Commit graph

3 commits

Author SHA1 Message Date
Vladimir Oltean
7c2d5d1642 net: freescale: replace usage of phy-mode = "sgmii-2500" with "2500base-x"
After the discussion here:
https://lore.kernel.org/netdev/20210603143453.if7hgifupx5k433b@pali/

which resulted in this patch:
https://patchwork.kernel.org/project/netdevbpf/patch/20210704134325.24842-1-pali@kernel.org/

and many other discussions before it, notably:
https://patchwork.kernel.org/project/linux-arm-kernel/patch/1512016235-15909-1-git-send-email-Bhaskar.Upadhaya@nxp.com/

it became apparent that nobody really knows what "SGMII 2500" is.
Certainly, Freescale/NXP hardware engineers name this protocol
"SGMII 2500" in the reference manuals, but the PCS devices do not
support any "SGMII" specific features when operating at the speed of
2500 Mbps, no in-band autoneg and no speed change via symbol replication
. So that leaves a fixed speed of 2500 Mbps using a coding of 8b/10b
with a SERDES lane frequency of 3.125 GHz. In fact, "SGMII 2500 without
in-band autoneg and at a fixed speed" is indistinguishable from
"2500base-x without in-band autoneg", which is precisely what these NXP
devices support.

So it just appears that "SGMII 2500" is an unclear name with no clear
definition that stuck.

As such, in the Linux kernel, the drivers which use this SERDES protocol
use the 2500base-x phy-mode.

This patch converts U-Boot to use 2500base-x too, or at least, as much
as it can.

Note that I would have really liked to delete PHY_INTERFACE_MODE_SGMII_2500
completely, but the mvpp2 driver seems to even distinguish between SGMII
2500 and 2500base-X. Namely, it enables in-band autoneg for one but not
the other, and forces flow control for one but not the other. This goes
back to the idea that maybe 2500base-X is a fiber protocol and SGMII-2500
is an MII protocol (connects a MAC to a PHY such as Aquantia), but the
two are practically indistinguishable through everything except use case.

NXP devices can support both use cases through an identical configuration,
for example RX flow control can be unconditionally enabled in order to
support rate adaptation performed by an Aquantia PHY. At least I can
find no indication in online documents published by Cisco which would
point towards "SGMII-2500" being an actual standard with an actual
definition, so I cannot say "yes, NXP devices support it".

Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Reviewed-by: Ramon Fried <rfried.dev@gmail.com>
2021-09-28 18:50:56 +03:00
Tom Rini
83d290c56f SPDX: Convert all of our single license tags to Linux Kernel style
When U-Boot started using SPDX tags we were among the early adopters and
there weren't a lot of other examples to borrow from.  So we picked the
area of the file that usually had a full license text and replaced it
with an appropriate SPDX-License-Identifier: entry.  Since then, the
Linux Kernel has adopted SPDX tags and they place it as the very first
line in a file (except where shebangs are used, then it's second line)
and with slightly different comment styles than us.

In part due to community overlap, in part due to better tag visibility
and in part for other minor reasons, switch over to that style.

This commit changes all instances where we have a single declared
license in the tag as both the before and after are identical in tag
contents.  There's also a few places where I found we did not have a tag
and have introduced one.

Signed-off-by: Tom Rini <trini@konsulko.com>
2018-05-07 09:34:12 -04:00
Shengzhou Liu
f605079041 powerpc/mpc85xx: Add T1024/T1023 SoC support
Add support for Freescale T1024/T1023 SoC.

The T1024 SoC includes the following function and features:
- Two 64-bit Power architecture e5500 cores, up to 1.4GHz
- private 256KB L2 cache each core and shared 256KB CoreNet platform cache (CPC)
- 32-/64-bit DDR3L/DDR4 SDRAM memory controller with ECC and interleaving support
- Data Path Acceleration Architecture (DPAA) incorporating acceleration
- Four MAC for 1G/2.5G/10G network interfaces (RGMII, SGMII, QSGMII, XFI)
- High-speed peripheral interfaces
  - Three PCI Express 2.0 controllers
- Additional peripheral interfaces
  - One SATA 2.0 controller
  - Two USB 2.0 controllers with integrated PHY
  - Enhanced secure digital host controller (SD/eSDHC/eMMC)
  - Enhanced serial peripheral interface (eSPI)
  - Four I2C controllers
  - Four 2-pin UARTs or two 4-pin UARTs
  - Integrated Flash Controller supporting NAND and NOR flash
- Two 8-channel DMA engines
- Multicore programmable interrupt controller (PIC)
- LCD interface (DIU) with 12 bit dual data rate
- QUICC Engine block supporting TDM, HDLC, and UART
- Deep Sleep power implementaion (wakeup from GPIO/Timer/Ethernet/USB)
- Support for hardware virtualization and partitioning enforcement
- QorIQ Platform's Trust Architecture 2.0

Differences between T1024 and T1023:
  Feature         T1024  T1023
  QUICC Engine:   yes    no
  DIU:            yes    no
  Deep Sleep:     yes    no
  I2C controller: 4      3
  DDR:            64-bit 32-bit
  IFC:            32-bit 28-bit

Signed-off-by: Shengzhou Liu <Shengzhou.Liu@freescale.com>
Reviewed-by: York Sun <yorksun@freescale.com>
2014-12-05 08:06:14 -08:00