Per Microsoft PE Format documentation [1], PointerToSymbolTable and
NumberOfSymbols should be zero for an image in the COFF file header.
Currently U-Boot is generating u-boot-app.efi in which these two
members are not zero.
This updates the build rules to tell linker to remove the symbol
table completely so that we can generate compliant *.efi images.
[1] https://docs.microsoft.com/zh-cn/windows/desktop/Debug/pe-format
Signed-off-by: Bin Meng <bmeng.cn@gmail.com>
Reviewed-by: Heinrich Schuchardt <xypron.glpk@gmx.de>
Signed-off-by: Alexander Graf <agraf@suse.de>
Per Microsoft PE Format documentation [1], PointerToSymbolTable and
NumberOfSymbols should be zero for an image in the COFF file header.
Currently U-Boot is generating u-boot-payload.efi image in which
these two members are not zero.
This updates the build rules to tell linker to remove the symbol
table completely so that we can generate compliant *.efi images.
[1] https://docs.microsoft.com/zh-cn/windows/desktop/Debug/pe-format
Reported-by: Heinrich Schuchardt <xypron.glpk@gmx.de>
Signed-off-by: Bin Meng <bmeng.cn@gmail.com>
Reviewed-by: Heinrich Schuchardt <xypron.glpk@gmx.de>
Signed-off-by: Alexander Graf <agraf@suse.de>
With the '-march=core2' fix, it seems that we have some luck that
the 64-bit U-Boot boots again. However if we examine the disassembly
codes there are still SSE instructions elsewhere which means passing
cpu type to GCC is not enough to prevent it from generating these
instructions. A simple test case is doing a 'bootefi selftest' from
the U-Boot shell and it leads to a reset too.
The 'bootefi selftest' reset is even seen with the image created by
the relative older GCC 5.4.0, the one shipped by Ubuntu 16.04.
The reset actually originates from undefined instruction exception
caused by these SSE instructions. To keep U-Boot as a bootloader as
simple as possible, we don't want to handle such advanced SIMD stuff.
To make sure no MMX/SSE instruction sets are generated, tell GCC not
to do this. Note AVX is out of the question as CORE2 is old enough
to support AVX yet.
Signed-off-by: Bin Meng <bmeng.cn@gmail.com>
Reviewed-by: Heinrich Schuchardt <xypron.glpk@gmx.de>
Reviewed-by: Simon Glass <sjg@chromium.org>
With newer kernel.org GCC (7.3.0 or 8.1.0), the u-boot.rom image
built for qemu-x86_64 target does not boot. It keeps resetting
soon after the 32-bit SPL jumps to 64-bit proper. Debugging shows
that the reset happens inside env_callback_init().
000000000113dd85 <env_callback_init>:
113dd85: 41 54 push %r12
113dd87: 55 push %rbp
113dd88: 31 c0 xor %eax,%eax
113dd8a: 53 push %rbx
113dd8b: 0f 57 c0 xorps %xmm0,%xmm0
Executing "xorps %xmm0,%xmm0" causes CPU to immediately reset.
However older GCC like 5.4.0 (the one shipped by Ubuntu 16.04)
does not generate such instructions that utilizes SSE for this
function - env_callback_init() and U-Boot boots without any issue.
Explicitly specifying -march=core2 for newer GCC allows U-Boot
proper to boot again. Examine assembly codes of env_callback_init
and there is no SSE instruction in that function hence U-Boot
continues to boot.
core2 seems to be the oldest arch in GCC that supports 64-bit.
Like 32-bit U-Boot build we use -march=i386 which is the most
conservative cpu type so that the image can run on any x86
processor, let's do the same for the 64-bit U-Boot build.
Signed-off-by: Bin Meng <bmeng.cn@gmail.com>
Reviewed-by: Heinrich Schuchardt <xypron.glpk@gmx.de>
Reviewed-by: Simon Glass <sjg@chromium.org>
Now that we already disable the "strict-aliasing" globally, remove
the duplicates in the nds32/riscv/x86 arch-specific Makefiles.
Signed-off-by: Bin Meng <bmeng.cn@gmail.com>
Reviewed-by: Rick Chen <rick@andestech.com>
Reviewed-by: Simon Glass <sjg@chromium.org>
We left -fdata-sections disabled for x86_64 before because we encountered
random bugs that were at that time inexplicable.
Turns out this really was just side effects of missing .bss* statements
in the linker scripts. With those fixed, we can enable data sections for all
targets.
Signed-off-by: Alexander Graf <agraf@suse.de>
Some times gcc may generate data that is then used within code that may
be part of an efi runtime section. That data could be jump tables,
constants or strings.
In order to make sure we catch these, we need to ensure that gcc emits
them into a section that we can relocate together with all the other
efi runtime bits. This only works if the -ffunction-sections and
-fdata-sections flags are passed and the efi runtime functions are
in a section that starts with ".text".
Up to now we had all efi runtime bits in sections that did not
interfere with the normal section naming scheme, but this forces
us to do so. Hence we need to move the efi_loader text/data/rodata
sections before the global *(.text*) catch-all section.
With this patch in place, we should hopefully have an easier time
to extend the efi runtime functionality in the future.
Signed-off-by: Alexander Graf <agraf@suse.de>
[agraf: Fix x86_64 breakage]
Variables EFI_RELOC and EFI_CRT0 have to be defined to build the
EFI unit tests. This patch ensures this for the x86 architecure.
If we compile with EFI_STUB, the bitness depends on CONFIG_EFI_STUB_64BIT.
Otherwise the bitness depends on CONFIG_X86_64.
Signed-off-by: Heinrich Schuchardt <xypron.glpk@gmx.de>
Reviewed-by: Simon Glass <sjg@chromium.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
When U-Boot started using SPDX tags we were among the early adopters and
there weren't a lot of other examples to borrow from. So we picked the
area of the file that usually had a full license text and replaced it
with an appropriate SPDX-License-Identifier: entry. Since then, the
Linux Kernel has adopted SPDX tags and they place it as the very first
line in a file (except where shebangs are used, then it's second line)
and with slightly different comment styles than us.
In part due to community overlap, in part due to better tag visibility
and in part for other minor reasons, switch over to that style.
This commit changes all instances where we have a single declared
license in the tag as both the before and after are identical in tag
contents. There's also a few places where I found we did not have a tag
and have introduced one.
Signed-off-by: Tom Rini <trini@konsulko.com>
The portable executable header has a field describing the machine type.
The machine type should match the binary. So on i386 we should use
IMAGE_FILE_MACHINE_I386 and on x86_64 we should use
IMAGE_FILE_MACHINE_AMD64. The actual value is issued by the objcopy
command invoked in scripts/Makefile.lib in depdendence of the value of
EFI_TARGET.
The value is used both for EFI_STUB and for EFI_LOADER.
Signed-off-by: Heinrich Schuchardt <xypron.glpk@gmx.de>
Signed-off-by: Alexander Graf <agraf@suse.de>
This patch removes the inclusion of the libgcc math functions and
replaces them by functions coded in C, taken from the coreboot
project. This makes U-Boot building more independent from the toolchain
installed / available on the build system.
The code taken from coreboot is authored from Vadim Bendebury
<vbendeb@chromium.org> on 2014-11-28 and committed with commit
ID e63990ef [libpayload: provide basic 64bit division implementation]
(coreboot git repository located here [1]).
I modified the code so that its checkpatch clean without any
functional changes.
[1] git://github.com/coreboot/coreboot.git
Signed-off-by: Stefan Roese <sr@denx.de>
Cc: Simon Glass <sjg@chromium.org>
Cc: Bin Meng <bmeng.cn@gmail.com>
Reviewed-by: Bin Meng <bmeng.cn@gmail.com>
Tested-by: Bin Meng <bmeng.cn@gmail.com>
64-bit U-Boot image is a combination of 32-bit U-Boot (SPL) plus
64-bit U-Boot (proper). For the U-Boot proper, it has be compiled
to 64-bit object codes. Attempting to use a toolchain to compile
64-bit U-Boot for qemu-x86_64, like kernel.org 4.9 i386-linux-gcc,
fails with the following errors:
arch/x86/cpu/intel_common/microcode.c:79:2: error: PIC register
clobbered by 'ebx' in 'asm'
The issue is because toolchain is preconfigured to generate code
for the 32-bit architecture (i386), and currently '-m64' is missing
in the makefile fragment. Using kernel.org 4.9 x86_64-linux-gcc
works out of the box, since it is preconfigured to generate 64-bit
codes.
When compiling U-Boot SPL, '-m32' is passed to the toolchain, no
mater 32-bit (i386-linux-) or 64-bit (x86_64-linux) the toolchain
is preconfigured to generate.
Signed-off-by: Bin Meng <bmeng.cn@gmail.com>
Reviewed-by: Simon Glass <sjg@chromium.org>
At present U-Boot x86 build is using -mpreferred-stack-boundary=2
which is 4 bytes stack boundary alignment. With 64-bit U-Boot, the
minimal required stack boundary alignment is 16 bytes.
If -mpreferred-stack-boundary is not specified, the default is 4
(16 bytes). Switch to use the default one.
Signed-off-by: Bin Meng <bmeng.cn@gmail.com>
Reviewed-by: Simon Glass <sjg@chromium.org>
Update config.mk settings to support both 32-bit and 64-bit U-Boot.
Signed-off-by: Simon Glass <sjg@chromium.org>
Reviewed-by: Bin Meng <bmeng.cn@gmail.com>
Today we can compile a self-contained hello world efi test binary that
allows us to quickly verify whether the EFI loader framwork works.
We can use that binary outside of the self-contained test case though,
by providing it to a to-be-tested system via tftp.
This patch separates compilation of the helloworld.efi file from
including it in the u-boot binary for "bootefi hello". It also modifies
the efi_loader test case to enable travis to pick up the compiled file.
Because we're now no longer bloating the resulting u-boot binary, we
can enable compilation always, giving us good travis test coverage.
Signed-off-by: Alexander Graf <agraf@suse.de>
Reviewed-by: Tom Rini <trini@konsulko.com>
Add compiler flags and make a few minor adjustments to support the efi
loader.
Signed-off-by: Simon Glass <sjg@chromium.org>
[agraf: Add Kconfig dep]
Signed-off-by: Alexander Graf <agraf@suse.de>
These files now need to be in a standard place so that they can be located
by generic Makefile rules. Move them to the 'lib' directory.
Signed-off-by: Simon Glass <sjg@chromium.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
These files now need to be in a standard place so that they can be located
by generic Makefile rules. Move them to the 'lib' directory.
Signed-off-by: Simon Glass <sjg@chromium.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
Most EFI implementations use 64-bit. Add a way to build U-Boot as a 64-bit
EFI payload. The payload unpacks a (32-bit) U-Boot and starts it. This can
be enabled for x86 boards at present.
Signed-off-by: Simon Glass <sjg@chromium.org>
Improvements to how the payload is built:
Signed-off-by: Bin Meng <bmeng.cn@gmail.com>
Reviewed-by: Bin Meng <bmeng.cn@gmail.com>
Tested-by: Bin Meng <bmeng.cn@gmail.com>
It is useful to be able to load U-Boot onto a board even if is it already
running EFI. This can allow access to the U-Boot command interface, flexible
booting options and easier development.
The easiest way to do this is to build U-Boot as a binary blob and have an
EFI stub copy it into RAM. Add support for this feature, targeting 32-bit
initially.
Also add a way to detect when U-Boot has been loaded via a stub. This goes
in common.h since it needs to be widely available so that we avoid redoing
initialisation that should be skipped.
Signed-off-by: Simon Glass <sjg@chromium.org>
Improvements to how the payload is built:
Signed-off-by: Bin Meng <bmeng.cn@gmail.com>
Reviewed-by: Bin Meng <bmeng.cn@gmail.com>
Tested-by: Bin Meng <bmeng.cn@gmail.com>
Adjust the toolchain flags to build U-Boot as a relocatable shared library,
as required by EFI.
Signed-off-by: Ben Stoltz <stoltz@google.com>
Signed-off-by: Simon Glass <sjg@chromium.org>
Reviewed-by: Bin Meng <bmeng.cn@gmail.com>
Tested-by: Bin Meng <bmeng.cn@gmail.com>
Move the option to Kconfig renaming it to CONFIG_HAVE_GENERIC_BOARD.
Signed-off-by: Masahiro Yamada <yamada.masahiro@socionext.com>
Reviewed-by: Simon Glass <sjg@chromium.org>
Reviewed-by: Alexey Brodkin <abrodkin@synopsys.com>
This was missed when the real mode support was dropped. Remove it.
Signed-off-by: Simon Glass <sjg@chromium.org>
Reviewed-by: Bin Meng <bmeng.cn@gmail.com>
The motivation of this commit is to change CONFIG_USE_PRIVATE_LIBGCC
to a boolean macro so we can move it to Kconfig.
In the current implementation, there are two forms of syntax
for this macro:
- CONFIG_USE_PRIVATE_LIBGCC=y
- CONFIG_USE_PRIVATE_LIBGCC=path/to/private/libgcc
The latter is only used by x86 architecture.
With a little bit refactoring, it can be converted to the former.
Signed-off-by: Masahiro Yamada <yamada.m@jp.panasonic.com>
Tested-by: Simon Glass <sjg@chromium.org>
Acked-by: Simon Glass <sjg@chromium.org>
Until now building the x86 arch boards required 32-bit toolchain. As
many x86_64 toolchains come with 32-bit support (multilib) that's a
good idea to enable build with such toolchains.
The change required was to specify the usage of 32-bit explicitly to
the compiler and the linker (-m32 and -m elf_i386 flags) and locate
the right libgcc path.
Signed-off-by: Vasili Galka <vvv444@gmail.com>
Acked-by: Simon Glass <sjg@chromium.org>
Before this commit, USE_PRIVATE_LIBGCC was defined in
arch-specific config.mk and referenced in
arch/$(ARCH)/lib/Makefile.
We are not happy about parsing config.mk again and again.
We have to keep the same behavior with a different way.
By adding "CONFIG_" prefix, this macro appears
in include/autoconf.mk, include/spl-autoconf.mk.
(And treating USE_PRIVATE_LIBGCC as CONFIG macro
is reasonable enough.)
Tegra SoC family defined USE_PRIVATE_LIBGCC as "yes"
in arch/arm/cpu/arm720t/tegra*/config.mk,
whereas did not define it in arch/arm/cpu/armv7/tegra*/config.mk.
It means Tegra enables PRIVATE_LIBGCC only for SPL.
We can describe the same behavior by adding
#ifdef CONFIG_SPL_BUILD
# define CONFIG_USE_PRIVATE_LIBGCC
#endif
to include/configs/tegra-common.h.
Signed-off-by: Masahiro Yamada <yamada.m@jp.panasonic.com>
Cc: Tom Warren <twarren@nvidia.com>
Cc: Simon Glass <sjg@chromium.org>
Acked-by: Stephen Warren <swarren@nvidia.com>
-Wstrict-prototypes, -ffreestanding, -fno-stack-protector
are defined at the top Makefile for all architectures.
Do not define them twice for x86.
Signed-off-by: Masahiro Yamada <yamada.m@jp.panasonic.com>
Cc: Simon Glass <sjg@chromium.org>
Acked-by: Simon Glass <sjg@chromium.org>
When gcc compiles some 64 bit operations on a 32 bit machine, it generates
calls to small functions instead of instructions which do the job directly.
Those functions are defined in libgcc and transparently provide whatever
functionality was necessary. Unfortunately, u-boot can be built with a
non-standard ABI when libgcc isn't. More specifically, u-boot uses
-mregparm. When the u-boot and libgcc are linked together, very confusing
bugs can crop up, for instance seemingly normal integer division or modulus
getting the wrong answer or even raising a spurious divide by zero
exception.
This change borrows (steals) a technique and some code from coreboot which
solves this problem by creating wrappers which translate the calling
convention when calling the functions in libgcc. Unfortunately that means
that these instructions which had already been turned into functions have
even more overhead, but more importantly it makes them work properly.
To find all of the functions that needed wrapping, u-boot was compiled
without linking in libgcc. All the symbols the linker complained were
undefined were presumed to be the symbols that are needed from libgcc.
These were a subset of the symbols covered by the coreboot code, so it was
used unmodified.
To prevent symbols which are provided by libgcc but not currently wrapped
(or even known about) from being silently linked against by code generated
by libgcc, a new copy of libgcc is created where all the symbols are
prefixed with __normal_. Without being purposefully wrapped, these symbols
will cause linker errors instead of silently introducing very subtle,
confusing bugs.
Another approach would be to whitelist symbols from libgcc and strip out
all the others. The problem with this approach is that it requires the
white listed symbols to be specified three times, once for objcopy, once so
the linker inserts the wrapped, and once to generate the wrapper itself,
while this implementation needs it to be listed only twice. There isn't
much tangible difference in what each approach produces, so this one was
preferred.
Signed-off-by: Gabe Black <gabeblack@chromium.org>
U-Boot Makefiles contain a number of tests for compiler features etc.
which so far are executed again and again. On some architectures
(especially ARM) this results in a large number of calls to gcc.
This patch makes sure to run such tests only once, thus largely
reducing the number of "execve" system calls.
Example: number of "execve" system calls for building the "P2020DS"
(Power Architecture) and "qong" (ARM) boards, measured as:
-> strace -f -e trace=execve -o /tmp/foo ./MAKEALL <board>
-> grep execve /tmp/foo | wc -l
Before: After: Reduction:
==================================
P2020DS 20555 15205 -26%
qong 31692 14490 -54%
As a result, built times are significantly reduced, typically by
30...50%.
Signed-off-by: Wolfgang Denk <wd@denx.de>
Cc: Andy Fleming <afleming@gmail.com>
Cc: Kumar Gala <galak@kernel.crashing.org>
Cc: Albert Aribaud <albert.aribaud@free.fr>
cc: Graeme Russ <graeme.russ@gmail.com>
cc: Mike Frysinger <vapier@gentoo.org>
Tested-by: Graeme Russ <graeme.russ@gmail.com>
Tested-by: Matthias Weisser <weisserm@arcor.de>
Tested-by: Sanjeev Premi <premi@ti.com>
Tested-by: Simon Glass <sjg@chromium.org>
Tested-by: Macpaul Lin <macpaul@gmail.com>
Acked-by: Mike Frysinger <vapier@gentoo.org>
Currently, some linker scripts are found by common code in config.mk.
Some are found using CONFIG_SYS_LDSCRIPT, but the code for that is
sometimes in arch config.mk and sometimes in board config.mk. Some
are found using an arch-specific rule for looking in CPUDIR, etc.
Further, the powerpc config.mk rule relied on CONFIG_NAND_SPL
when it really wanted CONFIG_NAND_U_BOOT -- which covered up the fact
that not all NAND_U_BOOT builds actually wanted CPUDIR/u-boot-nand.lds.
Replace all of this -- except for a handful of boards that are actually
selecting a linker script in a unique way -- with centralized ldscript
finding.
If board code specifies LDSCRIPT, that will be used.
Otherwise, if CONFIG_SYS_LDSCRIPT is specified, that will be used.
If neither of these are specified, then the central config.mk will
check for the existence of the following, in order:
$(TOPDIR)/board/$(BOARDDIR)/u-boot-nand.lds (only if CONFIG_NAND_U_BOOT)
$(TOPDIR)/$(CPUDIR)/u-boot-nand.lds (only if CONFIG_NAND_U_BOOT)
$(TOPDIR)/board/$(BOARDDIR)/u-boot.lds
$(TOPDIR)/$(CPUDIR)/u-boot.lds
Some boards (sc3, cm5200, munices) provided their own u-boot.lds that
were dead code, because they were overridden by a CPUDIR u-boot.lds under
the old powerpc rules. These boards' own u-boot.lds have bitrotted and
no longer work -- these lds files have been removed.
Signed-off-by: Scott Wood <scottwood@freescale.com>
Tested-by: Graeme Russ <graeme.russ@gmail.com>