When U-Boot started using SPDX tags we were among the early adopters and
there weren't a lot of other examples to borrow from. So we picked the
area of the file that usually had a full license text and replaced it
with an appropriate SPDX-License-Identifier: entry. Since then, the
Linux Kernel has adopted SPDX tags and they place it as the very first
line in a file (except where shebangs are used, then it's second line)
and with slightly different comment styles than us.
In part due to community overlap, in part due to better tag visibility
and in part for other minor reasons, switch over to that style.
This commit changes all instances where we have a single declared
license in the tag as both the before and after are identical in tag
contents. There's also a few places where I found we did not have a tag
and have introduced one.
Signed-off-by: Tom Rini <trini@konsulko.com>
U-boot is responsible for enabling the GPU DT node after all necessary
configuration (VPR setup for T124) is performed. In order to be able to
check whether this configuration has been performed right before booting
the kernel, make it happen during board_init().
Also move VPR configuration into the more generic gpu.c file, which will
also host other GPU-related functions, and let boards specify
individually whether they need VPR setup or not.
Signed-off-by: Alexandre Courbot <acourbot@nvidia.com>
Cc: Stephen Warren <swarren@nvidia.com>
Cc: Tom Warren <twarren@nvidia.com>
Signed-off-by: Tom Warren <twarren@nvidia.com>
Derived from Tegra124, modified as appropriate during T210
board bringup. Cleaned up debug statements to conserve
string space, too. This also adds misc 64-bit changes
from Thierry Reding/Stephen Warren.
Signed-off-by: Tom Warren <twarren@nvidia.com>
Signed-off-by: Thierry Reding <treding@nvidia.com>
Signed-off-by: Stephen Warren <swarren@nvidia.com>
When the CPU is in non-secure (NS) mode (when running U-Boot under a
secure monitor), certain actions cannot be taken, since they would need
to write to secure-only registers. One example is configuring the ARM
architectural timer's CNTFRQ register.
We could support this in one of two ways:
1) Compile twice, once for secure mode (in which case anything goes) and
once for non-secure mode (in which case certain actions are disabled).
This complicates things, since everyone needs to keep track of
different U-Boot binaries for different situations.
2) Detect NS mode at run-time, and optionally skip any impossible actions.
This has the advantage of a single U-Boot binary working in all cases.
(2) is not possible on ARM in general, since there's no architectural way
to detect secure-vs-non-secure. However, there is a Tegra-specific way to
detect this.
This patches uses that feature to detect secure vs. NS mode on Tegra, and
uses that to:
* Skip the ARM arch timer initialization.
* Set/clear an environment variable so that boot scripts can take
different action depending on which mode the CPU is in. This might be
something like:
if CPU is secure:
load secure monitor code into RAM.
boot secure monitor.
secure monitor will restart (a new copy of) U-Boot in NS mode.
else:
execute normal boot process
Signed-off-by: Stephen Warren <swarren@nvidia.com>
Signed-off-by: Tom Warren <twarren@nvidia.com>
On Tegra114 and Tegra124 platforms, certain display-related registers cannot
be accessed unless the VPR registers are programmed. For bootloader, we
probably don't care about VPR, so we disable it (which counts as programming
it, and allows those display-related registers to be accessed).
This patch is based on the commit 5f499646c83ba08079f3fdff6591f638a0ce4c0c
in Chromium OS U-Boot project.
Signed-off-by: Andrew Chew <achew@nvidia.com>
Signed-off-by: Jimmy Zhang <jimmzhang@nvidia.com>
Signed-off-by: Bryan Wu <pengw@nvidia.com>
[acourbot: ensure write went through, vpr.c style changes]
Signed-off-by: Alexandre Courbot <acourbot@nvidia.com>
Reviewed-by: Stephen Warren <swarren@nvidia.com>
Cc: Tom Warren <TWarren@nvidia.com>
Cc: Stephen Warren <swarren@nvidia.com>
Cc: Terje Bergstrom <tbergstrom@nvidia.com>
Tested-by: Thierry Reding <treding@nvidia.com>
Signed-off-by: Tom Warren <twarren@nvidia.com>
As suggested by Stephen Warren, use tegra_get_chip() to return
the pure CHIPID for a Tegra SoC (i.e. 0x20 for Tegra20, 0x30 for
Tegra30, etc.) and rename tegra_get_chip_type() to reflect its true
function, i.e. tegra_get_chip_sku(), which returns an ID like
TEGRA_SOC_T25, TEGRA_SOC_T33, etc.
Signed-off-by: Tom Warren <twarren@nvidia.com>
Reviewed-by: Stephen Warren <swarren@nvidia.com>
Without this change, kernel fails at calling function cache_clean_flush
during kernel early boot.
Aprocryphally, intended for T114 only, so I check for a T114 SoC.
Works (i.e. dalmore 3.8 kernel now starts printing to console).
Signed-off-by: Tom Warren <twarren@nvidia.com>
These files are used by both SPL and main U-Boot.
Also made minor changes to shared Tegra code to support
T30 differences.
Signed-off-by: Tom Warren <twarren@nvidia.com>
Reviewed-by: Stephen Warren <swarren@nvidia.com>
The move is pretty straight-forward. ap20.h and tegra20.h were renamed to ap.h and tegra.h.
Some files remain in arch-tegra20 but 'include' a file in 'arch-tegra' with #defines & structs
that will be common between T20 and T30 HW. HW-specific #defines, etc. stay in the 'arch-tegra20'
'root' file.
All boards build OK w/MAKEALL -s tegra20. Checkpatch.pl runs clean. Seaboard works OK.
Signed-off-by: Tom Warren <twarren@nvidia.com>
2012-10-15 11:54:06 -07:00
Renamed from arch/arm/include/asm/arch-tegra20/ap20.h (Browse further)