mirror of
https://github.com/AsahiLinux/u-boot
synced 2024-11-10 07:04:28 +00:00
rsa: Split the rsa-verify to separate the modular exponentiation
Public exponentiation which is required in rsa verify functionality is tightly integrated with verification code in rsa_verify.c. The patch splits the file into twp separating the modular exponentiation. 1. rsa-verify.c - The file parses device tree keys node to fill a keyprop structure. The keyprop structure can then be converted to implementation specific format. (struct rsa_pub_key for sw implementation) - The parsed device tree node is then passed to a generic rsa_mod_exp function. 2. rsa-mod-exp.c Move the software specific functions related to modular exponentiation from rsa-verify.c to this file. Signed-off-by: Ruchika Gupta <ruchika.gupta@freescale.com> CC: Simon Glass <sjg@chromium.org> Acked-by: Simon Glass <sjg@chromium.org>
This commit is contained in:
parent
49cad54788
commit
fc2f4246b4
5 changed files with 405 additions and 277 deletions
43
include/u-boot/rsa-mod-exp.h
Normal file
43
include/u-boot/rsa-mod-exp.h
Normal file
|
@ -0,0 +1,43 @@
|
|||
/*
|
||||
* Copyright (c) 2014, Ruchika Gupta.
|
||||
*
|
||||
* SPDX-License-Identifier: GPL-2.0+
|
||||
*/
|
||||
|
||||
#ifndef _RSA_MOD_EXP_H
|
||||
#define _RSA_MOD_EXP_H
|
||||
|
||||
#include <errno.h>
|
||||
#include <image.h>
|
||||
|
||||
/**
|
||||
* struct key_prop - holder for a public key properties
|
||||
*
|
||||
* The struct has pointers to modulus (Typically called N),
|
||||
* The inverse, R^2, exponent. These can be typecasted and
|
||||
* used as byte arrays or converted to the required format
|
||||
* as per requirement of RSA implementation.
|
||||
*/
|
||||
struct key_prop {
|
||||
const void *rr; /* R^2 can be treated as byte array */
|
||||
const void *modulus; /* modulus as byte array */
|
||||
const void *public_exponent; /* public exponent as byte array */
|
||||
uint32_t n0inv; /* -1 / modulus[0] mod 2^32 */
|
||||
int num_bits; /* Key length in bits */
|
||||
uint32_t exp_len; /* Exponent length in number of uint8_t */
|
||||
};
|
||||
|
||||
/**
|
||||
* rsa_mod_exp_sw() - Perform RSA Modular Exponentiation in sw
|
||||
*
|
||||
* Operation: out[] = sig ^ exponent % modulus
|
||||
*
|
||||
* @sig: RSA PKCS1.5 signature
|
||||
* @sig_len: Length of signature in number of bytes
|
||||
* @node: Node with RSA key elements like modulus, exponent, R^2, n0inv
|
||||
* @out: Result in form of byte array
|
||||
*/
|
||||
int rsa_mod_exp_sw(const uint8_t *sig, uint32_t sig_len,
|
||||
struct key_prop *node, uint8_t *out);
|
||||
|
||||
#endif
|
|
@ -7,4 +7,4 @@
|
|||
# SPDX-License-Identifier: GPL-2.0+
|
||||
#
|
||||
|
||||
obj-$(CONFIG_FIT_SIGNATURE) += rsa-verify.o rsa-checksum.o
|
||||
obj-$(CONFIG_FIT_SIGNATURE) += rsa-verify.o rsa-checksum.o rsa-mod-exp.o
|
||||
|
|
303
lib/rsa/rsa-mod-exp.c
Normal file
303
lib/rsa/rsa-mod-exp.c
Normal file
|
@ -0,0 +1,303 @@
|
|||
/*
|
||||
* Copyright (c) 2013, Google Inc.
|
||||
*
|
||||
* SPDX-License-Identifier: GPL-2.0+
|
||||
*/
|
||||
|
||||
#ifndef USE_HOSTCC
|
||||
#include <common.h>
|
||||
#include <fdtdec.h>
|
||||
#include <asm/types.h>
|
||||
#include <asm/byteorder.h>
|
||||
#include <asm/errno.h>
|
||||
#include <asm/types.h>
|
||||
#include <asm/unaligned.h>
|
||||
#else
|
||||
#include "fdt_host.h"
|
||||
#include "mkimage.h"
|
||||
#include <fdt_support.h>
|
||||
#endif
|
||||
#include <u-boot/rsa.h>
|
||||
#include <u-boot/rsa-mod-exp.h>
|
||||
|
||||
#define UINT64_MULT32(v, multby) (((uint64_t)(v)) * ((uint32_t)(multby)))
|
||||
|
||||
#define get_unaligned_be32(a) fdt32_to_cpu(*(uint32_t *)a)
|
||||
#define put_unaligned_be32(a, b) (*(uint32_t *)(b) = cpu_to_fdt32(a))
|
||||
|
||||
/* Default public exponent for backward compatibility */
|
||||
#define RSA_DEFAULT_PUBEXP 65537
|
||||
|
||||
/**
|
||||
* subtract_modulus() - subtract modulus from the given value
|
||||
*
|
||||
* @key: Key containing modulus to subtract
|
||||
* @num: Number to subtract modulus from, as little endian word array
|
||||
*/
|
||||
static void subtract_modulus(const struct rsa_public_key *key, uint32_t num[])
|
||||
{
|
||||
int64_t acc = 0;
|
||||
uint i;
|
||||
|
||||
for (i = 0; i < key->len; i++) {
|
||||
acc += (uint64_t)num[i] - key->modulus[i];
|
||||
num[i] = (uint32_t)acc;
|
||||
acc >>= 32;
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* greater_equal_modulus() - check if a value is >= modulus
|
||||
*
|
||||
* @key: Key containing modulus to check
|
||||
* @num: Number to check against modulus, as little endian word array
|
||||
* @return 0 if num < modulus, 1 if num >= modulus
|
||||
*/
|
||||
static int greater_equal_modulus(const struct rsa_public_key *key,
|
||||
uint32_t num[])
|
||||
{
|
||||
int i;
|
||||
|
||||
for (i = (int)key->len - 1; i >= 0; i--) {
|
||||
if (num[i] < key->modulus[i])
|
||||
return 0;
|
||||
if (num[i] > key->modulus[i])
|
||||
return 1;
|
||||
}
|
||||
|
||||
return 1; /* equal */
|
||||
}
|
||||
|
||||
/**
|
||||
* montgomery_mul_add_step() - Perform montgomery multiply-add step
|
||||
*
|
||||
* Operation: montgomery result[] += a * b[] / n0inv % modulus
|
||||
*
|
||||
* @key: RSA key
|
||||
* @result: Place to put result, as little endian word array
|
||||
* @a: Multiplier
|
||||
* @b: Multiplicand, as little endian word array
|
||||
*/
|
||||
static void montgomery_mul_add_step(const struct rsa_public_key *key,
|
||||
uint32_t result[], const uint32_t a, const uint32_t b[])
|
||||
{
|
||||
uint64_t acc_a, acc_b;
|
||||
uint32_t d0;
|
||||
uint i;
|
||||
|
||||
acc_a = (uint64_t)a * b[0] + result[0];
|
||||
d0 = (uint32_t)acc_a * key->n0inv;
|
||||
acc_b = (uint64_t)d0 * key->modulus[0] + (uint32_t)acc_a;
|
||||
for (i = 1; i < key->len; i++) {
|
||||
acc_a = (acc_a >> 32) + (uint64_t)a * b[i] + result[i];
|
||||
acc_b = (acc_b >> 32) + (uint64_t)d0 * key->modulus[i] +
|
||||
(uint32_t)acc_a;
|
||||
result[i - 1] = (uint32_t)acc_b;
|
||||
}
|
||||
|
||||
acc_a = (acc_a >> 32) + (acc_b >> 32);
|
||||
|
||||
result[i - 1] = (uint32_t)acc_a;
|
||||
|
||||
if (acc_a >> 32)
|
||||
subtract_modulus(key, result);
|
||||
}
|
||||
|
||||
/**
|
||||
* montgomery_mul() - Perform montgomery mutitply
|
||||
*
|
||||
* Operation: montgomery result[] = a[] * b[] / n0inv % modulus
|
||||
*
|
||||
* @key: RSA key
|
||||
* @result: Place to put result, as little endian word array
|
||||
* @a: Multiplier, as little endian word array
|
||||
* @b: Multiplicand, as little endian word array
|
||||
*/
|
||||
static void montgomery_mul(const struct rsa_public_key *key,
|
||||
uint32_t result[], uint32_t a[], const uint32_t b[])
|
||||
{
|
||||
uint i;
|
||||
|
||||
for (i = 0; i < key->len; ++i)
|
||||
result[i] = 0;
|
||||
for (i = 0; i < key->len; ++i)
|
||||
montgomery_mul_add_step(key, result, a[i], b);
|
||||
}
|
||||
|
||||
/**
|
||||
* num_pub_exponent_bits() - Number of bits in the public exponent
|
||||
*
|
||||
* @key: RSA key
|
||||
* @num_bits: Storage for the number of public exponent bits
|
||||
*/
|
||||
static int num_public_exponent_bits(const struct rsa_public_key *key,
|
||||
int *num_bits)
|
||||
{
|
||||
uint64_t exponent;
|
||||
int exponent_bits;
|
||||
const uint max_bits = (sizeof(exponent) * 8);
|
||||
|
||||
exponent = key->exponent;
|
||||
exponent_bits = 0;
|
||||
|
||||
if (!exponent) {
|
||||
*num_bits = exponent_bits;
|
||||
return 0;
|
||||
}
|
||||
|
||||
for (exponent_bits = 1; exponent_bits < max_bits + 1; ++exponent_bits)
|
||||
if (!(exponent >>= 1)) {
|
||||
*num_bits = exponent_bits;
|
||||
return 0;
|
||||
}
|
||||
|
||||
return -EINVAL;
|
||||
}
|
||||
|
||||
/**
|
||||
* is_public_exponent_bit_set() - Check if a bit in the public exponent is set
|
||||
*
|
||||
* @key: RSA key
|
||||
* @pos: The bit position to check
|
||||
*/
|
||||
static int is_public_exponent_bit_set(const struct rsa_public_key *key,
|
||||
int pos)
|
||||
{
|
||||
return key->exponent & (1ULL << pos);
|
||||
}
|
||||
|
||||
/**
|
||||
* pow_mod() - in-place public exponentiation
|
||||
*
|
||||
* @key: RSA key
|
||||
* @inout: Big-endian word array containing value and result
|
||||
*/
|
||||
static int pow_mod(const struct rsa_public_key *key, uint32_t *inout)
|
||||
{
|
||||
uint32_t *result, *ptr;
|
||||
uint i;
|
||||
int j, k;
|
||||
|
||||
/* Sanity check for stack size - key->len is in 32-bit words */
|
||||
if (key->len > RSA_MAX_KEY_BITS / 32) {
|
||||
debug("RSA key words %u exceeds maximum %d\n", key->len,
|
||||
RSA_MAX_KEY_BITS / 32);
|
||||
return -EINVAL;
|
||||
}
|
||||
|
||||
uint32_t val[key->len], acc[key->len], tmp[key->len];
|
||||
uint32_t a_scaled[key->len];
|
||||
result = tmp; /* Re-use location. */
|
||||
|
||||
/* Convert from big endian byte array to little endian word array. */
|
||||
for (i = 0, ptr = inout + key->len - 1; i < key->len; i++, ptr--)
|
||||
val[i] = get_unaligned_be32(ptr);
|
||||
|
||||
if (0 != num_public_exponent_bits(key, &k))
|
||||
return -EINVAL;
|
||||
|
||||
if (k < 2) {
|
||||
debug("Public exponent is too short (%d bits, minimum 2)\n",
|
||||
k);
|
||||
return -EINVAL;
|
||||
}
|
||||
|
||||
if (!is_public_exponent_bit_set(key, 0)) {
|
||||
debug("LSB of RSA public exponent must be set.\n");
|
||||
return -EINVAL;
|
||||
}
|
||||
|
||||
/* the bit at e[k-1] is 1 by definition, so start with: C := M */
|
||||
montgomery_mul(key, acc, val, key->rr); /* acc = a * RR / R mod n */
|
||||
/* retain scaled version for intermediate use */
|
||||
memcpy(a_scaled, acc, key->len * sizeof(a_scaled[0]));
|
||||
|
||||
for (j = k - 2; j > 0; --j) {
|
||||
montgomery_mul(key, tmp, acc, acc); /* tmp = acc^2 / R mod n */
|
||||
|
||||
if (is_public_exponent_bit_set(key, j)) {
|
||||
/* acc = tmp * val / R mod n */
|
||||
montgomery_mul(key, acc, tmp, a_scaled);
|
||||
} else {
|
||||
/* e[j] == 0, copy tmp back to acc for next operation */
|
||||
memcpy(acc, tmp, key->len * sizeof(acc[0]));
|
||||
}
|
||||
}
|
||||
|
||||
/* the bit at e[0] is always 1 */
|
||||
montgomery_mul(key, tmp, acc, acc); /* tmp = acc^2 / R mod n */
|
||||
montgomery_mul(key, acc, tmp, val); /* acc = tmp * a / R mod M */
|
||||
memcpy(result, acc, key->len * sizeof(result[0]));
|
||||
|
||||
/* Make sure result < mod; result is at most 1x mod too large. */
|
||||
if (greater_equal_modulus(key, result))
|
||||
subtract_modulus(key, result);
|
||||
|
||||
/* Convert to bigendian byte array */
|
||||
for (i = key->len - 1, ptr = inout; (int)i >= 0; i--, ptr++)
|
||||
put_unaligned_be32(result[i], ptr);
|
||||
return 0;
|
||||
}
|
||||
|
||||
static void rsa_convert_big_endian(uint32_t *dst, const uint32_t *src, int len)
|
||||
{
|
||||
int i;
|
||||
|
||||
for (i = 0; i < len; i++)
|
||||
dst[i] = fdt32_to_cpu(src[len - 1 - i]);
|
||||
}
|
||||
|
||||
int rsa_mod_exp_sw(const uint8_t *sig, uint32_t sig_len,
|
||||
struct key_prop *prop, uint8_t *out)
|
||||
{
|
||||
struct rsa_public_key key;
|
||||
int ret;
|
||||
|
||||
if (!prop) {
|
||||
debug("%s: Skipping invalid prop", __func__);
|
||||
return -EBADF;
|
||||
}
|
||||
key.n0inv = prop->n0inv;
|
||||
key.len = prop->num_bits;
|
||||
|
||||
if (!prop->public_exponent)
|
||||
key.exponent = RSA_DEFAULT_PUBEXP;
|
||||
else
|
||||
key.exponent =
|
||||
fdt64_to_cpu(*((uint64_t *)(prop->public_exponent)));
|
||||
|
||||
if (!key.len || !prop->modulus || !prop->rr) {
|
||||
debug("%s: Missing RSA key info", __func__);
|
||||
return -EFAULT;
|
||||
}
|
||||
|
||||
/* Sanity check for stack size */
|
||||
if (key.len > RSA_MAX_KEY_BITS || key.len < RSA_MIN_KEY_BITS) {
|
||||
debug("RSA key bits %u outside allowed range %d..%d\n",
|
||||
key.len, RSA_MIN_KEY_BITS, RSA_MAX_KEY_BITS);
|
||||
return -EFAULT;
|
||||
}
|
||||
key.len /= sizeof(uint32_t) * 8;
|
||||
uint32_t key1[key.len], key2[key.len];
|
||||
|
||||
key.modulus = key1;
|
||||
key.rr = key2;
|
||||
rsa_convert_big_endian(key.modulus, (uint32_t *)prop->modulus, key.len);
|
||||
rsa_convert_big_endian(key.rr, (uint32_t *)prop->rr, key.len);
|
||||
if (!key.modulus || !key.rr) {
|
||||
debug("%s: Out of memory", __func__);
|
||||
return -ENOMEM;
|
||||
}
|
||||
|
||||
uint32_t buf[sig_len / sizeof(uint32_t)];
|
||||
|
||||
memcpy(buf, sig, sig_len);
|
||||
|
||||
ret = pow_mod(&key, buf);
|
||||
if (ret)
|
||||
return ret;
|
||||
|
||||
memcpy(out, buf, sig_len);
|
||||
|
||||
return 0;
|
||||
}
|
|
@ -17,230 +17,26 @@
|
|||
#include "mkimage.h"
|
||||
#include <fdt_support.h>
|
||||
#endif
|
||||
#include <u-boot/rsa-mod-exp.h>
|
||||
#include <u-boot/rsa.h>
|
||||
#include <u-boot/sha1.h>
|
||||
#include <u-boot/sha256.h>
|
||||
|
||||
#define UINT64_MULT32(v, multby) (((uint64_t)(v)) * ((uint32_t)(multby)))
|
||||
|
||||
#define get_unaligned_be32(a) fdt32_to_cpu(*(uint32_t *)a)
|
||||
#define put_unaligned_be32(a, b) (*(uint32_t *)(b) = cpu_to_fdt32(a))
|
||||
|
||||
/* Default public exponent for backward compatibility */
|
||||
#define RSA_DEFAULT_PUBEXP 65537
|
||||
|
||||
/**
|
||||
* subtract_modulus() - subtract modulus from the given value
|
||||
* rsa_verify_key() - Verify a signature against some data using RSA Key
|
||||
*
|
||||
* @key: Key containing modulus to subtract
|
||||
* @num: Number to subtract modulus from, as little endian word array
|
||||
* Verify a RSA PKCS1.5 signature against an expected hash using
|
||||
* the RSA Key properties in prop structure.
|
||||
*
|
||||
* @prop: Specifies key
|
||||
* @sig: Signature
|
||||
* @sig_len: Number of bytes in signature
|
||||
* @hash: Pointer to the expected hash
|
||||
* @algo: Checksum algo structure having information on RSA padding etc.
|
||||
* @return 0 if verified, -ve on error
|
||||
*/
|
||||
static void subtract_modulus(const struct rsa_public_key *key, uint32_t num[])
|
||||
{
|
||||
int64_t acc = 0;
|
||||
uint i;
|
||||
|
||||
for (i = 0; i < key->len; i++) {
|
||||
acc += (uint64_t)num[i] - key->modulus[i];
|
||||
num[i] = (uint32_t)acc;
|
||||
acc >>= 32;
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* greater_equal_modulus() - check if a value is >= modulus
|
||||
*
|
||||
* @key: Key containing modulus to check
|
||||
* @num: Number to check against modulus, as little endian word array
|
||||
* @return 0 if num < modulus, 1 if num >= modulus
|
||||
*/
|
||||
static int greater_equal_modulus(const struct rsa_public_key *key,
|
||||
uint32_t num[])
|
||||
{
|
||||
int i;
|
||||
|
||||
for (i = (int)key->len - 1; i >= 0; i--) {
|
||||
if (num[i] < key->modulus[i])
|
||||
return 0;
|
||||
if (num[i] > key->modulus[i])
|
||||
return 1;
|
||||
}
|
||||
|
||||
return 1; /* equal */
|
||||
}
|
||||
|
||||
/**
|
||||
* montgomery_mul_add_step() - Perform montgomery multiply-add step
|
||||
*
|
||||
* Operation: montgomery result[] += a * b[] / n0inv % modulus
|
||||
*
|
||||
* @key: RSA key
|
||||
* @result: Place to put result, as little endian word array
|
||||
* @a: Multiplier
|
||||
* @b: Multiplicand, as little endian word array
|
||||
*/
|
||||
static void montgomery_mul_add_step(const struct rsa_public_key *key,
|
||||
uint32_t result[], const uint32_t a, const uint32_t b[])
|
||||
{
|
||||
uint64_t acc_a, acc_b;
|
||||
uint32_t d0;
|
||||
uint i;
|
||||
|
||||
acc_a = (uint64_t)a * b[0] + result[0];
|
||||
d0 = (uint32_t)acc_a * key->n0inv;
|
||||
acc_b = (uint64_t)d0 * key->modulus[0] + (uint32_t)acc_a;
|
||||
for (i = 1; i < key->len; i++) {
|
||||
acc_a = (acc_a >> 32) + (uint64_t)a * b[i] + result[i];
|
||||
acc_b = (acc_b >> 32) + (uint64_t)d0 * key->modulus[i] +
|
||||
(uint32_t)acc_a;
|
||||
result[i - 1] = (uint32_t)acc_b;
|
||||
}
|
||||
|
||||
acc_a = (acc_a >> 32) + (acc_b >> 32);
|
||||
|
||||
result[i - 1] = (uint32_t)acc_a;
|
||||
|
||||
if (acc_a >> 32)
|
||||
subtract_modulus(key, result);
|
||||
}
|
||||
|
||||
/**
|
||||
* montgomery_mul() - Perform montgomery mutitply
|
||||
*
|
||||
* Operation: montgomery result[] = a[] * b[] / n0inv % modulus
|
||||
*
|
||||
* @key: RSA key
|
||||
* @result: Place to put result, as little endian word array
|
||||
* @a: Multiplier, as little endian word array
|
||||
* @b: Multiplicand, as little endian word array
|
||||
*/
|
||||
static void montgomery_mul(const struct rsa_public_key *key,
|
||||
uint32_t result[], uint32_t a[], const uint32_t b[])
|
||||
{
|
||||
uint i;
|
||||
|
||||
for (i = 0; i < key->len; ++i)
|
||||
result[i] = 0;
|
||||
for (i = 0; i < key->len; ++i)
|
||||
montgomery_mul_add_step(key, result, a[i], b);
|
||||
}
|
||||
|
||||
/**
|
||||
* num_pub_exponent_bits() - Number of bits in the public exponent
|
||||
*
|
||||
* @key: RSA key
|
||||
* @num_bits: Storage for the number of public exponent bits
|
||||
*/
|
||||
static int num_public_exponent_bits(const struct rsa_public_key *key,
|
||||
int *num_bits)
|
||||
{
|
||||
uint64_t exponent;
|
||||
int exponent_bits;
|
||||
const uint max_bits = (sizeof(exponent) * 8);
|
||||
|
||||
exponent = key->exponent;
|
||||
exponent_bits = 0;
|
||||
|
||||
if (!exponent) {
|
||||
*num_bits = exponent_bits;
|
||||
return 0;
|
||||
}
|
||||
|
||||
for (exponent_bits = 1; exponent_bits < max_bits + 1; ++exponent_bits)
|
||||
if (!(exponent >>= 1)) {
|
||||
*num_bits = exponent_bits;
|
||||
return 0;
|
||||
}
|
||||
|
||||
return -EINVAL;
|
||||
}
|
||||
|
||||
/**
|
||||
* is_public_exponent_bit_set() - Check if a bit in the public exponent is set
|
||||
*
|
||||
* @key: RSA key
|
||||
* @pos: The bit position to check
|
||||
*/
|
||||
static int is_public_exponent_bit_set(const struct rsa_public_key *key,
|
||||
int pos)
|
||||
{
|
||||
return key->exponent & (1ULL << pos);
|
||||
}
|
||||
|
||||
/**
|
||||
* pow_mod() - in-place public exponentiation
|
||||
*
|
||||
* @key: RSA key
|
||||
* @inout: Big-endian word array containing value and result
|
||||
*/
|
||||
static int pow_mod(const struct rsa_public_key *key, uint32_t *inout)
|
||||
{
|
||||
uint32_t *result, *ptr;
|
||||
uint i;
|
||||
int j, k;
|
||||
|
||||
/* Sanity check for stack size - key->len is in 32-bit words */
|
||||
if (key->len > RSA_MAX_KEY_BITS / 32) {
|
||||
debug("RSA key words %u exceeds maximum %d\n", key->len,
|
||||
RSA_MAX_KEY_BITS / 32);
|
||||
return -EINVAL;
|
||||
}
|
||||
|
||||
uint32_t val[key->len], acc[key->len], tmp[key->len];
|
||||
uint32_t a_scaled[key->len];
|
||||
result = tmp; /* Re-use location. */
|
||||
|
||||
/* Convert from big endian byte array to little endian word array. */
|
||||
for (i = 0, ptr = inout + key->len - 1; i < key->len; i++, ptr--)
|
||||
val[i] = get_unaligned_be32(ptr);
|
||||
|
||||
if (0 != num_public_exponent_bits(key, &k))
|
||||
return -EINVAL;
|
||||
|
||||
if (k < 2) {
|
||||
debug("Public exponent is too short (%d bits, minimum 2)\n",
|
||||
k);
|
||||
return -EINVAL;
|
||||
}
|
||||
|
||||
if (!is_public_exponent_bit_set(key, 0)) {
|
||||
debug("LSB of RSA public exponent must be set.\n");
|
||||
return -EINVAL;
|
||||
}
|
||||
|
||||
/* the bit at e[k-1] is 1 by definition, so start with: C := M */
|
||||
montgomery_mul(key, acc, val, key->rr); /* acc = a * RR / R mod n */
|
||||
/* retain scaled version for intermediate use */
|
||||
memcpy(a_scaled, acc, key->len * sizeof(a_scaled[0]));
|
||||
|
||||
for (j = k - 2; j > 0; --j) {
|
||||
montgomery_mul(key, tmp, acc, acc); /* tmp = acc^2 / R mod n */
|
||||
|
||||
if (is_public_exponent_bit_set(key, j)) {
|
||||
/* acc = tmp * val / R mod n */
|
||||
montgomery_mul(key, acc, tmp, a_scaled);
|
||||
} else {
|
||||
/* e[j] == 0, copy tmp back to acc for next operation */
|
||||
memcpy(acc, tmp, key->len * sizeof(acc[0]));
|
||||
}
|
||||
}
|
||||
|
||||
/* the bit at e[0] is always 1 */
|
||||
montgomery_mul(key, tmp, acc, acc); /* tmp = acc^2 / R mod n */
|
||||
montgomery_mul(key, acc, tmp, val); /* acc = tmp * a / R mod M */
|
||||
memcpy(result, acc, key->len * sizeof(result[0]));
|
||||
|
||||
/* Make sure result < mod; result is at most 1x mod too large. */
|
||||
if (greater_equal_modulus(key, result))
|
||||
subtract_modulus(key, result);
|
||||
|
||||
/* Convert to bigendian byte array */
|
||||
for (i = key->len - 1, ptr = inout; (int)i >= 0; i--, ptr++)
|
||||
put_unaligned_be32(result[i], ptr);
|
||||
return 0;
|
||||
}
|
||||
|
||||
static int rsa_verify_key(const struct rsa_public_key *key, const uint8_t *sig,
|
||||
static int rsa_verify_key(struct key_prop *prop, const uint8_t *sig,
|
||||
const uint32_t sig_len, const uint8_t *hash,
|
||||
struct checksum_algo *algo)
|
||||
{
|
||||
|
@ -248,10 +44,10 @@ static int rsa_verify_key(const struct rsa_public_key *key, const uint8_t *sig,
|
|||
int pad_len;
|
||||
int ret;
|
||||
|
||||
if (!key || !sig || !hash || !algo)
|
||||
if (!prop || !sig || !hash || !algo)
|
||||
return -EIO;
|
||||
|
||||
if (sig_len != (key->len * sizeof(uint32_t))) {
|
||||
if (sig_len != (prop->num_bits / 8)) {
|
||||
debug("Signature is of incorrect length %d\n", sig_len);
|
||||
return -EINVAL;
|
||||
}
|
||||
|
@ -265,13 +61,13 @@ static int rsa_verify_key(const struct rsa_public_key *key, const uint8_t *sig,
|
|||
return -EINVAL;
|
||||
}
|
||||
|
||||
uint32_t buf[sig_len / sizeof(uint32_t)];
|
||||
uint8_t buf[sig_len];
|
||||
|
||||
memcpy(buf, sig, sig_len);
|
||||
|
||||
ret = pow_mod(key, buf);
|
||||
if (ret)
|
||||
ret = rsa_mod_exp_sw(sig, sig_len, prop, buf);
|
||||
if (ret) {
|
||||
debug("Error in Modular exponentation\n");
|
||||
return ret;
|
||||
}
|
||||
|
||||
padding = algo->rsa_padding;
|
||||
pad_len = algo->pad_len - algo->checksum_len;
|
||||
|
@ -291,72 +87,57 @@ static int rsa_verify_key(const struct rsa_public_key *key, const uint8_t *sig,
|
|||
return 0;
|
||||
}
|
||||
|
||||
static void rsa_convert_big_endian(uint32_t *dst, const uint32_t *src, int len)
|
||||
{
|
||||
int i;
|
||||
|
||||
for (i = 0; i < len; i++)
|
||||
dst[i] = fdt32_to_cpu(src[len - 1 - i]);
|
||||
}
|
||||
|
||||
/**
|
||||
* rsa_verify_with_keynode() - Verify a signature against some data using
|
||||
* information in node with prperties of RSA Key like modulus, exponent etc.
|
||||
*
|
||||
* Parse sign-node and fill a key_prop structure with properties of the
|
||||
* key. Verify a RSA PKCS1.5 signature against an expected hash using
|
||||
* the properties parsed
|
||||
*
|
||||
* @info: Specifies key and FIT information
|
||||
* @hash: Pointer to the expected hash
|
||||
* @sig: Signature
|
||||
* @sig_len: Number of bytes in signature
|
||||
* @node: Node having the RSA Key properties
|
||||
* @return 0 if verified, -ve on error
|
||||
*/
|
||||
static int rsa_verify_with_keynode(struct image_sign_info *info,
|
||||
const void *hash, uint8_t *sig, uint sig_len, int node)
|
||||
const void *hash, uint8_t *sig,
|
||||
uint sig_len, int node)
|
||||
{
|
||||
const void *blob = info->fdt_blob;
|
||||
struct rsa_public_key key;
|
||||
const void *modulus, *rr;
|
||||
const uint64_t *public_exponent;
|
||||
struct key_prop prop;
|
||||
int length;
|
||||
int ret;
|
||||
int ret = 0;
|
||||
|
||||
if (node < 0) {
|
||||
debug("%s: Skipping invalid node", __func__);
|
||||
return -EBADF;
|
||||
}
|
||||
if (!fdt_getprop(blob, node, "rsa,n0-inverse", NULL)) {
|
||||
debug("%s: Missing rsa,n0-inverse", __func__);
|
||||
return -EFAULT;
|
||||
}
|
||||
key.len = fdtdec_get_int(blob, node, "rsa,num-bits", 0);
|
||||
key.n0inv = fdtdec_get_int(blob, node, "rsa,n0-inverse", 0);
|
||||
public_exponent = fdt_getprop(blob, node, "rsa,exponent", &length);
|
||||
if (!public_exponent || length < sizeof(*public_exponent))
|
||||
key.exponent = RSA_DEFAULT_PUBEXP;
|
||||
else
|
||||
key.exponent = fdt64_to_cpu(*public_exponent);
|
||||
modulus = fdt_getprop(blob, node, "rsa,modulus", NULL);
|
||||
rr = fdt_getprop(blob, node, "rsa,r-squared", NULL);
|
||||
if (!key.len || !modulus || !rr) {
|
||||
|
||||
prop.num_bits = fdtdec_get_int(blob, node, "rsa,num-bits", 0);
|
||||
|
||||
prop.n0inv = fdtdec_get_int(blob, node, "rsa,n0-inverse", 0);
|
||||
|
||||
prop.public_exponent = fdt_getprop(blob, node, "rsa,exponent", &length);
|
||||
if (!prop.public_exponent || length < sizeof(uint64_t))
|
||||
prop.public_exponent = NULL;
|
||||
|
||||
prop.exp_len = sizeof(uint64_t);
|
||||
|
||||
prop.modulus = fdt_getprop(blob, node, "rsa,modulus", NULL);
|
||||
|
||||
prop.rr = fdt_getprop(blob, node, "rsa,r-squared", NULL);
|
||||
|
||||
if (!prop.num_bits || !prop.modulus) {
|
||||
debug("%s: Missing RSA key info", __func__);
|
||||
return -EFAULT;
|
||||
}
|
||||
|
||||
/* Sanity check for stack size */
|
||||
if (key.len > RSA_MAX_KEY_BITS || key.len < RSA_MIN_KEY_BITS) {
|
||||
debug("RSA key bits %u outside allowed range %d..%d\n",
|
||||
key.len, RSA_MIN_KEY_BITS, RSA_MAX_KEY_BITS);
|
||||
return -EFAULT;
|
||||
}
|
||||
key.len /= sizeof(uint32_t) * 8;
|
||||
uint32_t key1[key.len], key2[key.len];
|
||||
ret = rsa_verify_key(&prop, sig, sig_len, hash, info->algo->checksum);
|
||||
|
||||
key.modulus = key1;
|
||||
key.rr = key2;
|
||||
rsa_convert_big_endian(key.modulus, modulus, key.len);
|
||||
rsa_convert_big_endian(key.rr, rr, key.len);
|
||||
if (!key.modulus || !key.rr) {
|
||||
debug("%s: Out of memory", __func__);
|
||||
return -ENOMEM;
|
||||
}
|
||||
|
||||
debug("key length %d\n", key.len);
|
||||
ret = rsa_verify_key(&key, sig, sig_len, hash, info->algo->checksum);
|
||||
if (ret) {
|
||||
printf("%s: RSA failed to verify: %d\n", __func__, ret);
|
||||
return ret;
|
||||
}
|
||||
|
||||
return 0;
|
||||
return ret;
|
||||
}
|
||||
|
||||
int rsa_verify(struct image_sign_info *info,
|
||||
|
|
|
@ -60,7 +60,8 @@ FIT_SIG_OBJS-$(CONFIG_FIT_SIGNATURE) := common/image-sig.o
|
|||
LIBFDT_OBJS := $(addprefix lib/libfdt/, \
|
||||
fdt.o fdt_ro.o fdt_rw.o fdt_strerror.o fdt_wip.o)
|
||||
RSA_OBJS-$(CONFIG_FIT_SIGNATURE) := $(addprefix lib/rsa/, \
|
||||
rsa-sign.o rsa-verify.o rsa-checksum.o)
|
||||
rsa-sign.o rsa-verify.o rsa-checksum.o \
|
||||
rsa-mod-exp.o)
|
||||
|
||||
# common objs for dumpimage and mkimage
|
||||
dumpimage-mkimage-objs := aisimage.o \
|
||||
|
|
Loading…
Reference in a new issue