U-Boot has supported two kinds of asm-offsets.h.
One is generic for all architectures and its source is located at
./lib/asm-offsets.c.
The other is SoC specific and its source is under SoC directory.
The problem here is that only boards with SoC directory can use
the asm-offsets infrastructure.
Putting asm-offsets.c right under CPU directory does not work.
Now a new demand is coming. PowerPC folks want to use asm-offsets.
But no PowerPC boards have SoC directory.
It seems inconsistent that some boards add asm-offsets.c to SoC
directoreis and some to CPU directories.
It looks more reasonable to put asm-offsets.c under arch/$(ARCH)/lib.
This commit merges asm-offsets.c under SoC directories into
arch/$(ARCH)/lib/asm-offsets.c.
By the way, I doubt the necessity of some entries in asm-offsets.c.
I am leaving refactoring to the board maintainers.
Please check "TODO" in the comment blocks in
arch/{arm,nds32}/lib/asm-offsets.c.
Signed-off-by: Masahiro Yamada <yamada.m@jp.panasonic.com>
Cc: Yuantian Tang <Yuantian.Tang@freescale.com>
Now that nothing uses CONFIG_ARCH_DEVICE_TREE, stop defining it.
Signed-off-by: Stephen Warren <swarren@nvidia.com>
Acked-by: Simon Glass <sjg@chromium.org>
Coreboot provides a lot of useful timing information. Provide a facility
to add this to bootstage on start-up.
Signed-off-by: Simon Glass <sjg@chromium.org>
Tidy up some old broken and unneeded implementations. These are not used
by coreboot or anything else now.
Signed-off-by: Simon Glass <sjg@chromium.org>
Reviewed-by: Gabe Black <gabeblack@chromium.org>
Reviewed-by: Michael Spang <spang@chromium.org>
Reviewed-by: Vadim Bendebury <vbendeb@chromium.org>
Acked-by: Graeme Russ <graeme.russ@gmail.com>
This timer runs at a rate that can be calculated, well over 100MHz. It is
ideal for accurate timing and does not need interrupt servicing.
Tidy up some old broken and unneeded implementations at the same time.
To provide a consistent view of boot time, we use the same time
base as coreboot. Use the base timestamp supplied by coreboot
as U-Boot's base time.
Signed-off-by: Simon Glass <sjg@chromium.org>base
Signed-off-by: Simon Glass <sjg@chromium.org>
The 'Starting linux' message appears twice in the code, but both call
through the same place. Unify these and add calls to bootstage to
mark the occasion.
Signed-off-by: Simon Glass <sjg@chromium.org>
Reviewed-by: Michael Spang <spang@chromium.org>
Acked-by: Graeme Russ <graeme.russ@gmail.com>
panic_puts() can be called in early boot to display a message. It might
help with early debugging.
Signed-off-by: Simon Glass <sjg@chromium.org>
Reviewed-by: Tom Wai-Hong Tam <waihong@chromium.org>
Several files use the global_data pointer without declaring it. This works
because the declaration is currently a NOP. But still it is better to
fix this so that x86 lines up with other archs.
Signed-off-by: Simon Glass <sjg@chromium.org>
Since we don't have real-mode code now, we can remove this chunk of the link
script.
Signed-off-by: Simon Glass <sjg@chromium.org>
Acked-by: Graeme Russ <graeme.russ@gmail.com>
The intention of the memory init code is that it should work the same with
CONFIG_SYS_GENERIC_BOARD and without. This is tricky because dram_init()
is called prior to relocation with generic board (matching other archs)
and after relocation without generic board.
Adjust the init sequence so that dram_init() is not called in the generic
board case, which seems like the easiest fix for now. Also ensure that
relocation addresses are still calculated.
Signed-off-by: Simon Glass <sjg@chromium.org>
Albert's rework of the linker scripts conflicted with Simon's making
everyone use __bss_end. We also had a minor conflict over
README.scrapyard being added to in mainline and enhanced in
u-boot-arm/master with proper formatting.
Conflicts:
arch/arm/cpu/ixp/u-boot.lds
arch/arm/cpu/u-boot.lds
arch/arm/lib/Makefile
board/actux1/u-boot.lds
board/actux2/u-boot.lds
board/actux3/u-boot.lds
board/dvlhost/u-boot.lds
board/freescale/mx31ads/u-boot.lds
doc/README.scrapyard
include/configs/tegra-common.h
Build tested for all of ARM and run-time tested on am335x_evm.
Signed-off-by: Tom Rini <trini@ti.com>
Refactor linker-generated array code so that symbols
which were previously linker-generated are now compiler-
generated. This causes relocation records of type
R_ARM_ABS32 to become R_ARM_RELATIVE, which makes
code which uses LGA able to run before relocation as
well as after.
Note: this affects more than ARM targets, as linker-
lists span possibly all target architectures, notably
PowerPC.
Conflicts:
arch/arm/cpu/arm926ejs/mxs/u-boot-spl.lds
arch/arm/cpu/arm926ejs/spear/u-boot-spl.lds
arch/arm/cpu/armv7/omap-common/u-boot-spl.lds
board/ait/cam_enc_4xx/u-boot-spl.lds
board/davinci/da8xxevm/u-boot-spl-da850evm.lds
board/davinci/da8xxevm/u-boot-spl-hawk.lds
board/vpac270/u-boot-spl.lds
Signed-off-by: Albert ARIBAUD <albert.u.boot@aribaud.net>
At present BSS data is including in the image, which wastes binary space.
Remove it by rearranging the sections so that BSS is last.
Signed-off-by: Simon Glass <sjg@chromium.org>
With this symbol we can easy append something (e.g. an FDT) to the U-Boot
binary and access it from within U-Boot.
Signed-off-by: Simon Glass <sjg@chromium.org>
It is useful to be able to access the timer before U-Boot has relocated
so that we can fully support bootstage.
Add new global_data members to support this.
Signed-off-by: Simon Glass <sjg@chromium.org>
The memory layout calculations are done in calculate_relocation_address(),
and coreboot has its own version of this function. But in fact all we
really need is to set the top of usable RAM, and then the base version
will work as is.
So instead of allowing the whole calculate_relocation_address() function
to be replaced, create board_get_usable_ram_top() which can be used by
a board to specify the top of the area where U-Boot relocations to.
Signed-off-by: Simon Glass <sjg@chromium.org>
Invert the polarity of this option to simplify the Makefile logic.
Signed-off-by: Simon Glass <sjg@chromium.org>
Acked-by: Gabe Black <gabeblack@chromium.org>
This x86 CPU variant is no longer required as the boards that use it have
been removed.
Signed-off-by: Simon Glass <sjg@chromium.org>
Acked-by: Graeme Russ <graeme.russ@gmail.com>
Move this field into arch_global_data and tidy up.
Signed-off-by: Simon Glass <sjg@chromium.org>
[trini: Add arch/x86/cpu/cpu.c changes after Graeme's comments]
Signed-off-by: Tom Rini <trini@ti.com>
We currently assume that the global data pointer is at the start of
struct global_data. We want to remove this restriction, and it is
easiest to do this in C.
Remove the asm code and add equivalent code in C.
This idea was proposed by Graeme Russ here:
http://patchwork.ozlabs.org/patch/199741/
Signed-off-by: Simon Glass <sjg@chromium.org>
[trini: Apply Graeme Russ' comments
http://patchwork.ozlabs.org/patch/206305/ here, re-order]
Signed-off-by: Tom Rini <trini@ti.com>
The function setup_pcat_compatibility() is weak and implemented as empty
function in board.c hence we don't have to override that with another
empty function.
monitor_flash_len is unused, drop it.
Signed-off-by: Stefan Reinauer <reinauer@chromium.org>
Signed-off-by: Simon Glass <sjg@chromium.org>
... because that information is already "encoded" in the directory name.
Signed-off-by: Stefan Reinauer <reinauer@chromium.org>
Signed-off-by: Simon Glass <sjg@chromium.org>
Some systems (like Google Link device) provide the ability to keep a
history of the target CPU port80 accesses, which is extremely handy
for debugging. The problem is that the EC handling port 80 access is
orders of magnitude slower than the AP. This causes random loss of
trace data.
This change allows to throttle port 80 accesses such that in case the
AP is trying to post faster than the EC can handle, a delay is
introduced to make sure that the post rate is throttled. Experiments
have shown that on Link the delay should be at least 350,000 of tsc
clocks.
Throttling is not being enabled by default: to enable it one would
have to set MIN_PORT80_KCLOCKS_DELAY to something like 400 and rebuild
the u-boot image. With upcoming EC code optimizations this number
could be decreased (new new value should be established
experimentally).
Signed-off-by: Vadim Bendebury <vbendeb@chromium.org>
Signed-off-by: Simon Glass <sjg@chromium.org>
Some u-boot modules rely on availability of get_ticks() and
get_tbclk() functions, reporting a free running clock and its
frequency respectively. Traditionally these functions return number
and frequency of timer interrupts.
Intel's core architecture processors however are known to run the
rdtsc instruction at a constant rate of the so called 'Max Non Turbo
ratio' times the external clock frequency which is 100MHz. This is
just as good for the timer tick functions in question.
Signed-off-by: Vadim Bendebury <vbendeb@chromium.org>
Signed-off-by: Simon Glass <sjg@chromium.org>
This will write magic value to APMC command port which
will trigger an SMI and cause coreboot to lock down
the ME, chipset, and CPU.
Signed-off-by: Duncan Laurie <dlaurie@chromium.org>
Signed-off-by: Simon Glass <sjg@chromium.org>
Coreboot was always using MTRR 7 for the write-protect
cache entry that covers the ROM and U-boot was removing it.
However with 4GB configs we need more MTRRs for the BIOS
and so the WP MTRR needs to move. Instead coreboot will
always use the last available MTRR that is normally set
aside for OS use and U-boot can clear it before the OS.
Signed-off-by: Duncan Laurie <dlaurie@chromium.org>
Signed-off-by: Simon Glass <sjg@chromium.org>
This helps us monitor boot progress and determine where U-Boot dies if
there are any problems.
Signed-off-by: Stefan Reinauer <reinauer@google.com>
Signed-off-by: Simon Glass <sjg@chromium.org>
These were removed, but actually are useful.
Cold means that we started from a reset/power on.
Warm means that we started from another U-Boot.
We determine whether u-boot on x86 was warm or cold booted (really if
it started at the beginning of the text segment or at the ELF entry point).
We plumb the result through to the global data structure.
Signed-off-by: Simon Glass <sjg@chromium.org>
Because calculate_relocation_address now uses the e820 map, it will be able
to avoid addresses over 32 bits and regions that are at high addresses but
not big enough for U-Boot. It also means we can remove the hack which
limitted U-Boot's idea of the size of memory to less than 4GB.
Also take into account the space needed for the heap and stack, so we avoid
picking a very small region those areas might overlap with something it
shouldn't.
Signed-off-by: Gabe Black <gabeblack@chromium.org>
Signed-off-by: Simon Glass <sjg@chromium.org>
U-boot is unable to actually use that memory and it can
cause problems with relocation if it tries to.
Signed-off-by: Duncan Laurie <dlaurie@chromium.org>
Signed-off-by: Simon Glass <sjg@chromium.org>
This cleans up the rom caching optimization implemented in coreboot (and
needed throughout U-Boot runtime).
Signed-off-by: Stefan Reinauer <reinauer@chromium.org>
Signed-off-by: Simon Glass <sjg@chromium.org>
This way when that dram "banks" are displayed, there's some useful information
there. The number of "banks" we claim to have needs to be adjusted so that it
covers the number of RAM e820 regions we expect to have/care about.
This needs to be done after "RAM" initialization even though we always run
from RAM. The bd pointer in the global data structure doesn't automatically
point to anything, and it isn't set up until "RAM" is available since, I
assume, it would take too much space in the very constrained pre-RAM
environment.
Signed-off-by: Gabe Black <gabeblack@chromium.org>
Signed-off-by: Simon Glass <sjg@chromium.org>
This change turns on the code which allows u-boot to add
timestamps to the timestamp table created by coreboot.
Since u-boot does not use the tsc_t like structure to represent
HW counter readings, this structure is being replaced by 64 bit
integer.
The timestamp_init() function is now initializing the base timer
value used by u-boot to calculate the HW counter increments.
Timestamp facility is initialized as soon as the timestamp table
pointer is found in the coreboot table. The u-boot generated
timer events' ID will start at 1000 to clearly separate u-boot
events from coreboot events in the timer trace.
Signed-off-by: Vadim Bendebury <vbendeb@chromium.org>
Signed-off-by: Stefan Reinauer <reinauer@chromium.org>
Signed-off-by: Simon Glass <sjg@chromium.org>
The microsecond timer is not currently implemented, but add a dummy
implementation for now.
Signed-off-by: Gabe Black <gabeblack@chromium.org>
Signed-off-by: Simon Glass <sjg@chromium.org>
This function provides an opportunity for some last minute cleanup and
reconfiguration before control is handed over to Linux. It's possible this
may need to do something in the future, but for now it's left empty. It's set
up as a weak symbol so it can be overridden if necessary on a case by case
basis.
Signed-off-by: Gabe Black <gabeblack@chromium.org>
Signed-off-by: Simon Glass <sjg@chromium.org>
Add support for decoding tags for GPIOs, compile/build info, cbmem and
other features.
Signed-off-by: Stefan Reinauer <reinauer@chromium.org>
Signed-off-by: Vadim Bendebury <vbendeb@chromium.org>
Signed-off-by: Gabe Black <gabeblack@chromium.org>
Signed-off-by: Simon Glass <sjg@chromium.org>
sysinfo.c only contains the lib_sysinfo data structure which
is used/filled by tables.c. This split was introduced by importing
code from libpayload originally, but to keep the code simple, add
the single line of actual code to tables.c
Signed-off-by: Stefan Reinauer <reinauer@chromium.org>
Signed-off-by: Simon Glass <sjg@chromium.org>
A hook is installed to configure PCI bus bridges as they encountered by u-boot.
The hook extracts the secondary bus number from the bridge's config space and
then recursively scans that bus.
On Coreboot, the PCI bus address space has identity mapping with the
physical address space, so declare it as such to ensure that the "pci_map_bar"
function used by some PCI drivers is behaving properly. This fixes the
EHCI PCI driver initialization on Stumpy.
This was tested as follows:
Ran the PCI command on Alex, saw devices on bus 0, the OXPCIe 952 on
bus 1, and empty busses 2 through 5. This matches the bridges
reported on bus 0 and the PCI configuration output from coreboot.
Signed-off-by: Gabe Black <gabeblack@chromium.org>
Signed-off-by: Vincent Palatin <vpalatin@chromium.org>
Signed-off-by: Stefan Reinauer <reinauer@chromium.org>
Signed-off-by: Simon Glass <sjg@chromium.org>
U-boot needs a host controller or "hose" to interact with the PCI busses
behind them. This change installs a host controller during initialization of
the coreboot "board" which implements some of X86's basic PCI semantics. This
relies on some existing generic code, but also duplicates a little bit of code
from the sc520 implementation. Ideally we'd eliminate that duplication at some
point.
It looks like in order to scan buses beyond bus 0, we'll need to tell u-boot's
generic PCI configuration code what to do if it encounters a bridge,
specifically to scan the bus on the other side of it.
Signed-off-by: Gabe Black <gabeblack@chromium.org>
Signed-off-by: Simon Glass <sjg@chromium.org>
Acked-by: Graeme Russ <graeme.russ@gmail.com>
coreboot.c and coreboot_pci.c don't contain board specific but only
coreboot specific code. Hence move it to the coreboot directory in
arch/x86/cpu (which should probably be moved out of cpu/ in another
commit)
Signed-off-by: Stefan Reinauer <reinauer@chromium.org>
Signed-off-by: Simon Glass <sjg@chromium.org>
When running from coreboot we don't want this code.
This version works by ifdef-ing out all of the code that would go
into those sections and all the code that refers to it. The sections are
then empty, and the linker will either leave them empty for the loader
to ignore or remove them entirely.
Signed-off-by: Gabe Black <gabeblack@chromium.org>
Signed-off-by: Simon Glass <sjg@chromium.org>