This entry is used to hold an Intel FSP-T (Firmware Support Package
Temp-RAM init) binary. Add support for this in binman.
Signed-off-by: Simon Glass <sjg@chromium.org>
Reviewed-by: Bin Meng <bmeng.cn@gmail.com>
This entry is used to hold an Intel FSP-S (Firmware Support Package
Silicon init) binary. Add support for this in binman.
Signed-off-by: Simon Glass <sjg@chromium.org>
Reviewed-by: Bin Meng <bmeng.cn@gmail.com>
At present binman adds the image base address to the symbol value before
it writes it to the binary. This is not correct since the symbol value
itself (e.g. image position) has no relationship to the image base.
Fix this and update the tests to cover this case.
Signed-off-by: Simon Glass <sjg@chromium.org>
Reviewed-by: Bin Meng <bmeng.cn@gmail.com>
At present the symbol information is written to binaries just before
binman exits. This is fine for entries within sections since the section
contents is calculated when it is needed, so the updated symbol values are
included in the image that is written.
However some binaries are inside entries which have already generated
their contents and do not notice that the entries have changed (e.g. Intel
IFWI).
Move the symbol writing earlier to cope with this.
Signed-off-by: Simon Glass <sjg@chromium.org>
The Intel IFWI (Integrated Firmware Image) is effectively a section with
other entries inside it. Support writing symbol information into entries
within it.
Signed-off-by: Simon Glass <sjg@chromium.org>
Add support for the ProcessContents() method in this entry so that it is
possible to support entries which change after initial creation.
Signed-off-by: Simon Glass <sjg@chromium.org>
At present this class reads its entries in the constructor. This is not
how things should be done now. Update it.
Signed-off-by: Simon Glass <sjg@chromium.org>
The Intel FSP supports initialising memory early during boot using a binary
blob called 'fspm'. Add support for this.
Signed-off-by: Simon Glass <sjg@chromium.org>
It is useful to be able to access the size of an image in SPL, with
something like:
binman_sym_declare(unsigned long, u_boot_any, size);
...
ulong u_boot_size = binman_sym(ulong, u_boot_any, size);
Add support for this and update the tests.
Signed-off-by: Simon Glass <sjg@chromium.org>
At present these are large enough to hold 20 bytes of symbol data. Add
four more bytes so we can add another test.
Unfortunately at present this involves changing a few test files to make
room. We could adjust the test files to not specify sizes for entries.
Then we could make the tests check the actual sizes. But for now, leave it
as it is, since the effort is minor.
Signed-off-by: Simon Glass <sjg@chromium.org>
Entries which include a section and need to obtain its contents call
GetData(), as with any other entry. But the current implementation of this
method in entry_Section requires the size of the section to be known. If
it is unknown, an error is produced, since size is None:
TypeError: can't multiply sequence by non-int of type 'NoneType'
There is no need to know the size in advance since the code can be
adjusted to build up the section piece by piece, instead of patching each
entry into an existing bytearray.
Update the code to handle this and add a test.
Signed-off-by: Simon Glass <sjg@chromium.org>
Two of the test files somehow were not converted to three digits. Fix
them, using the next available numbers.
Signed-off-by: Simon Glass <sjg@chromium.org>
At present we only support symbols inside binaries which are at the top
level of an image. This restrictions seems unreasonable since more complex
images may want to group binaries within different sections.
Relax the restriction, adding a new _SetupTplElf() helper function.
Also fix a typo in the comment for testTpl().
Signed-off-by: Simon Glass <sjg@chromium.org>
We use the Makefile for all ELF test files now, so drop all the code that
checks whether to get the test file from the Makefile or from the git
repo.
Also add a comment to the Makefile indicating that it is run from binman.
Signed-off-by: Simon Glass <sjg@chromium.org>
Remove this file from git and instead build it using the Makefile.
With this change a few things need to be adjusted:
1. The 'notes' section no-longer appears at the start of the ELF file
(before the code), so update testSymbols to adjust the offsets.
2. The dynamic linker is disabled to avoid errors like:
"Not enough room for program headers, try linking with -N"
3. The interpreter note is moved to the end of the image, so that the
binman symbols appear first.
Signed-off-by: Simon Glass <sjg@chromium.org>
Remove this file from git and instead build it using the Makefile.
Update tools.GetInputFilename() to support reading files from an absolute
path, so that we can read the Elf test files easily. Also make sure that
the temp directory is report in ELF tests as this was commented out.
Signed-off-by: Simon Glass <sjg@chromium.org>
At present the ELF test files are checked into the U-Boot tree. This is
covenient since the files never change and can be used on non-x86
platforms. However it is not good practice to check in binaries and in
this case it does not seem essential.
Update the binman test-file Makefile to support having source in a
different directory. Adjust binman to run it to build bss_data, as a
start. We can add other files as needed.
Signed-off-by: Simon Glass <sjg@chromium.org>
At present this command silently fails if something goes wrong. Use the
tools.Run() function instead, since it reports errors.
Signed-off-by: Simon Glass <sjg@chromium.org>
At present this entry does not work correctly when a FIT image is used as
the input. It updates the FIT instead of the output image. The test passed
because the FIT image happened to have the right data already.
Fix it.
Signed-off-by: Simon Glass <sjg@chromium.org>
A Firmware Image Table (FIT) is a data structure defined by Intel which
contains information about various things needed by the SoC, such as
microcode.
Add support for this entry as well as the pointer to it. The contents of
FIT are fixed at present. Future work is needed to support adding
microcode, etc.
Signed-off-by: Simon Glass <sjg@chromium.org>
At present these two sections of code are linked together into a single
2KB chunk in a single file. Some Intel SoCs like to have a FIT (Firmware
Interface Table) in the ROM and the pointer for this needs to go at
0xffffffc0 which is in the middle of these two sections.
Make use of the new 'reset' entry and change the existing 16-bit entry to
include just the 16-bit data.
Signed-off-by: Simon Glass <sjg@chromium.org>
At present binman has a single entry type for the 16-bit code code needed
to start up an x86 processor. This entry is intended to include both the
reset vector itself as well as the code to move to 32-bit mode.
However this is not very flexible since in some cases other data needs to
be included at the top of the SPI flash, in between these two pieces. For
example Intel requires that a FIT (Firmware Image Table) pointer be placed
0x40 bytes before the end of the ROM.
To deal with this, add a new reset entry for just the reset vector. A
subsequent change will adjust the existing 'start16' entry.
Signed-off-by: Simon Glass <sjg@chromium.org>
At present the Intel IFWI entry uses 'replace' without the 'ifwi-' prefix.
This is a fairly generic name which might conflict with the main Entry
base class at some point, if more features are added. Add a prefix.
Signed-off-by: Simon Glass <sjg@chromium.org>
Some versions of binutils generate hidden symbols which are currently not
parsed by binman. Correct this.
Signed-off-by: Simon Glass <sjg@chromium.org>
Recent versions of binutils add a '.note.gnu.property' into the ELF file.
This is not required and interferes with the expected output. Drop it.
Also fix testMakeElf() to use a different file for input and output.
Signed-off-by: Simon Glass <sjg@chromium.org>
At present if libfdt is not available binman can't do anything much.
Improve the situation a little.
Ideally there should be a test to cover this, but I'm not quite sure how
to fake this.
Signed-off-by: Simon Glass <sjg@chromium.org>
(fixed up missing ReadChildData() enty test)
It is more common to use the name 'cls' for the class object of a class
method, to distinguish it from normal methods, which use 'self' Update the
binman tests accordingly.
Signed-off-by: Simon Glass <sjg@chromium.org>
The doc currently uses sandbox_defconfig as examples of enabling
debug/verbose output of binman. However during a sandbox build it
does not call binman at all. Change it to qemu-x86_defconfig.
Signed-off-by: Bin Meng <bmeng.cn@gmail.com>
Reviewed-by: Simon Glass <sjg@chromium.org>
The image-header currently sets it offset assuming that skip-at-start is
zero. This does not work on x86 where offsets end at 4GB. Add in this
value so that the offset is correct.
Signed-off-by: Simon Glass <sjg@chromium.org>
Acked-by: Bin Meng <bmeng.cn@gmail.com>
Some x86 sections have special offsets which currently result in empty
data being returned from the 'extract' command. Fix this by taking account
of the skip-at-start property.
Add a little more debugging while we are here.
Signed-off-by: Simon Glass <sjg@chromium.org>
Acked-by: Bin Meng <bmeng.cn@gmail.com>
At present this function is not present in the Entry base class so it is
hard to find the documentation for it. Move the docs from the section
class and expand it a little.
Signed-off-by: Simon Glass <sjg@chromium.org>
Reviewed-by: Bin Meng <bmeng.cn@gmail.com>
At present the verbose flag only works for the 'build' command. This is
not intended, nor is it useful. Update the code to support the verbose
flag and make use of a command exception handler.
Signed-off-by: Simon Glass <sjg@chromium.org>
Reviewed-by: Bin Meng <bmeng.cn@gmail.com>
[bmeng: rebase the patch against u-boot-x86/next to get it applied cleanly]
Signed-off-by: Bin Meng <bmeng.cn@gmail.com>
Support a new BINMAN_VERBOSE option to the build, to allow passing the
-v flag to binman.
Signed-off-by: Simon Glass <sjg@chromium.org>
Reviewed-by: Bin Meng <bmeng.cn@gmail.com>
Tested-by: Bin Meng <bmeng.cn@gmail.com>
Add a 'replace' command to binman to permit entries to be replaced, either
individually or all at once (using a filter).
Signed-off-by: Simon Glass <sjg@chromium.org>
This code has three distinct phases:
1. The image is loaded and the state module is set up
2. The entry is written to the image
3. The image is repacked and written back to the file
Split the code out with three separate functions, one for each phase.
Signed-off-by: Simon Glass <sjg@chromium.org>
At present some tests leave behind output directories. This happens
because some tests call binman, which sets up an output directory, then
call it again, which sets up another output directory and leaves the
original one behind.
Fix this by using a separate temporary directory when binman is called
twice, or by manually removing the output directory.
Signed-off-by: Simon Glass <sjg@chromium.org>
Since the state module holds references to all the device trees used by
binman, it must be updated when the device trees are updated. Add support
for this.
Signed-off-by: Simon Glass <sjg@chromium.org>
At present binman cannot replace data within a CBFS since it does not
allow rewriting of the files in that CBFS. Implement this by using the
new WriteData() method to handle the case.
Add a header to compressed data so that the amount of compressed data can
be determined without reference to the size of the containing entry. This
allows the entry to be larger that the contents, without causing errors in
decompression. This is necessary to cope with a compressed device tree
being updated in such a way that it shrinks after the entry size is
already set (an obscure case). It is not used with CBFS since it has its
own metadata for this. Increase the number of passes allowed to resolve
the position of entries, to handle this case.
Add a test for this new logic.
Signed-off-by: Simon Glass <sjg@chromium.org>
At present this method assumes that the parent section does not need
to recalculate its position or adjust any metadata it may contain. But
when the entry changes size this may not be true. Also if the parent
section is more than just a container (e.g. it is a CBFS) then the
section may need to regenerate its output.
Add a new WriteChildData() method to sections and call this from the
WriteData() method, to handle this situation.
Signed-off-by: Simon Glass <sjg@chromium.org>
At present we simply extract the data directly from entries using the
image_pos information. This happens to work on current entry types, but
cannot work if the entry type encodes the data in some way. Update the
ReadData() method to provide the data by calling a new ReadChildData()
method in the parent. This allows the entry_Section class, or possibly
any other container class, to return the correct data in all cases.
Signed-off-by: Simon Glass <sjg@chromium.org>
The Intel descriptor must always appear at the start of an (x86) image,
so it is supposed to position itself there always. However there is no
explicit test for this. Add one and fix a bug introduced by the recent
change to adjust Entry to read the node in a separate call.
Signed-off-by: Simon Glass <sjg@chromium.org>
The FMAP is not intended to show the files inside a CBFS. The FMAP can be
used to locate the CBFS itself, but then the CBFS must be read to find out
what is in it.
Update the FMAP to work this way and add some debugging while we are here.
Signed-off-by: Simon Glass <sjg@chromium.org>
Sometimes an entry may shrink after it has already been packed. In that
case we must repack the items. Of course it is always possible to just
leave the entry at its original size and waste space at the end. This is
what binman does by default, since there is the possibility of the entry
changing size every time binman calculates its contents, thus causing a
loop.
Signed-off-by: Simon Glass <sjg@chromium.org>
Sometimes entries shrink after packing. As a start towards supporting
this, update the _testing entry to handle the test case.
Signed-off-by: Simon Glass <sjg@chromium.org>
So far we don't allow entries to change size when repacking. But this is
not very useful since it is common for entries to change size after an
updated binary is built, etc.
Add support for this, respecting the original offset/size/alignment
constraints of the image layout. For this to work the original image
must have been created with the 'allow-repack' property.
This does not support entry types with sub-entries such as files and
CBFS, but it does support sections.
Signed-off-by: Simon Glass <sjg@chromium.org>
The positioning does not currently work correctly if at the end of an
image with no fixed size. Also if the header is in the middle of an image
it can cause a gap in the image since the header position is normally at
the image end, so entries after it are placed after the end of the image.
Fix these problems and add more tests to cover these cases.
Signed-off-by: Simon Glass <sjg@chromium.org>
Now that an Image is an Entry_section, there is no need for the separate
BuildSection() function. Drop it and add a bit of logging.
Signed-off-by: Simon Glass <sjg@chromium.org>
When reading an image in, write its fdtmap to a file in the output
directory. This is useful for debugging. Update the 'ls' command to set up
the output directory; otherwise it will fail.
Signed-off-by: Simon Glass <sjg@chromium.org>
At present it is not possible to discover the contraints to repacking an
image (e.g. maximum section size) since this information is not preserved
from the original image description.
Add new 'orig-offset' and 'orig-size' properties to hold this. Add them to
the main device tree in the image.
Signed-off-by: Simon Glass <sjg@chromium.org>
While it is useful and efficient to build images in a single pass from a
unified description, it is sometimes desirable to update the image later.
Add support for replace an existing file with one of the same size. This
avoids needing to repack the file. Support for more advanced updates will
come in future patches.
Signed-off-by: Simon Glass <sjg@chromium.org>
At present EnsureCompiled() uses an file from the 'output' directory (in
the tools module) when compiling the device tree. This is fine in most
cases, allowing useful inspection of the output files from binman.
However in functional tests, _SetupDtb() creates an output directory and
immediately removes it afterwards. This serves no benefit and just
confuses things, since the 'official' output directory is supposed to be
created and destroyed in control.Binman().
Add a new parameter for the optional temporary directory to use, and use a
separate temporary directory in _SetupDtb().
Signed-off-by: Simon Glass <sjg@chromium.org>
When updating an existing image where the size of all entries remains the
same, we should not need to regenerate the fdtmap. Update the entry to
return the same fdtmap as was read from the image.
Signed-off-by: Simon Glass <sjg@chromium.org>
We use this same combination of properties several times in tests. Add a
constant for it to avoid typos, etc.
Signed-off-by: Simon Glass <sjg@chromium.org>
At present we have an 'image' property in the entry for this purpose, but
this is not necessary and seems error-prone in the presence of
inheritance. Add a function instead. The Entry_section class overrides
this with a special version, since top-level sections are in fact images,
since Image inherits Entry_section.
Signed-off-by: Simon Glass <sjg@chromium.org>
At present the Entry constructor sets up the object and then immediately
reads its device-tree node to obtain its properties.
This breaks a convention that constructors should not do any processing.
A consequence is that we must pass all arguments to the constructor and
cannot have the node-reading proceed in a different way unless we pass
flags to that constructor. We already have a 'test' flag in a few cases,
and now need to control whether the 'orig_offset' and 'orig_size'
properties are set or not.
Adjust the code to require a separate call to ReadNode() after
construction. The Image class remains as it was.
Signed-off-by: Simon Glass <sjg@chromium.org>
Since binman supports multiple images it is useful to know which one
created the image that has been read. Then it is possible to look up that
name in the 'master' device tree (containing the description of all
images).
Add a property for this.
Signed-off-by: Simon Glass <sjg@chromium.org>
In some cases we want to access the Entry object for a particular device
tree. This allows us to read its contents or update it. Add this
information to output_fdt_files and provide a function to read it.
Also rename output_fdt_files since its name is no-longer descriptive.
Signed-off-by: Simon Glass <sjg@chromium.org>
At present these state functions raise an exception if they cannot find
what is requested. But in some cases the information is optional (e.g. an
fdtmap in a coming patch) so it is better to return gracefully.
Update these two functions to return None when the data cannot be found.
Signed-off-by: Simon Glass <sjg@chromium.org>
When modifying an image it is convenient to load the data from the file
into each entry so that it can be reprocessed. Add a new LoadData() method
to handle this.
Signed-off-by: Simon Glass <sjg@chromium.org>
This data provides all the information about the position and size of each
entry. Store it for later use when loading an image. It can be reused as
is if the image is modified without changing offsets/sizes.
Signed-off-by: Simon Glass <sjg@chromium.org>
Use the new logging feature to log information about progress with
packing. This is useful to see how binman is figuring things out.
Also update elf.py to use the same feature.
Signed-off-by: Simon Glass <sjg@chromium.org>
At present this excludes the device tree passed in to binman since it
is always returned first by GetAllFdts(). However, this is easy to ensure
by adding a check in that function. Change this dict to includes all
device trees, and rename it to fdt_set.
Signed-off-by: Simon Glass <sjg@chromium.org>
It makes more sense to use entry type as the key for this dictionary,
since the filename can in principle be anything. Make this change and also
rename fdt_files and add a comment to explain it better.
Signed-off-by: Simon Glass <sjg@chromium.org>
At present the FDTs are keyed by their default filename (not their actual
filename). It seems easier to key by the entry type, since this is always
the same for each FDT type.
To do this, add a new Entry method called GetFdtEtype(). This is necessary
since some entry types contain a device tree which are not the simple
three entry types 'u-boot-dtb', 'u-boot-spl' or 'u-boot-tpl'.
The code already returns a dict for GetFdt(). Update the value of that
dict to include the filename so that existing code can work.
Signed-off-by: Simon Glass <sjg@chromium.org>
This function name conflicts with Fdt.Node.GetFdt() which has a different
purpose. Rename it to avoid confusion.
The new name suggests it is indexed by entry type rather than filename.
This will be tidied up in a future commit.
Signed-off-by: Simon Glass <sjg@chromium.org>
This function name conflicts with Entry.GetFdts() which has a different
purpose. Rename it to avoid confusion. Also update a stale comment
relating to this function.
Signed-off-by: Simon Glass <sjg@chromium.org>
At present this function returns a set of device-tree filenames. It has no
way of returning the actual device-tree object. Change it to a dictionary
so that we can add this feature in a future patch.
Also drop fdt_set since it is no-longer used.
Signed-off-by: Simon Glass <sjg@chromium.org>
Further reduce the size of the main Binman() function by moving this setup
code into its own function.
Note that the 'images' value is accessed from other modules so must be made
a global.
Signed-off-by: Simon Glass <sjg@chromium.org>
At present we check the filename to see if an entry holds a device-tree
file. It is easier to use the base class designed for this purpose.
Move this method implementation into Entry_blob_dtb and update the default
one to return an empty set.
Signed-off-by: Simon Glass <sjg@chromium.org>
Current test coverage is likely sufficient for the logic used to place
sections in the image. However it seems useful to add a test specifically
for nested sections, since these could have some unusual interactions.
Add a new test for this and aligned sections. This test failed before the
refactor to drop the bsection.py file (Section class), but passes now.
Signed-off-by: Simon Glass <sjg@chromium.org>
It is useful to be able to extract all binaries from the image, or a
subset of them. Add a new 'extract' command to handle this.
Signed-off-by: Simon Glass <sjg@chromium.org>
CBFS is a bit like a section but with a custom format. Provide the list of
entries and the compression type to binman so that it can extract the data
from the CBFS, just like any other part of the image.
Signed-off-by: Simon Glass <sjg@chromium.org>
It is useful to be able to extract entry contents from an image to see
what is inside. Add a simple function to read the contents of an entry,
decompressing it by default.
Signed-off-by: Simon Glass <sjg@chromium.org>
Binman generally operates silently but in some cases it is useful to see
what Binman is actually doing at each step. Enable some logging output
with different logging levels selectable via the -v flag.
Signed-off-by: Simon Glass <sjg@chromium.org>
When support for sections (and thus hierarchical images) was added to
binman, the decision was made to create a new Section class which could
be used by both Image and an Entry_section class. The decision between
using inheritance and composition was tricky to make, but in the end it
was decided that Image was different enough from Entry that it made sense
to put the implementation of sections in an entirely separate class. It
also has the advantage that core Image code does have to rely on an entry
class in the etype directory.
This work was mostly completed in commit:
8f1da50ccc "binman: Refactor much of the image code into 'section'
As a result of this, the Section class has its own version of things like
offset and size and these must be kept in sync with the parent
Entry_section class in some cases.
In the last year it has become apparent that the cost of keeping things in
sync is larger than expected, since more and more code wants to access
these properties.
An alternative approach, previously considered and rejected, now seems
better.
Adjust Image to be a subclass of Entry_section. Move the code from Section
(in bsection.py) to Entry_section and delete Section. Update all tests
accordingly.
This requires substantial changes to Image. Overall the changes reduce
code size by about 240 lines. While much of that is just boilerplate from
Section, there are quite a few functions in Entry_section which now do not
need to be overiden from Entry. This suggests the change is beneficial
even without further functionality being added.
A side benefit is that the properties of sections are now consistent with
other entries. This fixes a problem in testListCmd() where some properties
are missing for sections.
Unfortunately this is a very large commit since it is not feasible to do
the migration piecemeal. Given the substantial tests available and the
100% code coverage of binman, we should be able to do this safely.
Signed-off-by: Simon Glass <sjg@chromium.org>
It is possible to read an Image, locate its FDT map and then read it into
the binman data structures. This allows full access to the entries that
were written to the image. Add support for this.
Signed-off-by: Simon Glass <sjg@chromium.org>
Add support for locating an image's Fdt map which is used to determine
the contents and structure of the image.
Signed-off-by: Simon Glass <sjg@chromium.org>
It is useful to be able to summarise all the entries in an image, e.g. to
display this to this user. Add a new ListEntries() method to Entry, and
set up a way to call it through the Image class.
Signed-off-by: Simon Glass <sjg@chromium.org>
It is useful to add the CBFS file information (offset, size, etc.) into
the FDT so that the layout is complete. Add support for this.
Signed-off-by: Simon Glass <sjg@chromium.org>
The purpose of this badly named field is a bit ambiguous. Adjust the code
to use it only to store the uncompressed length of a file, leaving it set
to None if there is no compression used. This makes it easy to see if the
value in this field is relevant / useful.
Also set data_len for compressed fields, since it should be the length of
the compressed data, not the uncompressed data.
Signed-off-by: Simon Glass <sjg@chromium.org>
At present a file with no explicit CBFS offset is placed in the next
available location but there is no way to find out where it ended up.
Update and rename the get_data() function to provide this information.
Signed-off-by: Simon Glass <sjg@chromium.org>