/* * board.c * * Board functions for TI AM335X based boards * * Copyright (C) 2011, Texas Instruments, Incorporated - http://www.ti.com/ * * SPDX-License-Identifier: GPL-2.0+ */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "board.h" DECLARE_GLOBAL_DATA_PTR; /* GPIO that controls power to DDR on EVM-SK */ #define GPIO_DDR_VTT_EN 7 #define DIP_S1 44 #define MPCIE_SW 100 static struct ctrl_dev *cdev = (struct ctrl_dev *)CTRL_DEVICE_BASE; static int baltos_set_console(void) { int val, i, dips = 0; char buf[7]; for (i = 0; i < 4; i++) { sprintf(buf, "dip_s%d", i + 1); if (gpio_request(DIP_S1 + i, buf)) { printf("failed to export GPIO %d\n", DIP_S1 + i); return 0; } if (gpio_direction_input(DIP_S1 + i)) { printf("failed to set GPIO %d direction\n", DIP_S1 + i); return 0; } val = gpio_get_value(DIP_S1 + i); dips |= val << i; } printf("DIPs: 0x%1x\n", (~dips) & 0xf); if ((dips & 0xf) == 0xe) env_set("console", "ttyUSB0,115200n8"); return 0; } static int read_eeprom(BSP_VS_HWPARAM *header) { i2c_set_bus_num(1); /* Check if baseboard eeprom is available */ if (i2c_probe(CONFIG_SYS_I2C_EEPROM_ADDR)) { puts("Could not probe the EEPROM; something fundamentally " "wrong on the I2C bus.\n"); return -ENODEV; } /* read the eeprom using i2c */ if (i2c_read(CONFIG_SYS_I2C_EEPROM_ADDR, 0, 1, (uchar *)header, sizeof(BSP_VS_HWPARAM))) { puts("Could not read the EEPROM; something fundamentally" " wrong on the I2C bus.\n"); return -EIO; } if (header->Magic != 0xDEADBEEF) { printf("Incorrect magic number (0x%x) in EEPROM\n", header->Magic); /* fill default values */ header->SystemId = 211; header->MAC1[0] = 0x00; header->MAC1[1] = 0x00; header->MAC1[2] = 0x00; header->MAC1[3] = 0x00; header->MAC1[4] = 0x00; header->MAC1[5] = 0x01; header->MAC2[0] = 0x00; header->MAC2[1] = 0x00; header->MAC2[2] = 0x00; header->MAC2[3] = 0x00; header->MAC2[4] = 0x00; header->MAC2[5] = 0x02; header->MAC3[0] = 0x00; header->MAC3[1] = 0x00; header->MAC3[2] = 0x00; header->MAC3[3] = 0x00; header->MAC3[4] = 0x00; header->MAC3[5] = 0x03; } return 0; } #if defined(CONFIG_SPL_BUILD) || defined(CONFIG_NOR_BOOT) static const struct ddr_data ddr3_baltos_data = { .datardsratio0 = MT41K256M16HA125E_RD_DQS, .datawdsratio0 = MT41K256M16HA125E_WR_DQS, .datafwsratio0 = MT41K256M16HA125E_PHY_FIFO_WE, .datawrsratio0 = MT41K256M16HA125E_PHY_WR_DATA, }; static const struct cmd_control ddr3_baltos_cmd_ctrl_data = { .cmd0csratio = MT41K256M16HA125E_RATIO, .cmd0iclkout = MT41K256M16HA125E_INVERT_CLKOUT, .cmd1csratio = MT41K256M16HA125E_RATIO, .cmd1iclkout = MT41K256M16HA125E_INVERT_CLKOUT, .cmd2csratio = MT41K256M16HA125E_RATIO, .cmd2iclkout = MT41K256M16HA125E_INVERT_CLKOUT, }; static struct emif_regs ddr3_baltos_emif_reg_data = { .sdram_config = MT41K256M16HA125E_EMIF_SDCFG, .ref_ctrl = MT41K256M16HA125E_EMIF_SDREF, .sdram_tim1 = MT41K256M16HA125E_EMIF_TIM1, .sdram_tim2 = MT41K256M16HA125E_EMIF_TIM2, .sdram_tim3 = MT41K256M16HA125E_EMIF_TIM3, .zq_config = MT41K256M16HA125E_ZQ_CFG, .emif_ddr_phy_ctlr_1 = MT41K256M16HA125E_EMIF_READ_LATENCY, }; #ifdef CONFIG_SPL_OS_BOOT int spl_start_uboot(void) { /* break into full u-boot on 'c' */ return (serial_tstc() && serial_getc() == 'c'); } #endif #define OSC (V_OSCK/1000000) const struct dpll_params dpll_ddr = { 266, OSC-1, 1, -1, -1, -1, -1}; const struct dpll_params dpll_ddr_evm_sk = { 303, OSC-1, 1, -1, -1, -1, -1}; const struct dpll_params dpll_ddr_baltos = { 400, OSC-1, 1, -1, -1, -1, -1}; void am33xx_spl_board_init(void) { int mpu_vdd; int sil_rev; /* Get the frequency */ dpll_mpu_opp100.m = am335x_get_efuse_mpu_max_freq(cdev); /* * The GP EVM, IDK and EVM SK use a TPS65910 PMIC. For all * MPU frequencies we support we use a CORE voltage of * 1.1375V. For MPU voltage we need to switch based on * the frequency we are running at. */ i2c_set_bus_num(1); printf("I2C speed: %d Hz\n", CONFIG_SYS_OMAP24_I2C_SPEED); if (i2c_probe(TPS65910_CTRL_I2C_ADDR)) { puts("i2c: cannot access TPS65910\n"); return; } /* * Depending on MPU clock and PG we will need a different * VDD to drive at that speed. */ sil_rev = readl(&cdev->deviceid) >> 28; mpu_vdd = am335x_get_tps65910_mpu_vdd(sil_rev, dpll_mpu_opp100.m); /* Tell the TPS65910 to use i2c */ tps65910_set_i2c_control(); /* First update MPU voltage. */ if (tps65910_voltage_update(MPU, mpu_vdd)) return; /* Second, update the CORE voltage. */ if (tps65910_voltage_update(CORE, TPS65910_OP_REG_SEL_1_1_3)) return; /* Set CORE Frequencies to OPP100 */ do_setup_dpll(&dpll_core_regs, &dpll_core_opp100); /* Set MPU Frequency to what we detected now that voltages are set */ do_setup_dpll(&dpll_mpu_regs, &dpll_mpu_opp100); writel(0x000010ff, PRM_DEVICE_INST + 4); } const struct dpll_params *get_dpll_ddr_params(void) { enable_i2c1_pin_mux(); i2c_set_bus_num(1); return &dpll_ddr_baltos; } void set_uart_mux_conf(void) { enable_uart0_pin_mux(); } void set_mux_conf_regs(void) { enable_board_pin_mux(); } const struct ctrl_ioregs ioregs_baltos = { .cm0ioctl = MT41K256M16HA125E_IOCTRL_VALUE, .cm1ioctl = MT41K256M16HA125E_IOCTRL_VALUE, .cm2ioctl = MT41K256M16HA125E_IOCTRL_VALUE, .dt0ioctl = MT41K256M16HA125E_IOCTRL_VALUE, .dt1ioctl = MT41K256M16HA125E_IOCTRL_VALUE, }; void sdram_init(void) { gpio_request(GPIO_DDR_VTT_EN, "ddr_vtt_en"); gpio_direction_output(GPIO_DDR_VTT_EN, 1); config_ddr(400, &ioregs_baltos, &ddr3_baltos_data, &ddr3_baltos_cmd_ctrl_data, &ddr3_baltos_emif_reg_data, 0); } #endif /* * Basic board specific setup. Pinmux has been handled already. */ int board_init(void) { #if defined(CONFIG_HW_WATCHDOG) hw_watchdog_init(); #endif gd->bd->bi_boot_params = CONFIG_SYS_SDRAM_BASE + 0x100; #if defined(CONFIG_NOR) || defined(CONFIG_NAND) gpmc_init(); #endif return 0; } int ft_board_setup(void *blob, bd_t *bd) { int node, ret; unsigned char mac_addr[6]; BSP_VS_HWPARAM header; /* get production data */ if (read_eeprom(&header)) return 0; /* setup MAC1 */ mac_addr[0] = header.MAC1[0]; mac_addr[1] = header.MAC1[1]; mac_addr[2] = header.MAC1[2]; mac_addr[3] = header.MAC1[3]; mac_addr[4] = header.MAC1[4]; mac_addr[5] = header.MAC1[5]; node = fdt_path_offset(blob, "/ocp/ethernet/slave@4a100200"); if (node < 0) { printf("no /soc/fman/ethernet path offset\n"); return -ENODEV; } ret = fdt_setprop(blob, node, "mac-address", &mac_addr, 6); if (ret) { printf("error setting local-mac-address property\n"); return -ENODEV; } /* setup MAC2 */ mac_addr[0] = header.MAC2[0]; mac_addr[1] = header.MAC2[1]; mac_addr[2] = header.MAC2[2]; mac_addr[3] = header.MAC2[3]; mac_addr[4] = header.MAC2[4]; mac_addr[5] = header.MAC2[5]; node = fdt_path_offset(blob, "/ocp/ethernet/slave@4a100300"); if (node < 0) { printf("no /soc/fman/ethernet path offset\n"); return -ENODEV; } ret = fdt_setprop(blob, node, "mac-address", &mac_addr, 6); if (ret) { printf("error setting local-mac-address property\n"); return -ENODEV; } printf("\nFDT was successfully setup\n"); return 0; } static struct module_pin_mux pcie_sw_pin_mux[] = { {OFFSET(mii1_rxdv), (MODE(7) | PULLUDEN )}, /* GPIO3_4 */ {-1}, }; static struct module_pin_mux dip_pin_mux[] = { {OFFSET(gpmc_ad12), (MODE(7) | RXACTIVE )}, /* GPIO1_12 */ {OFFSET(gpmc_ad13), (MODE(7) | RXACTIVE )}, /* GPIO1_13 */ {OFFSET(gpmc_ad14), (MODE(7) | RXACTIVE )}, /* GPIO1_14 */ {OFFSET(gpmc_ad15), (MODE(7) | RXACTIVE )}, /* GPIO1_15 */ {-1}, }; #ifdef CONFIG_BOARD_LATE_INIT int board_late_init(void) { #ifdef CONFIG_ENV_VARS_UBOOT_RUNTIME_CONFIG BSP_VS_HWPARAM header; char model[4]; /* get production data */ if (read_eeprom(&header)) { strcpy(model, "211"); } else { sprintf(model, "%d", header.SystemId); if (header.SystemId == 215) { configure_module_pin_mux(dip_pin_mux); baltos_set_console(); } } /* turn power for the mPCIe slot */ configure_module_pin_mux(pcie_sw_pin_mux); if (gpio_request(MPCIE_SW, "mpcie_sw")) { printf("failed to export GPIO %d\n", MPCIE_SW); return -ENODEV; } if (gpio_direction_output(MPCIE_SW, 1)) { printf("failed to set GPIO %d direction\n", MPCIE_SW); return -ENODEV; } env_set("board_name", model); #endif return 0; } #endif #if (defined(CONFIG_DRIVER_TI_CPSW) && !defined(CONFIG_SPL_BUILD)) || \ (defined(CONFIG_SPL_ETH_SUPPORT) && defined(CONFIG_SPL_BUILD)) static void cpsw_control(int enabled) { /* VTP can be added here */ return; } static struct cpsw_slave_data cpsw_slaves[] = { { .slave_reg_ofs = 0x208, .sliver_reg_ofs = 0xd80, .phy_addr = 0, }, { .slave_reg_ofs = 0x308, .sliver_reg_ofs = 0xdc0, .phy_addr = 7, }, }; static struct cpsw_platform_data cpsw_data = { .mdio_base = CPSW_MDIO_BASE, .cpsw_base = CPSW_BASE, .mdio_div = 0xff, .channels = 8, .cpdma_reg_ofs = 0x800, .slaves = 2, .slave_data = cpsw_slaves, .active_slave = 1, .ale_reg_ofs = 0xd00, .ale_entries = 1024, .host_port_reg_ofs = 0x108, .hw_stats_reg_ofs = 0x900, .bd_ram_ofs = 0x2000, .mac_control = (1 << 5), .control = cpsw_control, .host_port_num = 0, .version = CPSW_CTRL_VERSION_2, }; #endif #if ((defined(CONFIG_SPL_ETH_SUPPORT) || defined(CONFIG_SPL_USBETH_SUPPORT)) \ && defined(CONFIG_SPL_BUILD)) || \ ((defined(CONFIG_DRIVER_TI_CPSW) || \ defined(CONFIG_USB_ETHER) && defined(CONFIG_USB_MUSB_GADGET)) && \ !defined(CONFIG_SPL_BUILD)) int board_eth_init(bd_t *bis) { int rv, n = 0; uint8_t mac_addr[6]; uint32_t mac_hi, mac_lo; /* * Note here that we're using CPSW1 since that has a 1Gbit PHY while * CSPW0 has a 100Mbit PHY. * * On product, CPSW1 maps to port labeled WAN. */ /* try reading mac address from efuse */ mac_lo = readl(&cdev->macid1l); mac_hi = readl(&cdev->macid1h); mac_addr[0] = mac_hi & 0xFF; mac_addr[1] = (mac_hi & 0xFF00) >> 8; mac_addr[2] = (mac_hi & 0xFF0000) >> 16; mac_addr[3] = (mac_hi & 0xFF000000) >> 24; mac_addr[4] = mac_lo & 0xFF; mac_addr[5] = (mac_lo & 0xFF00) >> 8; #if (defined(CONFIG_DRIVER_TI_CPSW) && !defined(CONFIG_SPL_BUILD)) || \ (defined(CONFIG_SPL_ETH_SUPPORT) && defined(CONFIG_SPL_BUILD)) if (!getenv("ethaddr")) { printf(" not set. Validating first E-fuse MAC\n"); if (is_valid_ethaddr(mac_addr)) eth_setenv_enetaddr("ethaddr", mac_addr); } #ifdef CONFIG_DRIVER_TI_CPSW writel((GMII1_SEL_RMII | GMII2_SEL_RGMII | RGMII2_IDMODE), &cdev->miisel); cpsw_slaves[1].phy_if = PHY_INTERFACE_MODE_RGMII; rv = cpsw_register(&cpsw_data); if (rv < 0) printf("Error %d registering CPSW switch\n", rv); else n += rv; #endif /* * * CPSW RGMII Internal Delay Mode is not supported in all PVT * operating points. So we must set the TX clock delay feature * in the AR8051 PHY. Since we only support a single ethernet * device in U-Boot, we only do this for the first instance. */ #define AR8051_PHY_DEBUG_ADDR_REG 0x1d #define AR8051_PHY_DEBUG_DATA_REG 0x1e #define AR8051_DEBUG_RGMII_CLK_DLY_REG 0x5 #define AR8051_RGMII_TX_CLK_DLY 0x100 const char *devname; devname = miiphy_get_current_dev(); miiphy_write(devname, 0x7, AR8051_PHY_DEBUG_ADDR_REG, AR8051_DEBUG_RGMII_CLK_DLY_REG); miiphy_write(devname, 0x7, AR8051_PHY_DEBUG_DATA_REG, AR8051_RGMII_TX_CLK_DLY); #endif return n; } #endif