With commit 7985cdf we converted all systems except for the Layerscape
SoCs to the generic descriptor table based page table setup.
On the Layerscape SoCs however, we just provide an empty table stub
and do the setup ourselves. To reserve enough memory for the tables,
we need to override the default counting mechanism which would end up
with an empty table because we have no maps.
Fixes: 7985cdf
Reported-by: York Sun <york.sun@nxp.com>
CC: Alison Wang <alison.wang@nxp.com>
CC: Prabhakar Kushwaha <prabhakar.kushwaha@nxp.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
Tested-by: York Sun <york.sun@nxp.com>
Reviewed-by: York Sun <york.sun@nxp.com>
Starting with 96e5b03 we use a linker list for partition table
information. However since we use this in SPL we need to make sure that
the SPL linker scripts include these as well. While doing this, it's
best to simply include all linker lists to future proof ourselves.
Cc: Andreas Bießmann <andreas.devel@googlemail.com>
Acked-by: Michal Simek <michal.simek@xilinx.com>
Reviewed-by: Simon Glass <sjg@chromium.org>
Reported-by: Nishanth Menon <nm@ti.com>
Tested-by: Nishanth Menon <nm@ti.com>
Signed-off-by: Tom Rini <trini@konsulko.com>
On OMAP4 platforms that also need to calculate their DDR settings we are
now getting very close to the linker limit size. Since OMAP44XX is only
seen with LPDDR2, remove some run time tests for LPDDR2 or DDR3 as we
will know that we don't have it for OMAP44XX.
Cc: Nishanth Menon <nm@ti.com>
Signed-off-by: Tom Rini <trini@konsulko.com>
Our current arm64 exception handlers all panic and never return to the
exception triggering code.
But if any handler wanted to continue execution after fixups, it would
need help from the exception handling code to restore all registers.
This patch implements that help. With this code, exception handlers on
aarch64 can successfully return to the place the exception happened (or
somewhere else if they modify elr).
Signed-off-by: Alexander Graf <agraf@suse.de>
After booting has finished, EFI allows firmware to still interact with the OS
using the "runtime services". These callbacks live in a separate address space,
since they are available long after U-Boot has been overwritten by the OS.
This patch adds enough framework for arbitrary code inside of U-Boot to become
a runtime service with the right section attributes set. For now, we don't make
use of it yet though.
We could maybe in the future map U-boot environment variables to EFI variables
here.
Signed-off-by: Alexander Graf <agraf@suse.de>
Reviewed-by: Simon Glass <sjg@chromium.org>
Tested-by: Simon Glass <sjg@chromium.org>
Now that we have an easy way to describe memory regions and enable the MMU,
there really shouldn't be anything holding people back from running with
caches enabled on AArch64. To make sure people catch early if they're missing
on the caching fun, give them a compile error.
Signed-off-by: Alexander Graf <agraf@suse.de>
By now the code to only have a single page table level with 64k page
size and 42 bit address space is no longer used by any board in tree,
so we can safely remove it.
To clean up code, move the layerscape mmu code to the new defines,
removing redundant field definitions.
Signed-off-by: Alexander Graf <agraf@suse.de>
Now that we have nice table driven page table creating code that gives
us everything we need, move to that.
Signed-off-by: Alexander Graf <agraf@suse.de>
The MMU range table can vary depending on things we may only find
out at runtime. While the very simple ThunderX variant does not
change, other boards will, so move the definition from a static
entry in a header file to the board file.
Signed-off-by: Alexander Graf <agraf@suse.de>
The idea to generate our pages tables from an array of memory ranges
is very sound. However, instead of hard coding the code to create up
to 2 levels of 64k granule page tables, we really should just create
normal 4k page tables that allow us to set caching attributes on 2M
or 4k level later on.
So this patch moves the full_va mapping code to 4k page size and
makes it fully flexible to dynamically create as many levels as
necessary for a map (including dynamic 1G/2M pages). It also adds
support to dynamically split a large map into smaller ones when
some code wants to set dcache attributes.
With all this in place, there is very little reason to create your
own page tables in board specific files.
Signed-off-by: Alexander Graf <agraf@suse.de>
When running in EL1, AArch64 knows two page table maps. One with addresses
that start with all zeros (TTBR0) and one with addresses that start with all
ones (TTBR1).
In U-Boot we don't care about the high up maps, so just disable them to ensure
we don't walk an invalid page table by accident.
Reported-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
Based on the memory map we can determine a lot of hard coded fields of
TCR, like the maximum VA and max PA we want to support. Calculate those
dynamically to reduce the chance for pit falls.
Signed-off-by: Alexander Graf <agraf@suse.de>
Since the SAR registers are filled with garbage on cold reset, this checks for a
warm reset to assert the validity of reboot mode.
Signed-off-by: Paul Kocialkowski <contact@paulk.fr>
Reboot mode is written to SAR memory before reboot in the form of a string.
This mechanism is supported on OMAP4 by various TI kernels.
It is up to each board to make use of this mechanism or not.
Signed-off-by: Paul Kocialkowski <contact@paulk.fr>
This correctly enables the USB PHY clocks, by enabling CM_ALWON_USBPHY_CLKCTRL
and correctly setting CM_L3INIT_USBPHY_CLKCTRL's value.
Signed-off-by: Paul Kocialkowski <contact@paulk.fr>
On (at least) OMAP4, the USB DPLL is required to be setup for the internal PHY
to work properly. The internal PHY is used by default with the MUSB USB OTG
controller.
Signed-off-by: Paul Kocialkowski <contact@paulk.fr>
The Amazon Kindle Fire (first generation) codename kc1 is a tablet that was
released by Amazon back in 2011.
It is using an OMAP4430 SoC GP version, which allows running U-Boot and the
U-Boot SPL from the ground up.
Signed-off-by: Paul Kocialkowski <contact@paulk.fr>
I2C is often enabled withing the U-Boot SPL, thus those clocks are required to
be enabled early (especially when the bootrom doesn't enable them for us).
Signed-off-by: Paul Kocialkowski <contact@paulk.fr>
This removes a duplicate reference to CM_L3INIT_USBPHY_CLKCTRLin
enable_basic_uboot_clocks. Also, a doubled whitespace is removed.
Signed-off-by: Paul Kocialkowski <contact@paulk.fr>
save_omap_boot_params is called from spl_board_init in the SPL context. Thus,
there is no reason to duplicate that call on arch_cpu_init.
Signed-off-by: Paul Kocialkowski <contact@paulk.fr>
There is no distinction between essential and non-essential mux configuration,
so it doesn't make sense to have an "essential" prefix.
Signed-off-by: Paul Kocialkowski <contact@paulk.fr>
Individual boards might provide their own emif_get_device_timings function and
use the jedec timings in their own way, hence those have to be exported.
Signed-off-by: Paul Kocialkowski <contact@paulk.fr>
Individual boards might provide their own emif_get_device_timings function and
use the elpidia timings in their own way, hence those have to be exported.
Signed-off-by: Paul Kocialkowski <contact@paulk.fr>
Individual boards might provide their own emif_get_device_details function and
use elpidia device details in their own way, hence those have to be exported.
This also wraps existing definitions with the proper ifdef logic.
Signed-off-by: Paul Kocialkowski <contact@paulk.fr>
This introduces a define for the offset to the reboot reason, rather than
hardcoding it.
Signed-off-by: Paul Kocialkowski <contact@paulk.fr>
Reviewed-by: Tom Rini <trini@konsulko.com>
This switches reboot mode handling to a string-based interface, that allows more
flexibility to set a common interface with the next generations of OMAP devices.
Signed-off-by: Paul Kocialkowski <contact@paulk.fr>
Reviewed-by: Tom Rini <trini@konsulko.com>
To make SPL_OF_CONTROL work on ARM64 SoCs, _image_binary_end must be
defined in the linker script.
LD spl/u-boot-spl
lib/built-in.o: In function `fdtdec_setup':
lib/fdtdec.c:1186: undefined reference to `_image_binary_end'
lib/fdtdec.c:1186: undefined reference to `_image_binary_end'
make[1]: *** [spl/u-boot-spl] Error 1
make: *** [spl/u-boot-spl] Error 2
Note:
CONFIG_SPL_SEPARATE_BSS must be defined as well on ARM64 SoCs.
Signed-off-by: Masahiro Yamada <yamada.masahiro@socionext.com>
Reviewed-by: Tom Rini <trini@konsulko.com>
The newer versions of DRA7 boards has EEPROM populated with DDR
size specified in it. Moving DRA7 specific emif related settings
to board files so that emif settings can be identified based on EEPROM.
Acked-by: Nishanth Menon <nm@ti.com>
Reviewed-by: Tom Rini <trini@konsulko.com>
Signed-off-by: Lokesh Vutla <lokeshvutla@ti.com>
A few boards still use ns16550_platdata structures, but assume the structure
is going to be in a specific order. By explicitly naming each entry,
this should also help 'future-proof' in the event the structure changes.
Tested on the Logic PD Torpedo + Wireless.
I only changed a handful of devices that used the same syntax as the Logic
board. Appologies if I missed one or stepped on toes. Thanks to Derald Woods
and Alexander Graf.
Signed-off-by: Adam Ford <aford173@gmail.com>
V6: Add fix to arch/arm/cpu/armv7/am33xx/board.c
V5: Add fix to arch/arm/cpu/arm926ejs/lpc32xx/devices.c
V4: Fix subject heading
V3: Remove reg_offset out in all the structs. It was reverted out, and and if
it did exist, it would get initialized to 0 by default.
V2: I hastily copy-pasted the boards without looking at the UART number.
This addresses 3 boards that use UART3 and not UART1.
Reviewed-by: Mugunthan V N <mugunthanvnm@ti.com>
Reviewed-by: Simon Glass <sjg@chromium.org>
Early system initialization is being done before initf_dm is being called
in U-Boot. Then system will fail to boot if any of the DM enabled driver
is being called in this system initialization code. So, rearrange the
code a bit so that DM enabled drivers can be called during early system
initialization.
Signed-off-by: Lokesh Vutla <lokeshvutla@ti.com>
Reviewed-by: Tom Rini <trini@konsulko.com>
Given that DRA7/OMAP5 SoCs can support more than 2GB of memory,
enable interleaving for this higher memory to increase performance.
Signed-off-by: Lokesh Vutla <lokeshvutla@ti.com>
Reviewed-by: Tom Rini <trini@konsulko.com>
Read and write leveling can be enabled independently. Check for these
enable bits before updating the read and write leveling output values.
This will allow to use the combination of software and hardware leveling.
Signed-off-by: Lokesh Vutla <lokeshvutla@ti.com>
Reviewed-by: Tom Rini <trini@konsulko.com>
Commit (20fae0a - ARM: DRA7: DDR: Enable SR in Power Management Control)
enables Self refresh mode by default and during warm reset the EMIF
contents are preserved. After warm reset EMIF sees that it is idle and
puts DDR in self-refresh. When in SR, leveling operations cannot be done
as DDR can only accept SR exit command, so its hanging during warm reset.
In order to fix this reset the power management control register before
EMIF initialization if it is a warm reset.
Signed-off-by: Lokesh Vutla <lokeshvutla@ti.com>
Reviewed-by: Tom Rini <trini@konsulko.com>
On DRA7, refresh ctrl shadow should be updated with
the final value.
Signed-off-by: Lokesh Vutla <lokeshvutla@ti.com>
Reviewed-by: Tom Rini <trini@konsulko.com>
Current AM57xx evm supports both BeagleBoard-X15
(http://beagleboard.org/x15) and AM57xx EVM
(http://www.ti.com/tool/tmdxevm5728).
The AM572x EValuation Module(EVM) provides an affordable platform to
quickly start evaluation of Sitara. ARM Cortex-A15 AM57x Processors
(AM5728, AM5726, AM5718, AM5716) and accelerate development for HMI,
machine vision, networking, medical imaging and many other industrial
applications. This EVM is based on the same BeagleBoard-X15 Chassis
and adds mPCIe, mSATA, LCD, touchscreen, Camera, push button and TI's
wlink8 offering.
Since the EEPROM contents are compatible between the BeagleBoard-X15 and
the AM57xx-evm, we add support for the detection logic to enable
support for various user programmable scripting capability.
NOTE: U-boot configuration is currently a superset of AM57xx evm and
BeagleBoard-X15 and no additional configuration tweaking is needed.
This change also sets up the stage for future support of TI AM57xx EVMs
to the same base bootloader build.
Signed-off-by: Steve Kipisz <s-kipisz2@ti.com>
Signed-off-by: Lokesh Vutla <lokeshvutla@ti.com>
Signed-off-by: Nishanth Menon <nm@ti.com>
Reviewed-by: Tom Rini <trini@konsulko.com>
Many TI EVMs have capability to store relevant board information
such as DDR description in EEPROM. Further many pad configuration
variations can occur as part of revision changes in the platform.
In-order to support these at runtime, we for a board detection hook
which is available for override from board files that may desire to do
so.
NOTE: All TI EVMs are capable of detecting board information based on
early clocks that are configured. However, in case of additional needs
this can be achieved within the override logic from within the board
file.
Signed-off-by: Steve Kipisz <s-kipisz2@ti.com>
Reviewed-by: Tom Rini <trini@konsulko.com>
Reviewed-by: Lokesh Vutla <lokeshvutla@ti.com>
Reviewed-by: Tom Rini <trini@konsulko.com>
Early clock initialization is currently done in two stages for OMAP4/5
SoCs. The first stage is the initialization of console clocks and
then we initialize basic clocks for functionality necessary for SoC
initialization and basic board functionality.
By splitting up prcm_init and centralizing this clock initialization,
we setup the code for follow on patches that can do board specific
initialization such as board detection which will depend on these
basic clocks.
As part of this change, since the early clock initialization
is centralized, we no longer need to expose the console clock
initialization.
NOTE: we change the sequence slightly by initializing console clocks
timer after the io settings are complete, but this is not expected
to have any functioanlity impact since we setup the basic IO drive
strength initialization as part of do_io_settings.
Signed-off-by: Steve Kipisz <s-kipisz2@ti.com>
Reviewed-by: Tom Rini <trini@konsulko.com>
Reviewed-by: Lokesh Vutla <lokeshvutla@ti.com>
Reviewed-by: Tom Rini <trini@konsulko.com>
If HDMI_IH_FC_STAT2_OVERFLOW_MASK is set, we need to
do TMDS software reset and write to clear fc_invidconf register.
We need minimum 3 times to write to clear the fc_invidconf
register, so choose 5 loops here.
Signed-off-by: Peng Fan <van.freenix@gmail.com>
Signed-off-by: Sandor Yu <sandor.yu@nxp.com>
Cc: Stefano Babic <sbabic@denx.de>
Cc: Fabio Estevam <fabio.estevam@nxp.com>
Now that we fall back to the FS code path when we don't find u-boot
at the raw sector offset, there is no good reason to not default to
raw boot.
With this patch, I can successfully boot u-boot from a raw sector
offset on beagle-xm.
Signed-off-by: Alexander Graf <agraf@suse.de>
This introduces some minor cleanups, regarding aspects such as board name, code
and headers organization as well as deprecated and missing config options.
Signed-off-by: Paul Kocialkowski <contact@paulk.fr>
Reviewed-by: Tom Rini <trini@konsulko.com>
The initialization for smmu and stream id is moved into the common soc
code.
Signed-off-by: Alison Wang <alison.wang@nxp.com>
Reviewed-by: York Sun <york.sun@nxp.com>
Memory controller performance is not optimal with default internal
target queue register value, write required value for optimal DDR
performance.
Signed-off-by: Mingkai Hu <mingkai.hu@nxp.com>
Reviewed-by: York Sun <york.sun@nxp.com>
Add support for phy 1-3.
Signed-off-by: Jelle van der Waa <jelle@vdwaa.nl>
[hdegoede@redhat.com: use setclrbits_le32 instead of read-modify-write]
Signed-off-by: Hans de Goede <hdegoede@redhat.com>
In current design, if any peripheral was assigned to both A7 and M4,
it will receive ipg_stop or ipg_wait when any of the 2 platforms
enter low power mode. We will have a risk that, if A7 enter wait,
M4 enter stop, peripheral will have chance to get ipg_stop and ipg_wait
asserted same time. Also if M4 enters stop mode, A7 will have no
chance to access the peripheral.
There are 26 peripherals affected by this IC issue:
SIM2(sim2/emvsim2)
SIM1(sim1/emvsim1)
UART1/UART2/UART3/UART4/UART5/UART6/UART7
SAI1/SAI2/SAI3
WDOG1/WDOG2/WDOG3/WDOG4
GPT1/GPT2/GPT3/GPT4
PWM1/PWM2/PWM3/PWM4
ENET1/ENET2
Software Workaround:
The solution is to set the peripherals to Domain0 by A core, since A core
in Domain0. The peripherals which will be used by M4, will be set to Domain1
by M4.
For example, A core set WDOG4 to domain0, but when M4 boots up, M4 will
set WDOG4 to domain1, because M4 will use WDOG4.
So the peripherals are not shared by them. This way requires
the uboot implemented the RDC driver and set the 26 IPs above
to domain 0 only. M4 image will set the M4 to domain 1 and
set peripheral which it will use to domain 1.
This patch enables the CONFIG_IMX_RDC and CONFIG_IMX_BOOTAUX for
i.MX7D SABRESD board, and setup the 26 IP resources to domain 0.
Signed-off-by: Ye.Li <ye.li@nxp.com>
Signed-off-by: Peng Fan <peng.fan@nxp.com>