If a debugger is not attached to U-Boot, semihosting calls will raise a
synchronous abort exception. Try to catch this and disable semihosting
so we can e.g. use another uart if one is available. In the immediate
case, we return an error, since it is not always possible to check for
semihosting beforehand (debug uart, user-initiated load command, etc.)
We handle all possible semihosting instructions, which is probably
overkill. However, we do need to keep track of what instruction set
we're using so that we don't suppress an actual error.
A future enhancement could try to determine semihosting capability by
inspecting the processor state. There's an example of this at [1] for
RISC-V. The equivalent for ARM would inspect the monitor modei
enable/select bits of the DSCR. However, as the article notes, an
exception handler is still helpful in order to catch disconnected
debuggers.
[1] https://tomverbeure.github.io/2021/12/30/Semihosting-on-RISCV.html#avoiding-hangs-when-a-debugger-is-not-connected
Signed-off-by: Sean Anderson <sean.anderson@seco.com>
These functions are intended to support detecting semihosting and
falling back gracefully to alternative implementations. The test starts
by making semihosting call. SYS_ERRNO is chosen because it should not
mutate any state. If this semihosting call results in an exception
(rather than being caught by the debugger), then the exception handler
should call disable_semihosting() and resume execution after the call.
Ideally, this would just be part of semihosting by default, and not a
separate config. However, to reduce space ARM SPL doesn't include
exception vectors by default. This means we can't detect if a
semihosting call failed unless we enable them. To avoid forcing them to
be enabled, we use a separate config option. It might also be possible
to try and detect whether a debugger has enabled (by reading HDE from
DSCR), but I wasn't able to figure out a way to do this from all ELs.
This patch just introduces the generic code to handle detection. The
next patch will implement it for arm64 (but not arm32).
Signed-off-by: Sean Anderson <sean.anderson@seco.com>
This adds support for booting entirely from JTAG while using a
hard-coded RCW. With these steps, it is not necessary to program a
"good" RCW using CodeWarrior. The method here can be performed with any
JTAG adapter supported by OpenOCD, including the on-board CMSIS-DAP
(albeit very slowly).
These steps require LS1046A support in OpenOCD, which was added in [1].
[1] 5b70c1f679/
Signed-off-by: Sean Anderson <sean.anderson@seco.com>
[trini: Add reference to doc/board/nxp/ls1046ardb.rst]
This adds a serial driver which uses semihosting calls to read and write
to the host's console. For convenience, if CONFIG_DM_SERIAL is enabled,
we will instantiate a serial driver. This allows users to enable this
driver (which has no physical device) without modifying their device
trees or board files. We also implement a non-DM driver for SPL, or for
much faster output in U-Boot proper.
There are three ways to print to the console:
Method Baud
================== =====
smh_putc in a loop 170
smh_puts 1600
smh_write with :tt 20000
================== =====
These speeds were measured using a 175 character message with a J-Link
adapter. For reference, U-Boot typically prints around 2700 characters
during boot on this board. There are two major factors affecting the
speed of these functions. First, each breakpoint incurs a delay. Second,
each debugger memory transaction incurs a delay. smh_putc has a
breakpoint and memory transaction for every character. smh_puts has one
breakpoint, but still has to use a transaction for every character. This
is because we don't know the length up front, so OpenOCD has to check if
each character is nul. smh_write has only one breakpoint and one memory
transfer.
DM serial drivers can only implement a putc interface, so we are stuck
with the slowest API. Non-DM drivers can implement puts, which is vastly
more efficient. When the driver starts up, we try to open :tt. Since
this is an extension, this may fail. If it does, we fall back to
smh_puts. We don't check :semihosting-features, since there are
nonconforming implementations (OpenOCD) which don't implement it (but
*do* implement :tt).
Some semihosting implementations (QEMU) don't handle READC properly. To
work around this, we try to use open/read (much like for stdin) if
possible.
There is no non-blocking I/O available, so we don't implement pending.
This will cause __serial_tstc to always return true. If
CONFIG_SERIAL_RX_BUFFER is enabled, _serial_tstc will try and read
characters forever. To avoid this, we depend on this config being
disabled.
Signed-off-by: Sean Anderson <sean.anderson@seco.com>
Reviewed-by: Simon Glass <sjg@chromium.org>
This adds three wrappers around the semihosting commands for reading and
writing to the host console. We use the more standard getc/putc/puts
names instead of readc/writec/write0 for familiarity.
Signed-off-by: Sean Anderson <sean.anderson@seco.com>
This command's functionality is now completely implemented by the
standard fs load command. Convert the vexpress64 boot command (which is
the only user) and remove the implementation.
Signed-off-by: Sean Anderson <sean.anderson@seco.com>
This adds a filesystem which is backed by the host's filesystem. It is
modeled off of sandboxfs, which has very similar aims. Semihosting
doesn't support listing directories (except with SYS_SYSTEM), so neither
do we. it's possible to optimize a bit for the common case of reading a
whole file by omitting a call to smh_seek, but this is left as a future
optimization.
Signed-off-by: Sean Anderson <sean.anderson@seco.com>
In order to add filesystem support, we will need to be able to seek and
write files. Add the appropriate helper functions.
Signed-off-by: Sean Anderson <sean.anderson@seco.com>
There's no point in using string constants for smh_open if we are just
going to have to parse them. Instead, use numeric modes. The user needs
to be a bit careful with these, since they are much closer semantically
to string modes used by fopen(3) than the numeric modes used with
open(2).
Signed-off-by: Sean Anderson <sean.anderson@seco.com>
This exports semihosting functions for use in other files. The header is
in include/ and not arm/include/asm because I anticipate that RISC-V may
want to add their own implementation at some point.
smh_len_fd has been renamed to smh_flen to more closely match the
semihosting spec.
Signed-off-by: Sean Anderson <sean.anderson@seco.com>
The ARMv8-R64 architecture introduces optional VMSA (paging based MMU)
support in the EL1/0 translation regime, which makes that part mostly
compatible to ARMv8-A.
Add a new board variant to describe the "BASE-R64" FVP model, which
inherits a lot from the existing v8-A FVP support. One major difference
is that the memory map in "inverted": DRAM starts at 0x0, MMIO is at
2GB [1].
* Create new TARGET_VEXPRESS64_BASER_FVP target, sharing most of the
exising configuration.
* Implement inverted memory map in vexpress_aemv8.h
* Create vexpress_aemv8r defconfig
* Provide an MMU memory map for the BASER_FVP
* Update vexpress64 documentation
At the moment the boot-wrapper is the only supported secure firmware. As
there is no official DT for the board yet, we rely on it being supplied
by the boot-wrapper into U-Boot, so use OF_HAS_PRIOR_STAGE, and go with
a dummy DT for now.
[1] https://developer.arm.com/documentation/100964/1114/Base-Platform/Base---memory/BaseR-Platform-memory-map
Signed-off-by: Peter Hoyes <Peter.Hoyes@arm.com>
[Andre: rebase and add Linux kernel header]
Signed-off-by: Andre Przywara <andre.przywara@arm.com>
[trini: Add MAINTAINERS entry for Peter]
In preparation for the ARMv8-R64 FVP support, which has DRAM mapped at
0x0, generalise the page table generation, by using symbolic names for
the address ranges instead of fixed numbers.
We already define the base of the DRAM and MMIO regions, so just use
those symbols in the page table description. Rename V2M_BASE to the more
speaking V2M_DRAM_BASE on the way.
On the VExpress memory map, the address space right after 4GB is of no
particular interest to software, as the whole of DRAM is mapped at 32GB
instead. The first 2 GB alias to the lower 2GB of DRAM mapped below 4GB,
so we skip this part and map some more of the high DRAM, should anyone
need it.
Signed-off-by: Andre Przywara <andre.przywara@arm.com>
So far the FVP model just supports booting through semihosting, so by
loading files from the host the model is running on. This allows for
quick booting of new kernels (or replacing DTBs), but prevents more
featureful boots like using UEFI.
Enable the distro_boot feature, and provide a list of possible boot
sources that U-Boot should check:
- For backwards compatibility we start with semihosting, which gets its
commands migrated from CONFIG_BOOTCOMMAND into the distro_boot
infrastructure. This is also slightly tweaked to fail graceful in case
the required files could not be found.
- Next we try to use a user provided script, that could be easily
placed into memory using the model command line.
- Since we gained virtio support with the enablement of OF_CONTROL,
let's check virtio block devices next. This is where UEFI boot can
be easily used, for instance by providing a distro installer .iso
file through virtio-blk.
- Networking is now provided by virtio as well, so enable the default
PXE and DHCP boot flows, mostly because we can.
Signed-off-by: Andre Przywara <andre.przywara@arm.com>
The definition of the standard environment variables (kernel_addr_r and
friends) has been improved lately for the FVP model, but the Juno board
is still using some custom scheme.
Since we need to extend this to a third board soon, let's unify the
definition:
- Define the Juno addresses in the same generic way we do for the FVP
model, and move the actual variable setting out of the board #ifdef's.
- Add the missing addresses for a PXE file and a boot script.
- Cleanup some stale comments on the way.
As the FVP model doesn't have support for distro_boot quite yet, add
a dummy definition for now, to be replaced with the real thing later.
Signed-off-by: Andre Przywara <andre.przywara@arm.com>
This converts the following to Kconfig:
CONFIG_SYS_MONITOR_BASE
Note that for how this is re-used on some PowePC platforms, we introduce
CONFIG_SPL_SYS_MONITOR_BASE and CONFIG_TPL_SYS_MONITOR_BASE and use the
CONFIG_VAL macro to get the correct value at build time, in the code.
Signed-off-by: Tom Rini <trini@konsulko.com>
This converts the following to Kconfig:
CONFIG_NORFLASH_PS32BIT
Note that we also attempt to correct the behavior of the code here,
which had been testing for "NORFLASH_PS32BIT" which would never be set,
instead check for the now set "CONFIG_NORFLASH_PS32BIT", which results
in some behavior change.
Cc: TsiChung Liew <Tsi-Chung.Liew@nxp.com>
Signed-off-by: Tom Rini <trini@konsulko.com>
The values CONFIG_SYS_USE_NANDFLASH and CONFIG_SYS_USE_MMC serve the
same purpose as CONFIG_SD_BOOT / CONFIG_NAND_BOOT so migrate to using
these switches instead as they're already in Kconfig.
Cc: Stelian Pop <stelian@popies.net>
Cc: Heiko Schocher <hs@denx.de>
Cc: Daniel Gorsulowski <daniel.gorsulowski@esd.eu>
Cc: Eugen Hristev <eugen.hristev@microchip.com>
Signed-off-by: Tom Rini <trini@konsulko.com>
In the case of M5373EVB we always had NANDFLASH_SIZE=16, so just use it
directly. In the case of M5329EVB we had not removed the rest of NAND
support when saying we didn't have NAND, so instead use that to key off
of rather than NANDFLASH_SIZE.
Cc: TsiChung Liew <Tsi-Chung.Liew@nxp.com>
Signed-off-by: Tom Rini <trini@konsulko.com>
The value CONFIG_DB_784MP_GP is only used in the DDR code to refer to
CONFIG_TARGET_DB_MV784MP_GP so just use that second value directly.
Cc: Stefan Roese <sr@denx.de>
Signed-off-by: Tom Rini <trini@konsulko.com>
Reviewed-by: Stefan Roese <sr@denx.de>
We only set one of these values ever at this point, so remove dead code.
Cc: Minkyu Kang <mk7.kang@samsung.com>
Cc: Jaehoon Chung <jh80.chung@samsung.com>
Signed-off-by: Tom Rini <trini@konsulko.com>
Reviewed-by: Minkyu Kang <mk7.kang@samsung.com>
Reviewed-by: Jaehoon Chung <jh80.chung@samsung.com>
There are a handful of variants around CONFIG_SYS_USE_DATAFLASH and none
of them now control anything further within their board config.h files,
so remove these from CONFIG_SYS_EXTRA_OPTIONS and then remove the empty
blocks in the board config.h files. In a few places further clean up
related logic.
Signed-off-by: Tom Rini <trini@konsulko.com>
This converts the following to Kconfig:
CONFIG_LPUART
CONFIG_LPUART_32B_REG
And note that CONFIG_LPUART_32B_REG is unused in code.
Signed-off-by: Tom Rini <trini@konsulko.com>
This CONFIG option is used in one place, so pick a more direct name and
migrate to Kconfig. Rework the code slightly.
Cc: Priyanka Jain <priyanka.jain@nxp.com>
Signed-off-by: Tom Rini <trini@konsulko.com>
This converts the following to Kconfig:
CONFIG_MCFRTC
CONFIG_SYS_MCFRTC_BASE
While at it, remove '#undef RTC_DEBUG' from these config files.
Signed-off-by: Tom Rini <trini@konsulko.com>
Both of these variables are used in a few hard-coded ways to set some
string values or print something to the user. In almost all cases, it's
just as useful to hard-code the value used. The exception here is
printing something closer to correct board name for p1_p2_rdb machines.
This can be done using something from the device tree, but for now
hard-code a non-CONFIG based value instead.
Signed-off-by: Tom Rini <trini@konsulko.com>
This converts the following to Kconfig:
CONFIG_BOOTM_NETBSD
CONFIG_BOOTM_RTEMS
CONFIG_DESIGNWARE_WATCHDOG
CONFIG_DISPLAY_CPUINFO
CONFIG_DM_ETH
CONFIG_DM_MMC
CONFIG_DM_REGULATOR
CONFIG_DM_SPI
CONFIG_DM_SPI_FLASH
CONFIG_ISO_PARTITION
CONFIG_OF_SEPARATE
CONFIG_SPI_FLASH_WINBOND
CONFIG_SPL_ETH
CONFIG_TIMER
CONFIG_USB_DWC3
CONFIG_USB_DWC3_GADGET
CONFIG_USB_DWC3_OMAP
CONFIG_USB_DWC3_PHY_OMAP
CONFIG_USB_EHCI_TEGRA
CONFIG_USB_GADGET_DOWNLOAD
CONFIG_USB_GADGET_DUALSPEED
CONFIG_USB_GADGET_MANUFACTURER
CONFIG_USB_GADGET_PRODUCT_NUM
CONFIG_USB_GADGET_VBUS_DRAW
CONFIG_USB_GADGET_VENDOR_NUM
This catches a number of cases where board config files were #undef
various CONFIG options when building SPL, and that doesn't work. Clean
up the related comments as well.
Signed-off-by: Tom Rini <trini@konsulko.com>
This commit enhances mkimage to update the node
/image/pre-load/sig with the public key.
Reviewed-by: Simon Glass <sjg@chromium.org>
Signed-off-by: Philippe Reynes <philippe.reynes@softathome.com>
Add a stage pre-load to the command bootm.
Right now, this stage may be used to read a
header and check the signature of the full
image.
Reviewed-by: Simon Glass <sjg@chromium.org>
Signed-off-by: Philippe Reynes <philippe.reynes@softathome.com>
Add a stage pre-load that could
check or modify an image.
For the moment, only a header with a signature is
supported. This header has the following format:
- magic : 4 bytes
- version : 4 bytes
- header size : 4 bytes
- image size : 4 bytes
- offset image signature : 4 bytes
- flags : 4 bytes
- reserved0 : 4 bytes
- reserved1 : 4 bytes
- sha256 of the image signature : 32 bytes
- signature of the first 64 bytes : n bytes
- image signature : n bytes
- padding : up to header size
The stage uses a node /image/pre-load/sig to
get some informations:
- algo-name (mandatory) : name of the algo used to sign
- padding-name : name of padding used to sign
- signature-size : size of the signature (in the header)
- mandatory : set to yes if this sig is mandatory
- public-key (madatory) : value of the public key
Before running the image, the stage pre-load checks
the signature provided in the header.
This is an initial support, later we could add the
support of:
- ciphering
- uncompressing
- ...
Signed-off-by: Philippe Reynes <philippe.reynes@softathome.com>
Most CCF drivers follow a common pattern where their clock ops defer the
actual operation to the backing CCF clock. Add some generic implementations
of these functions to reduce duplication of code.
Signed-off-by: Sean Anderson <seanga2@gmail.com>
Reviewed-by: Peng Fan <peng.fan@nxp.com>
Link: https://lore.kernel.org/r/20220320203446.740178-1-seanga2@gmail.com
Most callers of this function do not check the return value, and it is
unclear what action they should take if it fails. If a function is freeing
multiple clocks, it should not stop just because the first one failed.
Since the callbacks can no longer fail, just convert the return type to
void.
Signed-off-by: Sean Anderson <seanga2@gmail.com>
Link: https://lore.kernel.org/r/20220115222504.617013-8-seanga2@gmail.com
When freeing a clock there is not much we can do if there is an error, and
most callers do not actually check the return value. Even e.g. checking to
make sure that clk->id is valid should have been done in request() in the
first place (unless someone is messing with the driver behind our back).
Just return void and don't bother returning an error.
Signed-off-by: Sean Anderson <seanga2@gmail.com>
Reviewed-by: Simon Glass <sjg@chromium.org>
Link: https://lore.kernel.org/r/20220115222504.617013-2-seanga2@gmail.com
This converts the following to Kconfig:
CONFIG_VIDEO_BCM2835
This is the final ad-hoc CONFIG_VIDEO_... to convert.
Signed-off-by: Simon Glass <sjg@chromium.org>
Acked-by: Matthias Brugger <mbrugger@suse.com>
This does not use driver model and is more than two years past the
migration date. Drop it.
It can be added back later if needed.
Signed-off-by: Simon Glass <sjg@chromium.org>
This does not use driver model and is more than two years past the
migration date. Drop it.
It can be added back later if needed.
Signed-off-by: Simon Glass <sjg@chromium.org>