Configuring master firewalls require the power of the cluster to be
enabled before configuring them, change the load of rproc to configure
the gtc clocks and start the cluster along with configuring the boot
vector.
The start of rproc will only start the core.
Signed-off-by: Manorit Chawdhry <m-chawdhry@ti.com>
ARMv8's generic timer[1] picks up it's graycode from GTC. However,
the frequency of the GTC is supposed to be programmed in CNTFID0[2]
register prior to enabling the GTC in CNTCR[3] register.
In K3 architecture, GTC provides a central time to many parts of the
SoC including graycode to the generic timer in the ARMv8 subsystem.
However, due to the central nature and the need to enable the counter
early in the boot process, the R5 based u-boot enables GTC and
programs it's frequency based on central needs of the system. This
may not be a constant 200MHz based on the system. The bootloader is
supposed to program the FID0 register with the correct frequency it
has sourced for GTC from the central system controller OR from PLLs
as appropriate, and TF-A is supposed[4] to use that as the frequency for
it's local timer.
Currently we are programming just the CNTCR[3] register to enable the
GTC, however we dont let TF-A know the frequency that GTC is actually
running at. A mismatch in programmed frequency and what we program for
generic timer will, as we can imagine, all kind of weird mayhem.
So, program the CNTFID0 register with the clock frequency. Note:
assigned-clock-rates should have set the clock frequency, so the only
operation we need to explicitly do is to retrieve the frequency and
program it in FID0 register.
Since the valid in K3 for GTC clock frequencies are < U32_MAX, we can
just cast the ulong and continue.
[1] https://developer.arm.com/documentation/100095/0002/generic-timer/generic-timer-register-summary/aarch64-generic-timer-register-summary
[2] https://developer.arm.com/docs/ddi0595/h/external-system-registers/cntfid0
[3] https://developer.arm.com/docs/ddi0595/h/external-system-registers/cntcr
[4] 6a22d9ea3c
Signed-off-by: Nishanth Menon <nm@ti.com>
This construct is quite long-winded. In earlier days it made some sense
since auto-allocation was a strange concept. But with driver model now
used pretty universally, we can shorten this to 'auto'. This reduces
verbosity and makes it easier to read.
Coincidentally it also ensures that every declaration is on one line,
thus making dtoc's job easier.
Signed-off-by: Simon Glass <sjg@chromium.org>
At present dm/device.h includes the linux-compatible features. This
requires including linux/compat.h which in turn includes a lot of headers.
One of these is malloc.h which we thus end up including in every file in
U-Boot. Apart from the inefficiency of this, it is problematic for sandbox
which needs to use the system malloc() in some files.
Move the compatibility features into a separate header file.
Signed-off-by: Simon Glass <sjg@chromium.org>
At present devres.h is included in all files that include dm.h but few
make use of it. Also this pulls in linux/compat which adds several more
headers. Drop the automatic inclusion and require files to include devres
themselves. This provides a good indication of which files use devres.
Signed-off-by: Simon Glass <sjg@chromium.org>
Reviewed-by: Anatolij Gustschin <agust@denx.de>
Enable DM_FLAG_DEFAULT_PD_CTRL_OFF for arm64 remote core so that
pd can be enabled after loading the image.
Signed-off-by: Lokesh Vutla <lokeshvutla@ti.com>
Reviewed-by: Simon Glass <sjg@chromium.org>
k3_rproc driver is specifically meant for controlling an arm64
core using TISCI protocol. So rename the driver, Kconfig symbol,
compatible and functions accordingly.
While at it drop this remoteproc selection for a53 defconfig.
Signed-off-by: Lokesh Vutla <lokeshvutla@ti.com>
2019-07-26 21:49:25 -04:00
Renamed from drivers/remoteproc/k3_rproc.c (Browse further)