U-Boot widely uses error() as a bit noisier variant of printf().
This macro causes name conflict with the following line in
include/linux/compiler-gcc.h:
# define __compiletime_error(message) __attribute__((error(message)))
This prevents us from using __compiletime_error(), and makes it
difficult to fully sync BUILD_BUG macros with Linux. (Notice
Linux's BUILD_BUG_ON_MSG is implemented by using compiletime_assert().)
Let's convert error() into now treewide-available pr_err().
Done with the help of Coccinelle, excluing tools/ directory.
The semantic patch I used is as follows:
// <smpl>
@@@@
-error
+pr_err
(...)
// </smpl>
Signed-off-by: Masahiro Yamada <yamada.masahiro@socionext.com>
Reviewed-by: Simon Glass <sjg@chromium.org>
[trini: Re-run Coccinelle]
Signed-off-by: Tom Rini <trini@konsulko.com>
The ADC can support some channels signal-ended some bits Successive Approximation
Register (SAR) A/D Converter, like 6-channel and 10-bit. It converts the analog
input signal into some bits binary digital codes.
Signed-off-by: David Wu <david.wu@rock-chips.com>
Acked-by: Philipp Tomsich <philipp.tomsich@theobroma-systems.com>
Reviewed-by: Philipp Tomsich <philipp.tomsich@theobroma-systems.com>
These support the flat device tree. We want to use the dev_read_..()
prefix for functions that support both flat tree and live tree. So rename
the existing functions to avoid confusion.
In the end we will have:
1. dev_read_addr...() - works on devices, supports flat/live tree
2. devfdt_get_addr...() - current functions, flat tree only
3. of_get_address() etc. - new functions, live tree only
All drivers will be written to use 1. That function will in turn call
either 2 or 3 depending on whether the flat or live tree is in use.
Note this involves changing some dead code - the imx_lpi2c.c file.
Signed-off-by: Simon Glass <sjg@chromium.org>
At present devices use a simple integer offset to record the device tree
node associated with the device. In preparation for supporting a live
device tree, which uses a node pointer instead, refactor existing code to
access this field through an inline function.
Signed-off-by: Simon Glass <sjg@chromium.org>
This commit adds implementation of Sandbox ADC device emulation.
The device provides:
- single and multi-channel conversion
- 4 channels with predefined conversion output data
- 16-bit resolution
Signed-off-by: Przemyslaw Marczak <p.marczak@samsung.com>
Cc: Simon Glass <sjg@chromium.org>
Signed-off-by: Minkyu Kang <mk7.kang@samsung.com>
This commit adds driver for Exynos54xx ADC subsystem.
The driver is implemented using driver model, amd provides
ADC uclass's methods for ADC single channel operations:
- adc_start_channel()
- adc_channel_data()
- adc_stop()
The basic parameters of ADC conversion, are:
- sample rate: 600KSPS
- output the data as average of 8 time conversion
ADC features:
- sample rate: 600KSPS
- resolution: 12-bit
- channels: 10 (analog multiplexer)
Signed-off-by: Przemyslaw Marczak <p.marczak@samsung.com>
Cc: Minkyu Kang <mk7.kang@samsung.com>
Cc: Simon Glass <sjg@chromium.org>
Signed-off-by: Minkyu Kang <mk7.kang@samsung.com>
This commit adds:
- new uclass id: UCLASS_ADC
- new uclass driver: drivers/adc/adc-uclass.c
The new uclass's API allows for ADC operation on:
* single-channel with channel selection by a number
* multti-channel with channel selection by bit mask
ADC uclass's functions:
* single-channel:
- adc_start_channel() - start channel conversion
- adc_channel_data() - get conversion data
- adc_channel_single_shot() - start/get conversion data
* multi-channel:
- adc_start_channels() - start selected channels conversion
- adc_channels_data() - get conversion data
- adc_channels_single_shot() - start/get conversion data for channels
selected by bit mask
* general:
- adc_stop() - stop the conversion
- adc_vdd_value() - positive reference Voltage value with polarity [uV]
- adc_vss_value() - negative reference Voltage value with polarity [uV]
- adc_data_mask() - conversion data bit mask
The device tree can provide below constraints/properties:
- vdd-polarity-negative: if true: Vdd = vdd-microvolts * (-1)
- vss-polarity-negative: if true: Vss = vss-microvolts * (-1)
- vdd-supply: phandle to Vdd regulator's node
- vss-supply: phandle to Vss regulator's node
And optional, checked only if the above corresponding, doesn't exist:
- vdd-microvolts: positive reference Voltage [uV]
- vss-microvolts: negative reference Voltage [uV]
Signed-off-by: Przemyslaw Marczak <p.marczak@samsung.com>
Cc: Simon Glass <sjg@chromium.org>
Signed-off-by: Minkyu Kang <mk7.kang@samsung.com>