Since i.MX9 uses same DDR PHY with i.MX8M, split the DDRPHY to a common
directory under imx, then use dedicated ddr controller driver for each
iMX9 and iMX8M.
The DDRPHY registers are space compressed, so it needs conversion to
access the DDRPHY address. Introduce a common PHY address remap function
for both iMX8M and iMX9 for all PHY registers accessing.
Signed-off-by: Ye Li <ye.li@nxp.com>
Signed-off-by: Peng Fan <peng.fan@nxp.com>
I was trying to employ lpddr4_mr_read() to something similar to what
the imx8mm-cl-iot-gate board is doing for auto-detecting the RAM
type. However, the version in drivers/ddr/imx/imx8m/ddrphy_utils.c
differs from the private one used by that board in how it extracts the
byte value, and I was only getting zeroes. Adding a bit of debug
printf'ing gives me
tmp = 0x00ffff00
tmp = 0x00070700
tmp = 0x00000000
tmp = 0x00101000
and indeed I was expecting a (combined) value of 0xff070010 (0xff
being Manufacturer ID for Micron). I can't find any documentation that
says how the values are supposed to be read, but clearly the iot-gate
definition is the right one, both for its use case as well as my
imx8mp-based board.
So lift the private definition of lpddr4_mr_read() from the
imx8mm-cl-iot-gate board code to ddrphy_utils.c, and add a declaration
in the ddr.h header where e.g. get_trained_CDD() is already declared.
This has only been compile-tested for the imx8mm-cl-iot-gate
board (since I don't have the hardware), but since I've merely moved
its definition of lpddr4_mr_read(), I'd be surprised if it changed
anything for that board.
Signed-off-by: Rasmus Villemoes <rasmus.villemoes@prevas.dk>
Tested-by: Ying-Chun Liu (PaulLiu) <paul.liu@linaro.org>
Reviewed-by: Fabio Estevam <festevam@denx.de>
Add logic to automatically update umctl2's setting based
on phy training CDD value for rank to rank space issue
Acked-by: Ye Li <ye.li@nxp.com>
Signed-off-by: Oliver Chen <Oliver.Chen@nxp.com>
Signed-off-by: Jacky Bai <ping.bai@nxp.com>
Signed-off-by: Peng Fan <peng.fan@nxp.com>
the DRAM Controller in i.MX8MP will support a feature called "Inline ECC".
This is supported for all 3 supported DRAM technologies (LPDDR4, DDR4 and
DDR3L). When this feature is enabled by software, the DRAM Controller
reserves 12.5% of DRAM capacity for ECC information, and presents only
the non-ECC portion (lower 87.5% of the installed capacity of DRAM) to
the rest of the SoC.
The DRAM memory can be divided into 8 regions so that if a use case only
requires ECC protection on a subset of memory, then only that subset of
memory need support inline ECC. If this occurs, then there is no
performance penalty accessing the non-ECC-protected memory (no need to
access ECC for this portion of the memory map). This is all configured
with the DRAM Controller.
Signed-off-by: Sherry Sun <sherry.sun@nxp.com>
Signed-off-by: Peng Fan <peng.fan@nxp.com>
In cases when the same SPL should run on boards with i.MX8MM, that
differ in DDR configuration, it is necessary to try different
parameters and check if the training done by the firmware suceeds or
not.
Therefore we return the DDR training/initialization success to the
upper layer in order to be able to retry with different settings if
necessary.
Signed-off-by: Frieder Schrempf <frieder.schrempf@kontron.de>