nor->flags |= SNOR_F_IO_MODE_EN_VOLATILE; out: kfree(table); return ret; } /** * spi_nor_parse_sfdp() - parse the Serial Flash Discoverable Parameters. * @nor: pointer to a 'struct spi_nor' * @params: pointer to the 'struct spi_nor_flash_parameter' to be * filled * * The Serial Flash Discoverable Parameters are described by the JEDEC JESD216 * specification. This is a standard which tends to supported by almost all * (Q)SPI memory manufacturers. Those hard-coded tables allow us to learn at * runtime the main parameters needed to perform basic SPI flash operations such * as Fast Read, Page Program or Sector Erase commands. * * Return: 0 on success, -errno otherwise. */ static int spi_nor_parse_sfdp(struct spi_nor *nor, struct spi_nor_flash_parameter *params) { const struct sfdp_parameter_header *param_header, *bfpt_header; struct sfdp_parameter_header *param_headers = NULL; struct sfdp_header header; size_t psize; int i, err; /* Get the SFDP header. */ err = spi_nor_read_sfdp(nor, 0, sizeof(header), &header); if (err < 0) return err; /* Check the SFDP header version. */ if (le32_to_cpu(header.signature) != SFDP_SIGNATURE || header.major != SFDP_JESD216_MAJOR) return -EINVAL; /* * Verify that the first and only mandatory parameter header is a * Basic Flash Parameter Table header as specified in JESD216. */ bfpt_header = &header.bfpt_header; if (SFDP_PARAM_HEADER_ID(bfpt_header) != SFDP_BFPT_ID || bfpt_header->major != SFDP_JESD216_MAJOR) return -EINVAL; /* * Allocate memory then read all parameter headers with a single * Read SFDP command. These parameter headers will actually be parsed * twice: a first time to get the latest revision of the basic flash * parameter table, then a second time to handle the supported optional * tables. * Hence we read the parameter headers once for all to reduce the * processing time. Also we use kmalloc() instead of devm_kmalloc() * because we don't need to keep these parameter headers: the allocated * memory is always released with kfree() before exiting this function. */ if (header.nph) { psize = header.nph * sizeof(*param_headers); param_headers = kmalloc(psize, GFP_KERNEL); if (!param_headers) return -ENOMEM; err = spi_nor_read_sfdp(nor, sizeof(header), psize, param_headers); if (err < 0) { dev_err(nor->dev, "failed to read SFDP parameter headers\n"); goto exit; } } /* * Check other parameter headers to get the latest revision of * the basic flash parameter table. */ for (i = 0; i < header.nph; i++) { param_header = ¶m_headers[i]; if (SFDP_PARAM_HEADER_ID(param_header) == SFDP_BFPT_ID && param_header->major == SFDP_JESD216_MAJOR && (param_header->minor > bfpt_header->minor || (param_header->minor == bfpt_header->minor && param_header->length > bfpt_header->length))) bfpt_header = param_header; } err = spi_nor_parse_bfpt(nor, bfpt_header, params); if (err) goto exit; /* Parse other parameter headers. */ for (i = 0; i < header.nph; i++) { param_header = ¶m_headers[i]; switch (SFDP_PARAM_HEADER_ID(param_header)) { case SFDP_SECTOR_MAP_ID: dev_info(nor->dev, "non-uniform erase sector maps are not supported yet.\n"); break; case SFDP_SST_ID: err = spi_nor_parse_microchip_sfdp(nor, param_header); break; case SFDP_PROFILE1_ID: err = spi_nor_parse_profile1(nor, param_header, params); break; case SFDP_SCCR_MAP_ID: err = spi_nor_parse_sccr(nor, param_header); break; default: break; } if (err) { dev_warn(nor->dev, "Failed to parse optional parameter table: %04x\n", SFDP_PARAM_HEADER_ID(param_header)); /* * Let's not drop all information we extracted so far * if optional table parsers fail. In case of failing, * each optional parser is responsible to roll back to * the previously known spi_nor data. */ err = 0; } } exit: kfree(param_headers); return err; } #else static int spi_nor_parse_sfdp(struct spi_nor *nor, struct spi_nor_flash_parameter *params) { return -EINVAL; } #endif /* SPI_FLASH_SFDP_SUPPORT */ /** * spi_nor_post_sfdp_fixups() - Updates the flash's parameters and settings * after SFDP has been parsed (is also called for SPI NORs that do not * support RDSFDP). * @nor: pointer to a 'struct spi_nor' * * Typically used to tweak various parameters that could not be extracted by * other means (i.e. when information provided by the SFDP/flash_info tables * are incomplete or wrong). */ static void spi_nor_post_sfdp_fixups(struct spi_nor *nor, struct spi_nor_flash_parameter *params) { if (nor->fixups && nor->fixups->post_sfdp) nor->fixups->post_sfdp(nor, params); } static void spi_nor_default_init_fixups(struct spi_nor *nor) { if (nor->fixups && nor->fixups->default_init) nor->fixups->default_init(nor); } static int spi_nor_init_params(struct spi_nor *nor, const struct flash_info *info, struct spi_nor_flash_parameter *params) { /* Set legacy flash parameters as default. */ memset(params, 0, sizeof(*params)); /* Set SPI NOR sizes. */ params->size = info->sector_size * info->n_sectors; params->page_size = info->page_size; if (!(info->flags & SPI_NOR_NO_FR)) { /* Default to Fast Read for DT and non-DT platform devices. */ params->hwcaps.mask |= SNOR_HWCAPS_READ_FAST; /* Mask out Fast Read if not requested at DT instantiation. */ #if CONFIG_IS_ENABLED(DM_SPI) if (!ofnode_read_bool(dev_ofnode(nor->spi->dev), "m25p,fast-read")) params->hwcaps.mask &= ~SNOR_HWCAPS_READ_FAST; #endif } /* (Fast) Read settings. */ params->hwcaps.mask |= SNOR_HWCAPS_READ; spi_nor_set_read_settings(¶ms->reads[SNOR_CMD_READ], 0, 0, SPINOR_OP_READ, SNOR_PROTO_1_1_1); if (params->hwcaps.mask & SNOR_HWCAPS_READ_FAST) spi_nor_set_read_settings(¶ms->reads[SNOR_CMD_READ_FAST], 0, 8, SPINOR_OP_READ_FAST, SNOR_PROTO_1_1_1); if (info->flags & SPI_NOR_DUAL_READ) { params->hwcaps.mask |= SNOR_HWCAPS_READ_1_1_2; spi_nor_set_read_settings(¶ms->reads[SNOR_CMD_READ_1_1_2], 0, 8, SPINOR_OP_READ_1_1_2, SNOR_PROTO_1_1_2); } if (info->flags & SPI_NOR_QUAD_READ) { params->hwcaps.mask |= SNOR_HWCAPS_READ_1_1_4; spi_nor_set_read_settings(¶ms->reads[SNOR_CMD_READ_1_1_4], 0, 8, SPINOR_OP_READ_1_1_4, SNOR_PROTO_1_1_4); } if (info->flags & SPI_NOR_OCTAL_READ) { params->hwcaps.mask |= SNOR_HWCAPS_READ_1_1_8; spi_nor_set_read_settings(¶ms->reads[SNOR_CMD_READ_1_1_8], 0, 8, SPINOR_OP_READ_1_1_8, SNOR_PROTO_1_1_8); } if (info->flags & SPI_NOR_OCTAL_DTR_READ) { params->hwcaps.mask |= SNOR_HWCAPS_READ_8_8_8_DTR; spi_nor_set_read_settings(¶ms->reads[SNOR_CMD_READ_8_8_8_DTR], 0, 20, SPINOR_OP_READ_FAST, SNOR_PROTO_8_8_8_DTR); } /* Page Program settings. */ params->hwcaps.mask |= SNOR_HWCAPS_PP; spi_nor_set_pp_settings(¶ms->page_programs[SNOR_CMD_PP], SPINOR_OP_PP, SNOR_PROTO_1_1_1); /* * Since xSPI Page Program opcode is backward compatible with * Legacy SPI, use Legacy SPI opcode there as well. */ spi_nor_set_pp_settings(¶ms->page_programs[SNOR_CMD_PP_8_8_8_DTR], SPINOR_OP_PP, SNOR_PROTO_8_8_8_DTR); if (info->flags & SPI_NOR_QUAD_READ) { params->hwcaps.mask |= SNOR_HWCAPS_PP_1_1_4; spi_nor_set_pp_settings(¶ms->page_programs[SNOR_CMD_PP_1_1_4], SPINOR_OP_PP_1_1_4, SNOR_PROTO_1_1_4); } /* Select the procedure to set the Quad Enable bit. */ if (params->hwcaps.mask & (SNOR_HWCAPS_READ_QUAD | SNOR_HWCAPS_PP_QUAD)) { switch (JEDEC_MFR(info)) { #if defined(CONFIG_SPI_FLASH_MACRONIX) || defined(CONFIG_SPI_FLASH_ISSI) case SNOR_MFR_MACRONIX: case SNOR_MFR_ISSI: params->quad_enable = macronix_quad_enable; break; #endif case SNOR_MFR_ST: case SNOR_MFR_MICRON: break; default: #if defined(CONFIG_SPI_FLASH_SPANSION) || defined(CONFIG_SPI_FLASH_WINBOND) /* Kept only for backward compatibility purpose. */ params->quad_enable = spansion_read_cr_quad_enable; #endif break; } } spi_nor_default_init_fixups(nor); /* Override the parameters with data read from SFDP tables. */ nor->addr_width = 0; nor->mtd.erasesize = 0; if ((info->flags & (SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ | SPI_NOR_OCTAL_DTR_READ)) && !(info->flags & SPI_NOR_SKIP_SFDP)) { struct spi_nor_flash_parameter sfdp_params; memcpy(&sfdp_params, params, sizeof(sfdp_params)); if (spi_nor_parse_sfdp(nor, &sfdp_params)) { nor->addr_width = 0; nor->mtd.erasesize = 0; } else { memcpy(params, &sfdp_params, sizeof(*params)); } } spi_nor_post_sfdp_fixups(nor, params); return 0; } static int spi_nor_hwcaps2cmd(u32 hwcaps, const int table[][2], size_t size) { size_t i; for (i = 0; i < size; i++) if (table[i][0] == (int)hwcaps) return table[i][1]; return -EINVAL; } static int spi_nor_hwcaps_read2cmd(u32 hwcaps) { static const int hwcaps_read2cmd[][2] = { { SNOR_HWCAPS_READ, SNOR_CMD_READ }, { SNOR_HWCAPS_READ_FAST, SNOR_CMD_READ_FAST }, { SNOR_HWCAPS_READ_1_1_1_DTR, SNOR_CMD_READ_1_1_1_DTR }, { SNOR_HWCAPS_READ_1_1_2, SNOR_CMD_READ_1_1_2 }, { SNOR_HWCAPS_READ_1_2_2, SNOR_CMD_READ_1_2_2 }, { SNOR_HWCAPS_READ_2_2_2, SNOR_CMD_READ_2_2_2 }, { SNOR_HWCAPS_READ_1_2_2_DTR, SNOR_CMD_READ_1_2_2_DTR }, { SNOR_HWCAPS_READ_1_1_4, SNOR_CMD_READ_1_1_4 }, { SNOR_HWCAPS_READ_1_4_4, SNOR_CMD_READ_1_4_4 }, { SNOR_HWCAPS_READ_4_4_4, SNOR_CMD_READ_4_4_4 }, { SNOR_HWCAPS_READ_1_4_4_DTR, SNOR_CMD_READ_1_4_4_DTR }, { SNOR_HWCAPS_READ_1_1_8, SNOR_CMD_READ_1_1_8 }, { SNOR_HWCAPS_READ_1_8_8, SNOR_CMD_READ_1_8_8 }, { SNOR_HWCAPS_READ_8_8_8, SNOR_CMD_READ_8_8_8 }, { SNOR_HWCAPS_READ_1_8_8_DTR, SNOR_CMD_READ_1_8_8_DTR }, { SNOR_HWCAPS_READ_8_8_8_DTR, SNOR_CMD_READ_8_8_8_DTR }, }; return spi_nor_hwcaps2cmd(hwcaps, hwcaps_read2cmd, ARRAY_SIZE(hwcaps_read2cmd)); } static int spi_nor_hwcaps_pp2cmd(u32 hwcaps) { static const int hwcaps_pp2cmd[][2] = { { SNOR_HWCAPS_PP, SNOR_CMD_PP }, { SNOR_HWCAPS_PP_1_1_4, SNOR_CMD_PP_1_1_4 }, { SNOR_HWCAPS_PP_1_4_4, SNOR_CMD_PP_1_4_4 }, { SNOR_HWCAPS_PP_4_4_4, SNOR_CMD_PP_4_4_4 }, { SNOR_HWCAPS_PP_1_1_8, SNOR_CMD_PP_1_1_8 }, { SNOR_HWCAPS_PP_1_8_8, SNOR_CMD_PP_1_8_8 }, { SNOR_HWCAPS_PP_8_8_8, SNOR_CMD_PP_8_8_8 }, { SNOR_HWCAPS_PP_8_8_8_DTR, SNOR_CMD_PP_8_8_8_DTR }, }; return spi_nor_hwcaps2cmd(hwcaps, hwcaps_pp2cmd, ARRAY_SIZE(hwcaps_pp2cmd)); } #ifdef CONFIG_SPI_FLASH_SMART_HWCAPS /** * spi_nor_check_op - check if the operation is supported by controller * @nor: pointer to a 'struct spi_nor' * @op: pointer to op template to be checked * * Returns 0 if operation is supported, -ENOTSUPP otherwise. */ static int spi_nor_check_op(struct spi_nor *nor, struct spi_mem_op *op) { /* * First test with 4 address bytes. The opcode itself might be a 3B * addressing opcode but we don't care, because SPI controller * implementation should not check the opcode, but just the sequence. */ op->addr.nbytes = 4; if (!spi_mem_supports_op(nor->spi, op)) { if (nor->mtd.size > SZ_16M) return -ENOTSUPP; /* If flash size <= 16MB, 3 address bytes are sufficient */ op->addr.nbytes = 3; if (!spi_mem_supports_op(nor->spi, op)) return -ENOTSUPP; } return 0; } /** * spi_nor_check_readop - check if the read op is supported by controller * @nor: pointer to a 'struct spi_nor' * @read: pointer to op template to be checked * * Returns 0 if operation is supported, -ENOTSUPP otherwise. */ static int spi_nor_check_readop(struct spi_nor *nor, const struct spi_nor_read_command *read) { struct spi_mem_op op = SPI_MEM_OP(SPI_MEM_OP_CMD(read->opcode, 0), SPI_MEM_OP_ADDR(3, 0, 0), SPI_MEM_OP_DUMMY(1, 0), SPI_MEM_OP_DATA_IN(2, NULL, 0)); spi_nor_setup_op(nor, &op, read->proto); op.dummy.nbytes = (read->num_mode_clocks + read->num_wait_states) * op.dummy.buswidth / 8; if (spi_nor_protocol_is_dtr(nor->read_proto)) op.dummy.nbytes *= 2; return spi_nor_check_op(nor, &op); } /** * spi_nor_check_pp - check if the page program op is supported by controller * @nor: pointer to a 'struct spi_nor' * @pp: pointer to op template to be checked * * Returns 0 if operation is supported, -ENOTSUPP otherwise. */ static int spi_nor_check_pp(struct spi_nor *nor, const struct spi_nor_pp_command *pp) { struct spi_mem_op op = SPI_MEM_OP(SPI_MEM_OP_CMD(pp->opcode, 0), SPI_MEM_OP_ADDR(3, 0, 0), SPI_MEM_OP_NO_DUMMY, SPI_MEM_OP_DATA_OUT(2, NULL, 0)); spi_nor_setup_op(nor, &op, pp->proto); return spi_nor_check_op(nor, &op); } /** * spi_nor_adjust_hwcaps - Find optimal Read/Write protocol based on SPI * controller capabilities * @nor: pointer to a 'struct spi_nor' * @params: pointer to the 'struct spi_nor_flash_parameter' * representing SPI NOR flash capabilities * @hwcaps: pointer to resulting capabilities after adjusting * according to controller and flash's capability * * Discard caps based on what the SPI controller actually supports (using * spi_mem_supports_op()). */ static void spi_nor_adjust_hwcaps(struct spi_nor *nor, const struct spi_nor_flash_parameter *params, u32 *hwcaps) { unsigned int cap; /* * Start by assuming the controller supports every capability. * We will mask them after checking what's really supported * using spi_mem_supports_op(). */ *hwcaps = SNOR_HWCAPS_ALL & params->hwcaps.mask; /* X-X-X modes are not supported yet, mask them all. */ *hwcaps &= ~SNOR_HWCAPS_X_X_X; /* * If the reset line is broken, we do not want to enter a stateful * mode. */ if (nor->flags & SNOR_F_BROKEN_RESET) *hwcaps &= ~(SNOR_HWCAPS_X_X_X | SNOR_HWCAPS_X_X_X_DTR); for (cap = 0; cap < sizeof(*hwcaps) * BITS_PER_BYTE; cap++) { int rdidx, ppidx; if (!(*hwcaps & BIT(cap))) continue; rdidx = spi_nor_hwcaps_read2cmd(BIT(cap)); if (rdidx >= 0 && spi_nor_check_readop(nor, ¶ms->reads[rdidx])) *hwcaps &= ~BIT(cap); ppidx = spi_nor_hwcaps_pp2cmd(BIT(cap)); if (ppidx < 0) continue; if (spi_nor_check_pp(nor, ¶ms->page_programs[ppidx])) *hwcaps &= ~BIT(cap); } } #else /** * spi_nor_adjust_hwcaps - Find optimal Read/Write protocol based on SPI * controller capabilities * @nor: pointer to a 'struct spi_nor' * @params: pointer to the 'struct spi_nor_flash_parameter' * representing SPI NOR flash capabilities * @hwcaps: pointer to resulting capabilities after adjusting * according to controller and flash's capability * * Select caps based on what the SPI controller and SPI flash both support. */ static void spi_nor_adjust_hwcaps(struct spi_nor *nor, const struct spi_nor_flash_parameter *params, u32 *hwcaps) { struct spi_slave *spi = nor->spi; u32 ignored_mask = (SNOR_HWCAPS_READ_2_2_2 | SNOR_HWCAPS_READ_4_4_4 | SNOR_HWCAPS_READ_8_8_8 | SNOR_HWCAPS_PP_4_4_4 | SNOR_HWCAPS_PP_8_8_8); u32 spi_hwcaps = (SNOR_HWCAPS_READ | SNOR_HWCAPS_READ_FAST | SNOR_HWCAPS_PP); /* Get the hardware capabilities the SPI controller supports. */ if (spi->mode & SPI_RX_OCTAL) { spi_hwcaps |= SNOR_HWCAPS_READ_1_1_8; if (spi->mode & SPI_TX_OCTAL) spi_hwcaps |= (SNOR_HWCAPS_READ_1_8_8 | SNOR_HWCAPS_PP_1_1_8 | SNOR_HWCAPS_PP_1_8_8); } else if (spi->mode & SPI_RX_QUAD) { spi_hwcaps |= SNOR_HWCAPS_READ_1_1_4; if (spi->mode & SPI_TX_QUAD) spi_hwcaps |= (SNOR_HWCAPS_READ_1_4_4 | SNOR_HWCAPS_PP_1_1_4 | SNOR_HWCAPS_PP_1_4_4); } else if (spi->mode & SPI_RX_DUAL) { spi_hwcaps |= SNOR_HWCAPS_READ_1_1_2; if (spi->mode & SPI_TX_DUAL) spi_hwcaps |= SNOR_HWCAPS_READ_1_2_2; } /* * Keep only the hardware capabilities supported by both the SPI * controller and the SPI flash memory. */ *hwcaps = spi_hwcaps & params->hwcaps.mask; if (*hwcaps & ignored_mask) { dev_dbg(nor->dev, "SPI n-n-n protocols are not supported yet.\n"); *hwcaps &= ~ignored_mask; } } #endif /* CONFIG_SPI_FLASH_SMART_HWCAPS */ static int spi_nor_select_read(struct spi_nor *nor, const struct spi_nor_flash_parameter *params, u32 shared_hwcaps) { int cmd, best_match = fls(shared_hwcaps & SNOR_HWCAPS_READ_MASK) - 1; const struct spi_nor_read_command *read; if (best_match < 0) return -EINVAL; cmd = spi_nor_hwcaps_read2cmd(BIT(best_match)); if (cmd < 0) return -EINVAL; read = ¶ms->reads[cmd]; nor->read_opcode = read->opcode; nor->read_proto = read->proto; /* * In the spi-nor framework, we don't need to make the difference * between mode clock cycles and wait state clock cycles. * Indeed, the value of the mode clock cycles is used by a QSPI * flash memory to know whether it should enter or leave its 0-4-4 * (Continuous Read / XIP) mode. * eXecution In Place is out of the scope of the mtd sub-system. * Hence we choose to merge both mode and wait state clock cycles * into the so called dummy clock cycles. */ nor->read_dummy = read->num_mode_clocks + read->num_wait_states; return 0; } static int spi_nor_select_pp(struct spi_nor *nor, const struct spi_nor_flash_parameter *params, u32 shared_hwcaps) { int cmd, best_match = fls(shared_hwcaps & SNOR_HWCAPS_PP_MASK) - 1; const struct spi_nor_pp_command *pp; if (best_match < 0) return -EINVAL; cmd = spi_nor_hwcaps_pp2cmd(BIT(best_match)); if (cmd < 0) return -EINVAL; pp = ¶ms->page_programs[cmd]; nor->program_opcode = pp->opcode; nor->write_proto = pp->proto; return 0; } static int spi_nor_select_erase(struct spi_nor *nor, const struct flash_info *info) { struct mtd_info *mtd = &nor->mtd; /* Do nothing if already configured from SFDP. */ if (mtd->erasesize) return 0; #ifdef CONFIG_SPI_FLASH_USE_4K_SECTORS /* prefer "small sector" erase if possible */ if (info->flags & SECT_4K) { nor->erase_opcode = SPINOR_OP_BE_4K; mtd->erasesize = 4096; } else if (info->flags & SECT_4K_PMC) { nor->erase_opcode = SPINOR_OP_BE_4K_PMC; mtd->erasesize = 4096; } else #endif { nor->erase_opcode = SPINOR_OP_SE; mtd->erasesize = info->sector_size; } return 0; } static int spi_nor_default_setup(struct spi_nor *nor, const struct flash_info *info, const struct spi_nor_flash_parameter *params) { u32 shared_mask; bool enable_quad_io; int err; spi_nor_adjust_hwcaps(nor, params, &shared_mask); /* Select the (Fast) Read command. */ err = spi_nor_select_read(nor, params, shared_mask); if (err) { dev_dbg(nor->dev, "can't select read settings supported by both the SPI controller and memory.\n"); return err; } /* Select the Page Program command. */ err = spi_nor_select_pp(nor, params, shared_mask); if (err) { dev_dbg(nor->dev, "can't select write settings supported by both the SPI controller and memory.\n"); return err; } /* Select the Sector Erase command. */ err = spi_nor_select_erase(nor, info); if (err) { dev_dbg(nor->dev, "can't select erase settings supported by both the SPI controller and memory.\n"); return err; } /* Enable Quad I/O if needed. */ enable_quad_io = (spi_nor_get_protocol_width(nor->read_proto) == 4 || spi_nor_get_protocol_width(nor->write_proto) == 4); if (enable_quad_io && params->quad_enable) nor->quad_enable = params->quad_enable; else nor->quad_enable = NULL; return 0; } static int spi_nor_setup(struct spi_nor *nor, const struct flash_info *info, const struct spi_nor_flash_parameter *params) { if (!nor->setup) return 0; return nor->setup(nor, info, params); } #ifdef CONFIG_SPI_FLASH_SPANSION /* Use ID byte 4 to distinguish S25FS256T and S25Hx-T */ #define S25FS256T_ID4 (0x08) static int s25_mdp_ready(struct spi_nor *nor) { u32 addr; int ret; for (addr = 0; addr < nor->mtd.size; addr += SZ_128M) { ret = spansion_sr_ready(nor, addr, 0); if (!ret) return ret; } return 1; } static int s25_quad_enable(struct spi_nor *nor) { u32 addr; int ret; for (addr = 0; addr < nor->mtd.size; addr += SZ_128M) { ret = spansion_quad_enable_volatile(nor, addr, 0); if (ret) return ret; } return 0; } static int s25_erase_non_uniform(struct spi_nor *nor, loff_t addr) { /* Support 32 x 4KB sectors at bottom */ return spansion_erase_non_uniform(nor, addr, SPINOR_OP_BE_4K_4B, 0, SZ_128K); } static int s25_setup(struct spi_nor *nor, const struct flash_info *info, const struct spi_nor_flash_parameter *params) { int ret; u8 cr; #ifdef CONFIG_SPI_FLASH_BAR return -ENOTSUPP; /* Bank Address Register is not supported */ #endif /* * S25FS256T has multiple sector architecture options, with selection of * count and location of 128KB and 64KB sectors. This driver supports * uniform 128KB only due to complexity of non-uniform layout. */ if (nor->info->id[4] == S25FS256T_ID4) { ret = spansion_read_any_reg(nor, SPINOR_REG_ADDR_ARCFN, 8, &cr); if (ret) return ret; if (cr) /* Option 0 (ARCFN[7:0] == 0x00) is uniform */ return -EOPNOTSUPP; return spi_nor_default_setup(nor, info, params); } /* * Read CFR3V to check if uniform sector is selected. If not, assign an * erase hook that supports non-uniform erase. */ ret = spansion_read_any_reg(nor, SPINOR_REG_ADDR_CFR3V, 0, &cr); if (ret) return ret; if (!(cr & CFR3V_UNHYSA)) nor->erase = s25_erase_non_uniform; /* * For the multi-die package parts, the ready() hook is needed to check * all dies' status via read any register. */ if (nor->mtd.size > SZ_128M) nor->ready = s25_mdp_ready; return spi_nor_default_setup(nor, info, params); } static void s25_default_init(struct spi_nor *nor) { nor->setup = s25_setup; } static int s25_post_bfpt_fixup(struct spi_nor *nor, const struct sfdp_parameter_header *header, const struct sfdp_bfpt *bfpt, struct spi_nor_flash_parameter *params) { int ret; u32 addr; u8 cfr3v; /* erase size in case it is set to 4K from BFPT */ nor->erase_opcode = SPINOR_OP_SE_4B; nor->mtd.erasesize = nor->info->sector_size; /* * The default address mode in multi-die package parts (>1Gb) may be * 3- or 4-byte, depending on model number. BootROM code in some SoCs * use 3-byte mode for backward compatibility and should switch to * 4-byte mode after BootROM phase. Since registers in the 2nd die are * mapped within 32-bit address space, we need to make sure the flash is * in 4-byte address mode. The default address mode can be distinguished * by BFPT 16th DWORD. Power cycle exits 4-byte address mode if default * is 3-byte address mode. */ if (params->size > SZ_128M) { if (bfpt->dwords[BFPT_DWORD(16)] & BFPT_DWORD16_EX4B_PWRCYC) { ret = set_4byte(nor, nor->info, 1); if (ret) return ret; } nor->addr_mode_nbytes = 4; } /* The default address mode in S25FS256T is 4. */ if (nor->info->id[4] == S25FS256T_ID4) nor->addr_mode_nbytes = 4; /* * The page_size is set to 512B from BFPT, but it actually depends on * the configuration register. Look up the CFR3V and determine the * page_size. For multi-die package parts, use 512B only when the all * dies are configured to 512B buffer. */ for (addr = 0; addr < params->size; addr += SZ_128M) { ret = spansion_read_any_reg(nor, addr + SPINOR_REG_ADDR_CFR3V, 0, &cfr3v); if (ret) return ret; if (!(cfr3v & CFR3V_PGMBUF)) { params->page_size = 256; return 0; } } params->page_size = 512; return 0; } static void s25_post_sfdp_fixup(struct spi_nor *nor, struct spi_nor_flash_parameter *params) { if (nor->info->id[4] == S25FS256T_ID4) { /* PP_1_1_4 is supported */ params->hwcaps.mask |= SNOR_HWCAPS_PP_1_1_4; } else { /* READ_FAST_4B (0Ch) requires mode cycles*/ params->reads[SNOR_CMD_READ_FAST].num_mode_clocks = 8; /* PP_1_1_4 is not supported */ params->hwcaps.mask &= ~SNOR_HWCAPS_PP_1_1_4; /* Use volatile register to enable quad */ params->quad_enable = s25_quad_enable; } } static struct spi_nor_fixups s25_fixups = { .default_init = s25_default_init, .post_bfpt = s25_post_bfpt_fixup, .post_sfdp = s25_post_sfdp_fixup, }; static int s25fl256l_setup(struct spi_nor *nor, const struct flash_info *info, const struct spi_nor_flash_parameter *params) { return -ENOTSUPP; /* Bank Address Register is not supported */ } static void s25fl256l_default_init(struct spi_nor *nor) { nor->setup = s25fl256l_setup; } static struct spi_nor_fixups s25fl256l_fixups = { .default_init = s25fl256l_default_init, }; #endif #ifdef CONFIG_SPI_FLASH_S28HX_T /** * spi_nor_cypress_octal_dtr_enable() - Enable octal DTR on Cypress flashes. * @nor: pointer to a 'struct spi_nor' * * This also sets the memory access latency cycles to 24 to allow the flash to * run at up to 200MHz. * * Return: 0 on success, -errno otherwise. */ static int spi_nor_cypress_octal_dtr_enable(struct spi_nor *nor) { struct spi_mem_op op; u8 buf; u8 addr_width = 3; int ret; /* Use 24 dummy cycles for memory array reads. */ ret = write_enable(nor); if (ret) return ret; buf = SPINOR_REG_CYPRESS_CFR2_MEMLAT_11_24; op = (struct spi_mem_op)SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_WR_ANY_REG, 1), SPI_MEM_OP_ADDR(addr_width, SPINOR_REG_CYPRESS_CFR2V, 1), SPI_MEM_OP_NO_DUMMY, SPI_MEM_OP_DATA_OUT(1, &buf, 1)); ret = spi_mem_exec_op(nor->spi, &op); if (ret) { dev_warn(nor->dev, "failed to set default memory latency value: %d\n", ret); return ret; } ret = spi_nor_wait_till_ready(nor); if (ret) return ret; nor->read_dummy = 24; /* Set the octal and DTR enable bits. */ ret = write_enable(nor); if (ret) return ret; buf = SPINOR_REG_CYPRESS_CFR5_OCT_DTR_EN; op = (struct spi_mem_op)SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_WR_ANY_REG, 1), SPI_MEM_OP_ADDR(addr_width, SPINOR_REG_CYPRESS_CFR5V, 1), SPI_MEM_OP_NO_DUMMY, SPI_MEM_OP_DATA_OUT(1, &buf, 1)); ret = spi_mem_exec_op(nor->spi, &op); if (ret) { dev_warn(nor->dev, "Failed to enable octal DTR mode\n"); return ret; } return 0; } static int s28hx_t_erase_non_uniform(struct spi_nor *nor, loff_t addr) { /* Factory default configuration: 32 x 4 KiB sectors at bottom. */ return spansion_erase_non_uniform(nor, addr, SPINOR_OP_S28_SE_4K, 0, SZ_128K); } static int s28hx_t_setup(struct spi_nor *nor, const struct flash_info *info, const struct spi_nor_flash_parameter *params) { struct spi_mem_op op; u8 buf; u8 addr_width = 3; int ret; ret = spi_nor_wait_till_ready(nor); if (ret) return ret; /* * Check CFR3V to check if non-uniform sector mode is selected. If it * is, set the erase hook to the non-uniform erase procedure. */ op = (struct spi_mem_op) SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_RD_ANY_REG, 1), SPI_MEM_OP_ADDR(addr_width, SPINOR_REG_CYPRESS_CFR3V, 1), SPI_MEM_OP_NO_DUMMY, SPI_MEM_OP_DATA_IN(1, &buf, 1)); ret = spi_mem_exec_op(nor->spi, &op); if (ret) return ret; if (!(buf & SPINOR_REG_CYPRESS_CFR3_UNISECT)) nor->erase = s28hx_t_erase_non_uniform; return spi_nor_default_setup(nor, info, params); } static void s28hx_t_default_init(struct spi_nor *nor) { nor->octal_dtr_enable = spi_nor_cypress_octal_dtr_enable; nor->setup = s28hx_t_setup; } static void s28hx_t_post_sfdp_fixup(struct spi_nor *nor, struct spi_nor_flash_parameter *params) { /* * On older versions of the flash the xSPI Profile 1.0 table has the * 8D-8D-8D Fast Read opcode as 0x00. But it actually should be 0xEE. */ if (params->reads[SNOR_CMD_READ_8_8_8_DTR].opcode == 0) params->reads[SNOR_CMD_READ_8_8_8_DTR].opcode = SPINOR_OP_CYPRESS_RD_FAST; params->hwcaps.mask |= SNOR_HWCAPS_PP_8_8_8_DTR; /* This flash is also missing the 4-byte Page Program opcode bit. */ spi_nor_set_pp_settings(¶ms->page_programs[SNOR_CMD_PP], SPINOR_OP_PP_4B, SNOR_PROTO_1_1_1); /* * Since xSPI Page Program opcode is backward compatible with * Legacy SPI, use Legacy SPI opcode there as well. */ spi_nor_set_pp_settings(¶ms->page_programs[SNOR_CMD_PP_8_8_8_DTR], SPINOR_OP_PP_4B, SNOR_PROTO_8_8_8_DTR); /* * The xSPI Profile 1.0 table advertises the number of additional * address bytes needed for Read Status Register command as 0 but the * actual value for that is 4. */ params->rdsr_addr_nbytes = 4; } static int s28hx_t_post_bfpt_fixup(struct spi_nor *nor, const struct sfdp_parameter_header *bfpt_header, const struct sfdp_bfpt *bfpt, struct spi_nor_flash_parameter *params) { struct spi_mem_op op; u8 buf; u8 addr_width = 3; int ret; /* * The BFPT table advertises a 512B page size but the page size is * actually configurable (with the default being 256B). Read from * CFR3V[4] and set the correct size. */ op = (struct spi_mem_op) SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_RD_ANY_REG, 1), SPI_MEM_OP_ADDR(addr_width, SPINOR_REG_CYPRESS_CFR3V, 1), SPI_MEM_OP_NO_DUMMY, SPI_MEM_OP_DATA_IN(1, &buf, 1)); ret = spi_mem_exec_op(nor->spi, &op); if (ret) return ret; if (buf & SPINOR_REG_CYPRESS_CFR3_PGSZ) params->page_size = 512; else params->page_size = 256; /* * The BFPT advertises that it supports 4k erases, and the datasheet * says the same. But 4k erases did not work when testing. So, use 256k * erases for now. */ nor->erase_opcode = SPINOR_OP_SE_4B; nor->mtd.erasesize = 0x40000; return 0; } static struct spi_nor_fixups s28hx_t_fixups = { .default_init = s28hx_t_default_init, .post_sfdp = s28hx_t_post_sfdp_fixup, .post_bfpt = s28hx_t_post_bfpt_fixup, }; #endif /* CONFIG_SPI_FLASH_S28HX_T */ #ifdef CONFIG_SPI_FLASH_MT35XU static int spi_nor_micron_octal_dtr_enable(struct spi_nor *nor) { struct spi_mem_op op; u8 buf; u8 addr_width = 3; int ret; /* Set dummy cycles for Fast Read to the default of 20. */ ret = write_enable(nor); if (ret) return ret; buf = 20; op = (struct spi_mem_op) SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_MT_WR_ANY_REG, 1), SPI_MEM_OP_ADDR(addr_width, SPINOR_REG_MT_CFR1V, 1), SPI_MEM_OP_NO_DUMMY, SPI_MEM_OP_DATA_OUT(1, &buf, 1)); ret = spi_mem_exec_op(nor->spi, &op); if (ret) return ret; ret = spi_nor_wait_till_ready(nor); if (ret) return ret; nor->read_dummy = 20; ret = write_enable(nor); if (ret) return ret; buf = SPINOR_MT_OCT_DTR; op = (struct spi_mem_op) SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_MT_WR_ANY_REG, 1), SPI_MEM_OP_ADDR(addr_width, SPINOR_REG_MT_CFR0V, 1), SPI_MEM_OP_NO_DUMMY, SPI_MEM_OP_DATA_OUT(1, &buf, 1)); ret = spi_mem_exec_op(nor->spi, &op); if (ret) { dev_err(nor->dev, "Failed to enable octal DTR mode\n"); return ret; } return 0; } static void mt35xu512aba_default_init(struct spi_nor *nor) { nor->octal_dtr_enable = spi_nor_micron_octal_dtr_enable; } static void mt35xu512aba_post_sfdp_fixup(struct spi_nor *nor, struct spi_nor_flash_parameter *params) { /* Set the Fast Read settings. */ params->hwcaps.mask |= SNOR_HWCAPS_READ_8_8_8_DTR; spi_nor_set_read_settings(¶ms->reads[SNOR_CMD_READ_8_8_8_DTR], 0, 20, SPINOR_OP_MT_DTR_RD, SNOR_PROTO_8_8_8_DTR); params->hwcaps.mask |= SNOR_HWCAPS_PP_8_8_8_DTR; nor->cmd_ext_type = SPI_NOR_EXT_REPEAT; params->rdsr_dummy = 8; params->rdsr_addr_nbytes = 0; /* * The BFPT quad enable field is set to a reserved value so the quad * enable function is ignored by spi_nor_parse_bfpt(). Make sure we * disable it. */ params->quad_enable = NULL; } static struct spi_nor_fixups mt35xu512aba_fixups = { .default_init = mt35xu512aba_default_init, .post_sfdp = mt35xu512aba_post_sfdp_fixup, }; #endif /* CONFIG_SPI_FLASH_MT35XU */ #if CONFIG_IS_ENABLED(SPI_FLASH_MACRONIX) /** * spi_nor_macronix_octal_dtr_enable() - Enable octal DTR on Macronix flashes. * @nor: pointer to a 'struct spi_nor' * * Set Macronix max dummy cycles 20 to allow the flash to run at fastest frequency. * * Return: 0 on success, -errno otherwise. */ static int spi_nor_macronix_octal_dtr_enable(struct spi_nor *nor) { struct spi_mem_op op; int ret; u8 buf; ret = write_enable(nor); if (ret) return ret; buf = SPINOR_REG_MXIC_DC_20; op = (struct spi_mem_op) SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_WR_CR2, 1), SPI_MEM_OP_ADDR(4, SPINOR_REG_MXIC_CR2_DC, 1), SPI_MEM_OP_NO_DUMMY, SPI_MEM_OP_DATA_OUT(1, &buf, 1)); ret = spi_mem_exec_op(nor->spi, &op); if (ret) return ret; ret = spi_nor_wait_till_ready(nor); if (ret) return ret; nor->read_dummy = MXIC_MAX_DC; ret = write_enable(nor); if (ret) return ret; buf = SPINOR_REG_MXIC_OPI_DTR_EN; op = (struct spi_mem_op) SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_WR_CR2, 1), SPI_MEM_OP_ADDR(4, SPINOR_REG_MXIC_CR2_MODE, 1), SPI_MEM_OP_NO_DUMMY, SPI_MEM_OP_DATA_OUT(1, &buf, 1)); ret = spi_mem_exec_op(nor->spi, &op); if (ret) { dev_err(nor->dev, "Failed to enable octal DTR mode\n"); return ret; } nor->reg_proto = SNOR_PROTO_8_8_8_DTR; return 0; } static void macronix_octal_default_init(struct spi_nor *nor) { nor->octal_dtr_enable = spi_nor_macronix_octal_dtr_enable; } static void macronix_octal_post_sfdp_fixup(struct spi_nor *nor, struct spi_nor_flash_parameter *params) { /* * Adding SNOR_HWCAPS_PP_8_8_8_DTR in hwcaps.mask when * SPI_NOR_OCTAL_DTR_READ flag exists. */ if (params->hwcaps.mask & SNOR_HWCAPS_READ_8_8_8_DTR) params->hwcaps.mask |= SNOR_HWCAPS_PP_8_8_8_DTR; } static struct spi_nor_fixups macronix_octal_fixups = { .default_init = macronix_octal_default_init, .post_sfdp = macronix_octal_post_sfdp_fixup, }; #endif /* CONFIG_SPI_FLASH_MACRONIX */ /** spi_nor_octal_dtr_enable() - enable Octal DTR I/O if needed * @nor: pointer to a 'struct spi_nor' * * Return: 0 on success, -errno otherwise. */ static int spi_nor_octal_dtr_enable(struct spi_nor *nor) { int ret; if (!nor->octal_dtr_enable) return 0; if (!(nor->read_proto == SNOR_PROTO_8_8_8_DTR && nor->write_proto == SNOR_PROTO_8_8_8_DTR)) return 0; if (!(nor->flags & SNOR_F_IO_MODE_EN_VOLATILE)) return 0; ret = nor->octal_dtr_enable(nor); if (ret) return ret; nor->reg_proto = SNOR_PROTO_8_8_8_DTR; return 0; } static int spi_nor_init(struct spi_nor *nor) { int err; err = spi_nor_octal_dtr_enable(nor); if (err) { dev_dbg(nor->dev, "Octal DTR mode not supported\n"); return err; } /* * Atmel, SST, Intel/Numonyx, and others serial NOR tend to power up * with the software protection bits set */ if (IS_ENABLED(CONFIG_SPI_FLASH_UNLOCK_ALL) && (JEDEC_MFR(nor->info) == SNOR_MFR_ATMEL || JEDEC_MFR(nor->info) == SNOR_MFR_INTEL || JEDEC_MFR(nor->info) == SNOR_MFR_SST || nor->info->flags & SPI_NOR_HAS_LOCK)) { write_enable(nor); write_sr(nor, 0); spi_nor_wait_till_ready(nor); } if (nor->quad_enable) { err = nor->quad_enable(nor); if (err) { dev_dbg(nor->dev, "quad mode not supported\n"); return err; } } if (nor->addr_width == 4 && !(nor->info->flags & SPI_NOR_OCTAL_DTR_READ) && (JEDEC_MFR(nor->info) != SNOR_MFR_SPANSION) && !(nor->info->flags & SPI_NOR_4B_OPCODES)) { /* * If the RESET# pin isn't hooked up properly, or the system * otherwise doesn't perform a reset command in the boot * sequence, it's impossible to 100% protect against unexpected * reboots (e.g., crashes). Warn the user (or hopefully, system * designer) that this is bad. */ if (nor->flags & SNOR_F_BROKEN_RESET) debug("enabling reset hack; may not recover from unexpected reboots\n"); set_4byte(nor, nor->info, 1); } return 0; } #ifdef CONFIG_SPI_FLASH_SOFT_RESET /** * spi_nor_soft_reset() - perform the JEDEC Software Reset sequence * @nor: the spi_nor structure * * This function can be used to switch from Octal DTR mode to legacy mode on a * flash that supports it. The soft reset is executed in Octal DTR mode. * * Return: 0 for success, -errno for failure. */ static int spi_nor_soft_reset(struct spi_nor *nor) { struct spi_mem_op op; int ret; enum spi_nor_cmd_ext ext; ext = nor->cmd_ext_type; if (nor->cmd_ext_type == SPI_NOR_EXT_NONE) { nor->cmd_ext_type = SPI_NOR_EXT_REPEAT; #if CONFIG_IS_ENABLED(SPI_NOR_BOOT_SOFT_RESET_EXT_INVERT) nor->cmd_ext_type = SPI_NOR_EXT_INVERT; #endif /* SPI_NOR_BOOT_SOFT_RESET_EXT_INVERT */ } op = (struct spi_mem_op)SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_SRSTEN, 0), SPI_MEM_OP_NO_DUMMY, SPI_MEM_OP_NO_ADDR, SPI_MEM_OP_NO_DATA); spi_nor_setup_op(nor, &op, SNOR_PROTO_8_8_8_DTR); ret = spi_mem_exec_op(nor->spi, &op); if (ret) { dev_warn(nor->dev, "Software reset enable failed: %d\n", ret); goto out; } op = (struct spi_mem_op)SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_SRST, 0), SPI_MEM_OP_NO_DUMMY, SPI_MEM_OP_NO_ADDR, SPI_MEM_OP_NO_DATA); spi_nor_setup_op(nor, &op, SNOR_PROTO_8_8_8_DTR); ret = spi_mem_exec_op(nor->spi, &op); if (ret) { dev_warn(nor->dev, "Software reset failed: %d\n", ret); goto out; } /* * Software Reset is not instant, and the delay varies from flash to * flash. Looking at a few flashes, most range somewhere below 100 * microseconds. So, wait for 200ms just to be sure. */ udelay(SPI_NOR_SRST_SLEEP_LEN); out: nor->cmd_ext_type = ext; return ret; } #endif /* CONFIG_SPI_FLASH_SOFT_RESET */ int spi_nor_remove(struct spi_nor *nor) { #ifdef CONFIG_SPI_FLASH_SOFT_RESET if (nor->info->flags & SPI_NOR_OCTAL_DTR_READ && nor->flags & SNOR_F_SOFT_RESET) return spi_nor_soft_reset(nor); #endif return 0; } void spi_nor_set_fixups(struct spi_nor *nor) { #ifdef CONFIG_SPI_FLASH_SPANSION if (JEDEC_MFR(nor->info) == SNOR_MFR_CYPRESS) { switch (nor->info->id[1]) { case 0x2a: /* S25HL (QSPI, 3.3V) */ case 0x2b: /* S25HS (QSPI, 1.8V) */ nor->fixups = &s25_fixups; break; #ifdef CONFIG_SPI_FLASH_S28HX_T case 0x5a: /* S28HL (Octal, 3.3V) */ case 0x5b: /* S28HS (Octal, 1.8V) */ nor->fixups = &s28hx_t_fixups; break; #endif default: break; } } if (CONFIG_IS_ENABLED(SPI_FLASH_BAR) && !strcmp(nor->info->name, "s25fl256l")) nor->fixups = &s25fl256l_fixups; #endif #ifdef CONFIG_SPI_FLASH_MT35XU if (!strcmp(nor->info->name, "mt35xu512aba")) nor->fixups = &mt35xu512aba_fixups; #endif #if CONFIG_IS_ENABLED(SPI_FLASH_MACRONIX) nor->fixups = ¯onix_octal_fixups; #endif /* SPI_FLASH_MACRONIX */ } int spi_nor_scan(struct spi_nor *nor) { struct spi_nor_flash_parameter params; const struct flash_info *info = NULL; struct mtd_info *mtd = &nor->mtd; struct spi_slave *spi = nor->spi; int ret; int cfi_mtd_nb = 0; #ifdef CONFIG_FLASH_CFI_MTD cfi_mtd_nb = CFI_FLASH_BANKS; #endif /* Reset SPI protocol for all commands. */ nor->reg_proto = SNOR_PROTO_1_1_1; nor->read_proto = SNOR_PROTO_1_1_1; nor->write_proto = SNOR_PROTO_1_1_1; nor->read = spi_nor_read_data; nor->write = spi_nor_write_data; nor->read_reg = spi_nor_read_reg; nor->write_reg = spi_nor_write_reg; nor->setup = spi_nor_default_setup; #ifdef CONFIG_SPI_FLASH_SOFT_RESET_ON_BOOT /* * When the flash is handed to us in a stateful mode like 8D-8D-8D, it * is difficult to detect the mode the flash is in. One option is to * read SFDP in all modes and see which one gives the correct "SFDP" * signature, but not all flashes support SFDP in 8D-8D-8D mode. * * Further, even if you detect the mode of the flash via SFDP, you * still have the problem of actually reading the ID. The Read ID * command is not standardized across flash vendors. Flashes can have * different dummy cycles needed for reading the ID. Some flashes even * expect a 4-byte dummy address with the Read ID command. All this * information cannot be obtained from the SFDP table. * * So, perform a Software Reset sequence before reading the ID and * initializing the flash. A Soft Reset will bring back the flash in * its default protocol mode assuming no non-volatile configuration was * set. This will let us detect the flash even if ROM hands it to us in * Octal DTR mode. * * To accommodate cases where there is more than one flash on a board, * and only one of them needs a soft reset, failure to reset is not * made fatal, and we still try to read ID if possible. */ spi_nor_soft_reset(nor); #endif /* CONFIG_SPI_FLASH_SOFT_RESET_ON_BOOT */ info = spi_nor_read_id(nor); if (IS_ERR_OR_NULL(info)) return -ENOENT; nor->info = info; spi_nor_set_fixups(nor); /* Parse the Serial Flash Discoverable Parameters table. */ ret = spi_nor_init_params(nor, info, ¶ms); if (ret) return ret; if (!mtd->name) { sprintf(nor->mtd_name, "%s%d", MTD_DEV_TYPE(MTD_DEV_TYPE_NOR), cfi_mtd_nb + dev_seq(nor->dev)); mtd->name = nor->mtd_name; } mtd->dev = nor->dev; mtd->priv = nor; mtd->type = MTD_NORFLASH; mtd->writesize = 1; mtd->flags = MTD_CAP_NORFLASH; mtd->size = params.size; mtd->_erase = spi_nor_erase; mtd->_read = spi_nor_read; mtd->_write = spi_nor_write; #if defined(CONFIG_SPI_FLASH_STMICRO) || defined(CONFIG_SPI_FLASH_SST) /* NOR protection support for STmicro/Micron chips and similar */ if (JEDEC_MFR(info) == SNOR_MFR_ST || JEDEC_MFR(info) == SNOR_MFR_MICRON || JEDEC_MFR(info) == SNOR_MFR_SST || info->flags & SPI_NOR_HAS_LOCK) { nor->flash_lock = stm_lock; nor->flash_unlock = stm_unlock; nor->flash_is_unlocked = stm_is_unlocked; } #endif #ifdef CONFIG_SPI_FLASH_SST /* * sst26 series block protection implementation differs from other * series. */ if (info->flags & SPI_NOR_HAS_SST26LOCK) { nor->flash_lock = sst26_lock; nor->flash_unlock = sst26_unlock; nor->flash_is_unlocked = sst26_is_unlocked; } #endif if (info->flags & USE_FSR) nor->flags |= SNOR_F_USE_FSR; if (info->flags & SPI_NOR_HAS_TB) nor->flags |= SNOR_F_HAS_SR_TB; if (info->flags & NO_CHIP_ERASE) nor->flags |= SNOR_F_NO_OP_CHIP_ERASE; if (info->flags & USE_CLSR) nor->flags |= SNOR_F_USE_CLSR; if (info->flags & SPI_NOR_NO_ERASE) mtd->flags |= MTD_NO_ERASE; nor->page_size = params.page_size; mtd->writebufsize = nor->page_size; /* Some devices cannot do fast-read, no matter what DT tells us */ if ((info->flags & SPI_NOR_NO_FR) || (spi->mode & SPI_RX_SLOW)) params.hwcaps.mask &= ~SNOR_HWCAPS_READ_FAST; /* * Configure the SPI memory: * - select op codes for (Fast) Read, Page Program and Sector Erase. * - set the number of dummy cycles (mode cycles + wait states). * - set the SPI protocols for register and memory accesses. * - set the Quad Enable bit if needed (required by SPI x-y-4 protos). */ ret = spi_nor_setup(nor, info, ¶ms); if (ret) return ret; if (spi_nor_protocol_is_dtr(nor->read_proto)) { /* Always use 4-byte addresses in DTR mode. */ nor->addr_width = 4; } else if (nor->addr_width) { /* already configured from SFDP */ } else if (info->addr_width) { nor->addr_width = info->addr_width; } else { nor->addr_width = 3; } if (nor->addr_width == 3 && mtd->size > SZ_16M) { #ifndef CONFIG_SPI_FLASH_BAR /* enable 4-byte addressing if the device exceeds 16MiB */ nor->addr_width = 4; if (JEDEC_MFR(info) == SNOR_MFR_SPANSION || info->flags & SPI_NOR_4B_OPCODES) spi_nor_set_4byte_opcodes(nor, info); #else /* Configure the BAR - discover bank cmds and read current bank */ nor->addr_width = 3; ret = read_bar(nor, info); if (ret < 0) return ret; #endif } if (nor->addr_width > SPI_NOR_MAX_ADDR_WIDTH) { dev_dbg(nor->dev, "address width is too large: %u\n", nor->addr_width); return -EINVAL; } /* Send all the required SPI flash commands to initialize device */ ret = spi_nor_init(nor); if (ret) return ret; nor->rdsr_dummy = params.rdsr_dummy; nor->rdsr_addr_nbytes = params.rdsr_addr_nbytes; nor->name = info->name; nor->size = mtd->size; nor->erase_size = mtd->erasesize; nor->sector_size = mtd->erasesize; #ifndef CONFIG_SPL_BUILD printf("SF: Detected %s with page size ", nor->name); print_size(nor->page_size, ", erase size "); print_size(nor->erase_size, ", total "); print_size(nor->size, ""); puts("\n"); #endif return 0; } /* U-Boot specific functions, need to extend MTD to support these */ int spi_flash_cmd_get_sw_write_prot(struct spi_nor *nor) { int sr = read_sr(nor); if (sr < 0) return sr; return (sr >> 2) & 7; }