PIC32 clock module consists of multiple oscillators, PLLs, mutiplexers
and dividers capable of supplying clock to various controllers
on or off-chip.
Signed-off-by: Purna Chandra Mandal <purna.mandal@microchip.com>
Reviewed-by: Simon Glass <sjg@chromium.org>
Reviewed-by: Daniel Schwierzeck <daniel.schwierzeck@gmail.com>
This commit intends to implement "fixed-clock" as in Linux.
(drivers/clk/clk-fixed-rate.c in Linux)
If you need a very simple clock to just provide fixed clock rate
like a crystal oscillator, you do not have to write a new driver.
This driver can support it.
Signed-off-by: Masahiro Yamada <yamada.masahiro@socionext.com>
Acked-by: Simon Glass <sjg@chromium.org>
Add a driver for setting up and modifying the various PLLs, peripheral
clocks and mmc clocks on RK3036
Signed-off-by: Lin Huang <hl@rock-chips.com>
Acked-by: Simon Glass <sjg@chromium.org>
Clocks are an important feature of platforms and have become increasing
complex with time. Most modern SoCs have multiple PLLs and dozens of clock
dividers which distribute clocks to on-chip peripherals.
Some SoC implementations have a clock API which is private to that SoC family,
e.g. Tegra and Exynos. This is useful but it would be better to have a
common API that can be understood and used throughout U-Boot.
Add a simple clock API as a starting point. It supports querying and setting
the rate of a clock. Each clock is a device. To reduce memory and processing
overhead the concept of peripheral clocks is provided. These do not need to
be explicit devices - it is possible to write a driver that can adjust the
I2C clock (for example) without an explicit I2C clock device. This can
dramatically reduce the number of devices (and associated overhead) in a
complex SoC.
Clocks are referenced by a number, and it is expected that SoCs will define
that numbering themselves via an enum.
Signed-off-by: Simon Glass <sjg@chromium.org>