Add valgrind headers to U-Boot

Valgrind uses magic code sequences to define an ABI that the client may use
to request behavior from the host. In particular, this may be used to
inform valgrind about custom allocators, such as the one used in U-Boot.

This adds headers defining these sequences to U-Boot. It also adds a config
option to disable emission of these sequences entirely, in the (likely)
event that the user does not wish to use valgrind. Note that this option is
called NVALGRIND upstream, but was renamed (and inverted) to
CONFIG_VALGRIND. Aside from this and the conversion of a few instances of
VALGRIND_DO_CLIENT_REQUEST_EXPR to STMT, these headers are unmodified.

These headers were copied from valgrind 3.16.1-4 as distributed in Arch
Linux. They are licensed with the bzip2 1.16 license. This appears to be a
BSD license with some clauses from Zlib.

Signed-off-by: Sean Anderson <seanga2@gmail.com>
Reviewed-by: Simon Glass <sjg@chromium.org>
This commit is contained in:
Sean Anderson 2022-03-23 14:04:48 -04:00 committed by Tom Rini
parent b598957206
commit fba0882bcd
5 changed files with 7402 additions and 0 deletions

14
Kconfig
View file

@ -297,6 +297,20 @@ config TPL_SYS_MALLOC_F_LEN
particular needs this to operate, so that it can allocate the
initial serial device and any others that are needed.
config VALGRIND
bool "Inform valgrind about memory allocations"
help
Valgrind is an instrumentation framework for building dynamic analysis
tools. In particular, it may be used to detect memory management bugs
in U-Boot. It relies on knowing when heap blocks are allocated in
order to give accurate results. This happens automatically for
standard allocator functions provided by the host OS. However, this
doesn't automatically happen for U-Boot's malloc implementation.
Enable this option to annotate U-Boot's malloc implementation so that
it can be handled accurately by Valgrind. If you aren't planning on
using valgrind to debug U-Boot, say 'n'.
menuconfig EXPERT
bool "Configure standard U-Boot features (expert users)"
default y

View file

@ -139,6 +139,7 @@ License identifier syntax
Full name SPDX Identifier OSI Approved File name URI
=======================================================================================================================================
bzip2 and libbzip2 License v1.0.6 bzip2-1.0.6 bzip2-1.0.6.txt https://spdx.org/licenses/bzip2-1.0.6.html
GNU General Public License v2.0 only GPL-2.0 Y gpl-2.0.txt http://www.gnu.org/licenses/gpl-2.0.txt
GNU General Public License v2.0 or later GPL-2.0+ Y gpl-2.0.txt http://www.gnu.org/licenses/gpl-2.0.txt
GNU Library General Public License v2 or later LGPL-2.0+ Y lgpl-2.0.txt http://www.gnu.org/licenses/old-licenses/lgpl-2.0.txt

30
Licenses/bzip2-1.0.6.txt Normal file
View file

@ -0,0 +1,30 @@
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
2. The origin of this software must not be misrepresented; you must
not claim that you wrote the original software. If you use this
software in a product, an acknowledgment in the product
documentation would be appreciated but is not required.
3. Altered source versions must be plainly marked as such, and must
not be misrepresented as being the original software.
4. The name of the author may not be used to endorse or promote
products derived from this software without specific prior written
permission.
THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS
OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

251
include/valgrind/memcheck.h Normal file
View file

@ -0,0 +1,251 @@
/* SPDX-License-Identifier: bzip2-1.0.6 */
/*
This file is part of MemCheck, a heavyweight Valgrind tool for
detecting memory errors.
Copyright (C) 2000-2017 Julian Seward. All rights reserved.
*/
#ifndef __MEMCHECK_H
#define __MEMCHECK_H
/* This file is for inclusion into client (your!) code.
You can use these macros to manipulate and query memory permissions
inside your own programs.
See comment near the top of valgrind.h on how to use them.
*/
#include "valgrind.h"
/* !! ABIWARNING !! ABIWARNING !! ABIWARNING !! ABIWARNING !!
This enum comprises an ABI exported by Valgrind to programs
which use client requests. DO NOT CHANGE THE ORDER OF THESE
ENTRIES, NOR DELETE ANY -- add new ones at the end. */
typedef
enum {
VG_USERREQ__MAKE_MEM_NOACCESS = VG_USERREQ_TOOL_BASE('M','C'),
VG_USERREQ__MAKE_MEM_UNDEFINED,
VG_USERREQ__MAKE_MEM_DEFINED,
VG_USERREQ__DISCARD,
VG_USERREQ__CHECK_MEM_IS_ADDRESSABLE,
VG_USERREQ__CHECK_MEM_IS_DEFINED,
VG_USERREQ__DO_LEAK_CHECK,
VG_USERREQ__COUNT_LEAKS,
VG_USERREQ__GET_VBITS,
VG_USERREQ__SET_VBITS,
VG_USERREQ__CREATE_BLOCK,
VG_USERREQ__MAKE_MEM_DEFINED_IF_ADDRESSABLE,
/* Not next to VG_USERREQ__COUNT_LEAKS because it was added later. */
VG_USERREQ__COUNT_LEAK_BLOCKS,
VG_USERREQ__ENABLE_ADDR_ERROR_REPORTING_IN_RANGE,
VG_USERREQ__DISABLE_ADDR_ERROR_REPORTING_IN_RANGE,
/* This is just for memcheck's internal use - don't use it */
_VG_USERREQ__MEMCHECK_RECORD_OVERLAP_ERROR
= VG_USERREQ_TOOL_BASE('M','C') + 256
} Vg_MemCheckClientRequest;
/* Client-code macros to manipulate the state of memory. */
/* Mark memory at _qzz_addr as unaddressable for _qzz_len bytes. */
#define VALGRIND_MAKE_MEM_NOACCESS(_qzz_addr,_qzz_len) \
VALGRIND_DO_CLIENT_REQUEST_STMT( \
VG_USERREQ__MAKE_MEM_NOACCESS, \
(_qzz_addr), (_qzz_len), 0, 0, 0)
/* Similarly, mark memory at _qzz_addr as addressable but undefined
for _qzz_len bytes. */
#define VALGRIND_MAKE_MEM_UNDEFINED(_qzz_addr,_qzz_len) \
VALGRIND_DO_CLIENT_REQUEST_STMT( \
VG_USERREQ__MAKE_MEM_UNDEFINED, \
(_qzz_addr), (_qzz_len), 0, 0, 0)
/* Similarly, mark memory at _qzz_addr as addressable and defined
for _qzz_len bytes. */
#define VALGRIND_MAKE_MEM_DEFINED(_qzz_addr,_qzz_len) \
VALGRIND_DO_CLIENT_REQUEST_STMT( \
VG_USERREQ__MAKE_MEM_DEFINED, \
(_qzz_addr), (_qzz_len), 0, 0, 0)
/* Similar to VALGRIND_MAKE_MEM_DEFINED except that addressability is
not altered: bytes which are addressable are marked as defined,
but those which are not addressable are left unchanged. */
#define VALGRIND_MAKE_MEM_DEFINED_IF_ADDRESSABLE(_qzz_addr,_qzz_len) \
VALGRIND_DO_CLIENT_REQUEST_STMT( \
VG_USERREQ__MAKE_MEM_DEFINED_IF_ADDRESSABLE, \
(_qzz_addr), (_qzz_len), 0, 0, 0)
/* Create a block-description handle. The description is an ascii
string which is included in any messages pertaining to addresses
within the specified memory range. Has no other effect on the
properties of the memory range. */
#define VALGRIND_CREATE_BLOCK(_qzz_addr,_qzz_len, _qzz_desc) \
VALGRIND_DO_CLIENT_REQUEST_STMT( \
VG_USERREQ__CREATE_BLOCK, \
(_qzz_addr), (_qzz_len), (_qzz_desc), \
0, 0)
/* Discard a block-description-handle. Returns 1 for an
invalid handle, 0 for a valid handle. */
#define VALGRIND_DISCARD(_qzz_blkindex) \
VALGRIND_DO_CLIENT_REQUEST_EXPR(0 /* default return */, \
VG_USERREQ__DISCARD, \
0, (_qzz_blkindex), 0, 0, 0)
/* Client-code macros to check the state of memory. */
/* Check that memory at _qzz_addr is addressable for _qzz_len bytes.
If suitable addressibility is not established, Valgrind prints an
error message and returns the address of the first offending byte.
Otherwise it returns zero. */
#define VALGRIND_CHECK_MEM_IS_ADDRESSABLE(_qzz_addr,_qzz_len) \
VALGRIND_DO_CLIENT_REQUEST_EXPR(0, \
VG_USERREQ__CHECK_MEM_IS_ADDRESSABLE, \
(_qzz_addr), (_qzz_len), 0, 0, 0)
/* Check that memory at _qzz_addr is addressable and defined for
_qzz_len bytes. If suitable addressibility and definedness are not
established, Valgrind prints an error message and returns the
address of the first offending byte. Otherwise it returns zero. */
#define VALGRIND_CHECK_MEM_IS_DEFINED(_qzz_addr,_qzz_len) \
VALGRIND_DO_CLIENT_REQUEST_EXPR(0, \
VG_USERREQ__CHECK_MEM_IS_DEFINED, \
(_qzz_addr), (_qzz_len), 0, 0, 0)
/* Use this macro to force the definedness and addressibility of an
lvalue to be checked. If suitable addressibility and definedness
are not established, Valgrind prints an error message and returns
the address of the first offending byte. Otherwise it returns
zero. */
#define VALGRIND_CHECK_VALUE_IS_DEFINED(__lvalue) \
VALGRIND_CHECK_MEM_IS_DEFINED( \
(volatile unsigned char *)&(__lvalue), \
(unsigned long)(sizeof (__lvalue)))
/* Do a full memory leak check (like --leak-check=full) mid-execution. */
#define VALGRIND_DO_LEAK_CHECK \
VALGRIND_DO_CLIENT_REQUEST_STMT(VG_USERREQ__DO_LEAK_CHECK, \
0, 0, 0, 0, 0)
/* Same as VALGRIND_DO_LEAK_CHECK but only showing the entries for
which there was an increase in leaked bytes or leaked nr of blocks
since the previous leak search. */
#define VALGRIND_DO_ADDED_LEAK_CHECK \
VALGRIND_DO_CLIENT_REQUEST_STMT(VG_USERREQ__DO_LEAK_CHECK, \
0, 1, 0, 0, 0)
/* Same as VALGRIND_DO_ADDED_LEAK_CHECK but showing entries with
increased or decreased leaked bytes/blocks since previous leak
search. */
#define VALGRIND_DO_CHANGED_LEAK_CHECK \
VALGRIND_DO_CLIENT_REQUEST_STMT(VG_USERREQ__DO_LEAK_CHECK, \
0, 2, 0, 0, 0)
/* Do a summary memory leak check (like --leak-check=summary) mid-execution. */
#define VALGRIND_DO_QUICK_LEAK_CHECK \
VALGRIND_DO_CLIENT_REQUEST_STMT(VG_USERREQ__DO_LEAK_CHECK, \
1, 0, 0, 0, 0)
/* Return number of leaked, dubious, reachable and suppressed bytes found by
all previous leak checks. They must be lvalues. */
#define VALGRIND_COUNT_LEAKS(leaked, dubious, reachable, suppressed) \
/* For safety on 64-bit platforms we assign the results to private
unsigned long variables, then assign these to the lvalues the user
specified, which works no matter what type 'leaked', 'dubious', etc
are. We also initialise '_qzz_leaked', etc because
VG_USERREQ__COUNT_LEAKS doesn't mark the values returned as
defined. */ \
{ \
unsigned long _qzz_leaked = 0, _qzz_dubious = 0; \
unsigned long _qzz_reachable = 0, _qzz_suppressed = 0; \
VALGRIND_DO_CLIENT_REQUEST_STMT( \
VG_USERREQ__COUNT_LEAKS, \
&_qzz_leaked, &_qzz_dubious, \
&_qzz_reachable, &_qzz_suppressed, 0); \
leaked = _qzz_leaked; \
dubious = _qzz_dubious; \
reachable = _qzz_reachable; \
suppressed = _qzz_suppressed; \
}
/* Return number of leaked, dubious, reachable and suppressed bytes found by
all previous leak checks. They must be lvalues. */
#define VALGRIND_COUNT_LEAK_BLOCKS(leaked, dubious, reachable, suppressed) \
/* For safety on 64-bit platforms we assign the results to private
unsigned long variables, then assign these to the lvalues the user
specified, which works no matter what type 'leaked', 'dubious', etc
are. We also initialise '_qzz_leaked', etc because
VG_USERREQ__COUNT_LEAKS doesn't mark the values returned as
defined. */ \
{ \
unsigned long _qzz_leaked = 0, _qzz_dubious = 0; \
unsigned long _qzz_reachable = 0, _qzz_suppressed = 0; \
VALGRIND_DO_CLIENT_REQUEST_STMT( \
VG_USERREQ__COUNT_LEAK_BLOCKS, \
&_qzz_leaked, &_qzz_dubious, \
&_qzz_reachable, &_qzz_suppressed, 0); \
leaked = _qzz_leaked; \
dubious = _qzz_dubious; \
reachable = _qzz_reachable; \
suppressed = _qzz_suppressed; \
}
/* Get the validity data for addresses [zza..zza+zznbytes-1] and copy it
into the provided zzvbits array. Return values:
0 if not running on valgrind
1 success
2 [previously indicated unaligned arrays; these are now allowed]
3 if any parts of zzsrc/zzvbits are not addressable.
The metadata is not copied in cases 0, 2 or 3 so it should be
impossible to segfault your system by using this call.
*/
#define VALGRIND_GET_VBITS(zza,zzvbits,zznbytes) \
(unsigned)VALGRIND_DO_CLIENT_REQUEST_EXPR(0, \
VG_USERREQ__GET_VBITS, \
(const char*)(zza), \
(char*)(zzvbits), \
(zznbytes), 0, 0)
/* Set the validity data for addresses [zza..zza+zznbytes-1], copying it
from the provided zzvbits array. Return values:
0 if not running on valgrind
1 success
2 [previously indicated unaligned arrays; these are now allowed]
3 if any parts of zza/zzvbits are not addressable.
The metadata is not copied in cases 0, 2 or 3 so it should be
impossible to segfault your system by using this call.
*/
#define VALGRIND_SET_VBITS(zza,zzvbits,zznbytes) \
(unsigned)VALGRIND_DO_CLIENT_REQUEST_EXPR(0, \
VG_USERREQ__SET_VBITS, \
(const char*)(zza), \
(const char*)(zzvbits), \
(zznbytes), 0, 0 )
/* Disable and re-enable reporting of addressing errors in the
specified address range. */
#define VALGRIND_DISABLE_ADDR_ERROR_REPORTING_IN_RANGE(_qzz_addr,_qzz_len) \
VALGRIND_DO_CLIENT_REQUEST_EXPR(0 /* default return */, \
VG_USERREQ__DISABLE_ADDR_ERROR_REPORTING_IN_RANGE, \
(_qzz_addr), (_qzz_len), 0, 0, 0)
#define VALGRIND_ENABLE_ADDR_ERROR_REPORTING_IN_RANGE(_qzz_addr,_qzz_len) \
VALGRIND_DO_CLIENT_REQUEST_EXPR(0 /* default return */, \
VG_USERREQ__ENABLE_ADDR_ERROR_REPORTING_IN_RANGE, \
(_qzz_addr), (_qzz_len), 0, 0, 0)
#endif

7106
include/valgrind/valgrind.h Normal file

File diff suppressed because it is too large Load diff