An SMC call is required for all cache-wide operations on Tegra186. This
patch implements the two missing hooks now that U-Boot supports them, and
fixes the mapping of "hook name" to SMC call code.
Signed-off-by: Stephen Warren <swarren@nvidia.com>
Signed-off-by: Tom Warren <twarren@nvidia.com>
SoC-specific logic may be required for all forms of cache-wide
operations; invalidate and flush of both dcache and icache (note that
only 3 of the 4 possible combinations make sense, since the icache never
contains dirty lines). This patch adds an optional hook for all
implemented cache-wide operations, and renames the one existing hook to
better represent exactly which operation it is implementing. A dummy
no-op implementation of each hook is provided.
Signed-off-by: Stephen Warren <swarren@nvidia.com>
Reviewed-by: Simon Glass <sjg@chromium.org>
Signed-off-by: Tom Warren <twarren@nvidia.com>
When performing a cache disable function, code must not access DRAM.
That is because when the cache is disabled, it will be bypassed and all
loads and stores will be serviced by RAM. This prevents accessing any
dirty data in the cache. In turn, this means the stack cannot be
used, since that is in RAM. To guarantee that code doesn't use RAM (and
in particular the stack) __asm_flush_l3_cache() must be manually
implemented in assembly, rather than implemented in C since the compiler
won't know not to touch RAM.
Signed-off-by: Stephen Warren <swarren@nvidia.com>
Signed-off-by: Tom Warren <twarren@nvidia.com>
nvtboot_boot_x0 is a 64-bit variable and hence must be 64-bit aligned.
So far this has happened by accident! Fix the code so this is guaranteed.
This fixes the following build error:
... relocation truncated to fit: R_AARCH64_LDST64_ABS_LO12_NC
against symbol `nvtboot_boot_x0' ...
Signed-off-by: Stephen Warren <swarren@nvidia.com>
Signed-off-by: Tom Warren <twarren@nvidia.com>
On Tegra186, the bootloader which runs before U-Boot passes the Ethernet
MAC address to U-Boot using device tree. Extract this value and write it
to the environment, so that the Ethernet uclass picks it up and uses it
for the built-in Ethernet device.
Signed-off-by: Stephen Warren <swarren@nvidia.com>
Reviewed-by: Simon Glass <sjg@chromium.org>
Acked-by: Joe Hershberger <joe.hershberger@ni.com>
On Tegra186, it is necessary to perform an SMC to fully flush all caches;
flushing/cleaning by set/way is not enough. Implement the required hook
to make this happen.
Signed-off-by: Stephen Warren <swarren@nvidia.com>
Reviewed-by: Simon Glass <sjg@chromium.org>
Signed-off-by: Tom Warren <twarren@nvidia.com>
On Tegra186, U-Boot is booted by the binary firmware as if it were a
Linux kernel. Consequently, a DTB is passed to U-Boot. Cache the address
of that DTB, and parse the /memory/reg property to determine the actual
RAM regions that U-Boot and subsequent EL2/EL1 SW may actually use.
Given the binary FW passes a DTB to U-Boot, I anticipate the suggestion
that U-Boot use that DTB as its control DTB. I don't believe that would
work well, so I do not plan to put any effort into this. By default the
FW-supplied DTB is the L4T kernel's DTB, which uses non-upstreamed DT
bindings. U-Boot aims to use only upstreamed DT bindings, or as close as
it can get. Replacing this DTB with a DTB using upstream bindings is
physically quite easy; simply replace the content of one of the GPT
partitions on the eMMC. However, the binary FW at least partially relies
on the existence/content of some nodes in the DTB, and that requires the
DTB to be written according to downstream bindings. Equally, if U-Boot
continues to use appended DTBs built from its own source tree, as it does
for all other Tegra platforms, development and deployment is much easier.
Signed-off-by: Stephen Warren <swarren@nvidia.com>
Signed-off-by: Tom Warren <twarren@nvidia.com>
Many files in arch/arm/mach-tegra are compiled conditionally based on
Kconfig variables, or applicable to all platforms. We can let the main
Tegra Makefile handle compiling (or not) those files to avoid each SoC-
specific Makefile needing to duplicate entries for those files. This
leaves the SoC-specific Makefiles to compile truly SoC-specific code.
In the future, we'll hopefully add Kconfig variables for all the other
files, and refactor those files, and so reduce the need for SoC-specific
Makefiles and/or ifdefs in the Makefiles.
Signed-off-by: Stephen Warren <swarren@nvidia.com>
Signed-off-by: Tom Warren <twarren@nvidia.com>
P2771-0000 is a P3310 CPU board married to a P2597 I/O board. The
combination contains SoC, DRAM, eMMC, SD card slot, HDMI, USB micro-B
port, Ethernet, USB3 host port, SATA, PCIe, and two GPIO expansion
headers.
Currently, due to U-Boot's level of support for Tegra186, the only
features supported by U-Boot are the console UART and the on-board eMMC.
Additional features will be added over time.
U-Boot has so far been tested by replacing the kernel image on the device
with a U-Boot binary. It is anticipated that U-Boot will eventually
replace the CCPLEX bootloader binary, as on previous chips. This hasn't
yet been tested.
Signed-off-by: Stephen Warren <swarren@nvidia.com>
Reviewed-by: Simon Glass <sjg@chromium.org>
Signed-off-by: Tom Warren <twarren@nvidia.com>
This adds the bare minimum code to support Tegra186, with UART and eMMC
working.
The empty gpio.h is required because <asm/gpio.h> includes it. A future
cleanup round may be able to solve this for all Tegra generations at once.
mach-tegra/Makefile is adjusted not to compile anything for Tegra186, but
instead to defer everything to mach-tegra/tegra186/Makefile. This allows
the SoC code to pick-and-choose which of the C files in the "common"
mach-tegra/ directory to compile in based on the SoC's needs. Most of the
code is not valid for Tegra186, and this approach removes the need for
mach-tegra/Makefile to contain many SoC-specific ifdefs. This approach
may be applied to all other Tegra SoCs in a future cleanup round.
board186.c is introduced to replace board.c and board2.c. These files
currently contain a slew of SoC- and board-specific code that is not
valid for Tegra186. This approach avoids adding yet more ifdefs to those
files. A future cleanup round may refactor most of board*.c into board-/
SoC-specific functions files thus allowing the top-level functions like
board_init_early_f to be shared again.
Signed-off-by: Stephen Warren <swarren@nvidia.com>
Reviewed-by: Simon Glass <sjg@chromium.org>
Signed-off-by: Tom Warren <twarren@nvidia.com>