sunxi: add board documentation

Add some long overdue instructions for building and installing U-Boot on
Allwinner SoC based boards.
This describes the building process, including TF-A and crust, plus
installation to SD card, eMMC and SPI flash, both from Linux and U-Boot
itself. Also describe FEL booting.

Signed-off-by: Andre Przywara <andre.przywara@arm.com>
Reviewed-by: Heinrich Schuchardt <heinrich.schuchardt@canonical.com>
This commit is contained in:
Andre Przywara 2021-12-27 15:07:36 +00:00 committed by Heinrich Schuchardt
parent 2707610eb7
commit eaaa5fbbe4
3 changed files with 329 additions and 0 deletions

View file

@ -0,0 +1,9 @@
.. SPDX-License-Identifier: GPL-2.0+
Allwinner (sunxi) boards
========================
.. toctree::
:maxdepth: 2
sunxi

View file

@ -0,0 +1,319 @@
.. SPDX-License-Identifier: GPL-2.0+
.. Copyright (C) 2021 Arm Ltd.
Allwinner SoC based boards
==========================
For boards using an Allwinner ARM based SoC ("sunxi"), the U-Boot build
system generates a single integrated image file: ``u-boot-sunxi-with-spl.bin.``
This file can be used on SD cards, eMMC devices, SPI flash and for the
USB-OTG based boot method (FEL). To build this file:
* For 64-bit SoCs, build Trusted Firmware (TF-A, formerly known as ATF) first,
you will need its ``bl31.bin``. See below for more details.
* Optionally on 64-bit SoCs, build the `crust`_ management processor firmware,
you will need its ``scp.bin``. See below for more details.
* Build U-Boot::
$ export BL31=/path/to/bl31.bin # required for 64-bit SoCs
$ export SCP=/path/to/scp.bin # optional for some 64-bit SoCs
$ make <yourboardname>_defconfig
$ make
* Transfer to an (micro)SD card (see below for more details)::
$ sudo dd if=u-boot-sunxi-with-spl.bin of=/dev/sdX bs=8k seek=1
* Boot and enjoy!
.. note::
The traditional SD card location the Allwinner BootROM loads from is 8KB
(sector 16). This works fine with the old MBR partitioning scheme, which most
SD cards come formatted with. However this is in the middle of a potential
GPT partition table, which will become invalid in this step. Newer SoCs
(starting with the H3 from late 2014) also support booting from 128KB, which
is beyond even a GPT and thus a safer location.
For more details, and alternative boot locations or installations, see below.
Building Arm Trusted Firmware (TF-A)
------------------------------------
Boards using a 64-bit Soc (A64, H5, H6, H616, R329) require the BL31 stage of
the `Arm Trusted Firmware-A`_ firmware. This provides the reference
implementation of secure software for Armv8-A, offering PSCI and SMCCC
services. Allwinner support is fully mainlined. To build bl31.bin::
$ git clone https://git.trustedfirmware.org/TF-A/trusted-firmware-a.git
$ cd trusted-firmware-a
$ make CROSS_COMPILE=aarch64-linux-gnu- PLAT=sun50i_a64 DEBUG=1
$ export BL31=$(pwd)/build/sun50i_a64/debug/bl31.bin
The target platform (``PLAT=``) for A64 and H5 SoCs is sun50i_a64, for the H6
sun50i_h6, for the H616 sun50i_h616, and for the R329 sun50i_r329. Use::
$ find plat/allwinner -name platform.mk
to find all supported platforms. TF-A's `docs/plat/allwinner.rst`_ contains
more information and lists some build options.
Building the Crust management processor firmware
------------------------------------------------
For some SoCs and boards, the integrated OpenRISC management controller can
be used to provide power management services, foremost suspend to RAM.
There is a community supported Open Source implementation called `crust`_,
which runs on most SoCs featuring a management controller.
This firmware part is optional, setting the SCP environment variable to
/dev/null avoids the warning message when building without one.
To build crust's scp.bin, you need an OpenRISC (or1k) cross compiler, then::
$ git clone https://github.com/crust-firmware/crust.git
$ cd crust
$ make <yourboard>_defconfig
$ make CROSS_COMPILE=or1k-none-elf- scp
$ export SCP=$(pwd)/build/scp/scp.bin
Find a list of supported board configurations in the `configs/`_ directory.
The `crust README`_ has more information about the building process, including
information about where to get OpenRISC cross compilers.
Building the U-Boot image
-------------------------
Find the U-Boot defconfig file for your board first. Those files live in
the ``configs/`` directory; you can grep for the stub name of the devicetree
file, if you know that, or for the SoC name to find the right version::
$ git grep -l MACH_SUN8I_H3 configs
$ git grep -l sun50i-h6-orangepi-3 configs
The `linux-sunxi`_ wiki also lists the name of the defconfig file in the
respective board page. Then use this defconfig file to create the .config
file, and build the image::
$ make <yourboard>_defconfig
$ make
For 64-bit boards, this requires either the BL31 environment variable to be
set (as shown above in the TF-A build example), or it to be supplied on the
build command line::
$ make BL31=/src/tf-a.git/build/sun50i_h616/debug/bl31.bin
The same applies to the (optional) SCP firmware.
The file containing everything you need is called ``u-boot-sunxi-with-spl.bin``,
you will find it in the root folder of your U-Boot (build) tree. Except for
raw NAND flash devices this very same file can be used for any boot source.
It will contain the SPL image, fitted with the proper signature recognised by
the BROM, and the required checksum. Also it will contain at least U-Boot
proper, either wrapped in the legacy U-Boot image format, or in a FIT image.
The board's devicetree is also included, either appended to the U-Boot proper
image, or contained in the FIT image. If required by the SoC, this FIT file will
also include the other firmware images.
Installing U-Boot
-----------------
Installing on a (micro-) SD card
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
All Allwinner SoCs will try to find a boot image at sector 16 (8KB) of
an SD card, connected to the first MMC controller. To transfer the generated
image to an SD card, from any Linux device (including the board itself) with
an (micro-)SD card reader, type::
$ sudo dd if=u-boot-sunxi-with-spl.bin of=/dev/sdX bs=1k seek=8
``/dev/sdx`` needs to be replaced with the block device name of the SD card
reader. On some machines this could be ``/dev/mmcblkX``.
Newer SoCs (starting from the H3 from 2014, and including all ARM64 SoCs),
also look at sector 256 (128KB) for the signature (after having checked the
8KB location). Installing the firmware there has the advantage of not
overlapping with a GPT partition table. Simply replace the "``seek=8``" above
with "``seek=128``".
You can also use an existing (mainline) U-Boot to write to the SD card. Load
the generated U-Boot image somewhere into DRAM (via ``ext4load``, ``fatload``,
or ``tftpboot``), then write to MMC device 0::
=> fatload mmc 0:1 $kernel_addr_r u-boot-sunxi-with-spl.bin
=> mmc dev 0
=> mmc write $kernel_addr_r 0x10 0x7f0
To use the alternative boot location on newer SoCs::
=> mmc write $kernel_addr_r 0x100 0x700
Installing on eMMC (on-board flash memory)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Some boards have a soldered eMMC chip, some other boards have an eMMC socket
to receive an optional eMMC module. U-Boot can be installed to those chips,
to boot without an SD card inserted. The Boot-ROM can boot either from the
regular user data partition, or from one of the separate eMMC boot partitions.
U-Boot can be installed either from a running Linux instance on the device,
from a running (mainline) U-Boot, or via an adapter for the (removable)
eMMC module.
Installing on an eMMC user data partition from Linux
````````````````````````````````````````````````````
If you have a running Linux instance on the device, and have somehow copied
over the image file to that device, you can write the image directly into the
eMMC device from there.
Find the name of the block device file first, it is one of the
``/dev/mmcblk<X>`` devices. eMMC devices typically also list a
``/dev/mmcblk<X>boot0`` partition (see below), this helps you to tell it apart
from the SD card device.
To install onto the user data partition::
$ sudo dd if=u-boot-sunxi-with-spl.bin of=/dev/dev/mmcblkX bs=1k seek=8
Similar to SD cards, the BROM in newer SoCs (H3 and above) also checks
sector 256 of an eMMC, so you can use "``seek=128``" as well. Having a GPT
on an eMMC device is much more likely than on an SD card, so you should
probably stick to the alternative location, or use one of the boot partitions.
Installing on an eMMC boot partition from Linux
```````````````````````````````````````````````
In the following examples, ``/dev/mmcblkX`` needs to be replaced with the block
device name of the eMMC device. The eMMC device can be recognised by also
listing the boot partitions (``/dev/mmcblkXboot0``) in ``/proc/partitions``.
To allow booting from one of the eMMC boot partitions, this one needs to be
enabled first. This only needs to be done once, as this setting is
persistent, even though the boot partition can be disabled or changed again
any time later::
# apt-get install mmc-utils
# mmc bootbus set single_hs x1 x4 /dev/mmcblkX
# mmc bootpart enable 1 1 /dev/mmcblkX
The first "1" in the last command points to the boot partition number to be
used, typically devices offer two boot partitions.
By default Linux disables write access to the boot partitions, to prevent
accidental overwrites. You need to disable the write protection (until the
next reboot), then can write the U-Boot image to the *first* sector of the
selected boot partition::
# echo 0 > /sys/block/mmcblkXboot0/force_ro
# dd if=u-boot-sunxi-with-spl.bin of=/dev/mmcblkXboot0 bs=1k
Installing on an eMMC user data partition from U-Boot
`````````````````````````````````````````````````````
You can also write the generated image file to an SD card, boot the device
from there, and burn the very same image to the eMMC device from U-Boot.
The following commands copy the image from the SD card to the eMMC device::
=> mmc dev 0
=> mmc read $kernel_addr_r 0x10 0x7f0
=> mmc dev 1
=> mmc write $kernel_addr_r 0x10 0x7f0
You can also copy an image from the 8K offset of an SD card to the 128K
offset of the eMMC (or any combination), just change the "``0x10 0x7f0``" above
to "``0x100 0x700``", respectively. Of course the image file can be loaded via
any other loading method, including ``fatload``, ``ext4load``, ``tftpboot``.
Installing on an eMMC boot partition from U-Boot
````````````````````````````````````````````````
The selected eMMC boot partition needs to be initially enabled first (same
as in Linux above), you can do this from U-Boot with::
=> mmc dev 1
=> mmc bootbus 1 1 0 0
=> mmc partconf 1 1 1 1
The first "1" in both commands denotes the MMC device number. The second "1"
in the partconf command sets the required ``BOOT_ACK`` option, the last two "1"s
selects the active boot partition and the target for the next data access,
respectively. So for the next "``mmc write``" command to address one of the boot
partitions, the last number must either be "1" or "2", "0" would switch (back)
to the normal user data partition.
Then load the ``u-boot-sunxi-with-spl.bin`` image file into DRAM, either by
reading directly from an SD card or eMMC user data partition, or from a
file system or TFTP (see above), and transfer it to the boot partition::
=> tftpboot $kernel_addr_r u-boot-sunxi-with-spl.bin
=> mmc write $kernel_addr_r 0 0x7f0
After that the device should boot from the selected boot partition, which takes
precedence over booting from the user data partition.
Installing on SPI flash
^^^^^^^^^^^^^^^^^^^^^^^
Some devices have a SPI NOR flash chip soldered on the board. If it is
connected to the SPI0 pins on PortC, the BROM can also boot from there.
Typically the SPI flash has the lowest boot priority, so SD card and eMMC
devices will be considered first.
Installing on SPI flash from Linux
``````````````````````````````````
If the devicetree enables and describes the SPI flash device, you can access
the SPI flash content from Linux, using the `MTD utils`_::
# apt-get install mtd-utils
# mtdinfo
# mtd_debug erase /dev/mtdX 0 0xf0000
# mtd_debug write /dev/mtdX 0 0xf0000 u-boot-sunxi-with-spl.bin
``/dev/mtdX`` needs to be replaced with the respective device name, as listed
in the output of ``mtdinfo``.
Installing on SPI flash from U-Boot
```````````````````````````````````
If SPI flash driver and command support (``CONFIG_CMD_SF``) is enabled in the
U-Boot configuration, the image file can be installed via U-Boot as well::
=> tftpboot $kernel_addr_r u-boot-sunxi-with-spl.bin
=> sf probe
=> sf erase 0 +0xf0000
=> sf write $kernel_addr_r 0 $filesize
Installing on SPI flash via USB in FEL mode
```````````````````````````````````````````
If the device is in FEL mode (see below), the SPI flash can also be written to
with the sunxi-fel utility, via an USB(-OTG) cable from any USB host machine::
$ sunxi-fel spiflash-write 0 u-boot-sunxi-with-spl.bin
Booting via the USB(-OTG) FEL mode
----------------------------------
If none of the boot locations checked by the BROM contains a medium or valid
signature, the BROM will enter the so-called FEL mode, in which it will
listen to commands from a host on the SoC's USB-OTG interface. Those commands
allow to read from and write to arbitrary memory locations, also to start
execution at any address, which allows to bootstrap a board solely via an
USB cable. Some boards feature a "FEL" or "U-Boot" button, which forces
FEL mode despite a valid boot location being present. The same can be achieved
via a `magic binary`_ on an SD card, which allows to enter FEL mode on any
board.
To use FEL booting, let the board enter FEL mode, via any of the mentioned
methods (no boot media, FEL button, SD card with FEL binary), then connect
a USB cable to the board's USB OTG port. Some boards (Pine64, TV boxes) don't
have a separate OTG port. In this case mostly one of the USB-A ports is
connected to USB0, and can be used via a non-standard USB-A to USB-A cable.
Typically there is no on-board indication of FEL mode, other than a new USB
device appearing on the connected host computer. The USB vendor/device ID
is 1f3a:efe8. Mostly this will identify as "sunxi SoC OTG connector in
FEL/flashing mode", but older distributions might still report "Onda
(unverified) V972 tablet in flashing mode".
The `sunxi_fel`_ tool implements the proprietary BROM protocol, and allows to
bootstrap U-Boot by just providing our venerable u-boot-sunxi-with-spl.bin::
$ sudo apt-get install sunxi-tools
$ sunxi-fel uboot u-boot-sunxi-with-spl.bin
Additional binaries like a kernel, an initial ramdisk or a boot script, can
also be uploaded via FEL, check the Wiki's `FEL page`_ for more details.
.. _`Arm Trusted Firmware-A`: https://www.trustedfirmware.org/projects/tf-a/
.. _`docs/plat/allwinner.rst`: https://trustedfirmware-a.readthedocs.io/en/latest/plat/allwinner.html
.. _`crust`: https://github.com/crust-firmware/crust
.. _`configs/`: https://github.com/crust-firmware/crust/tree/master/configs
.. _`crust README`: https://github.com/crust-firmware/crust/blob/master/README.md#building-the-firmware
.. _`linux-sunxi`: https://linux-sunxi.org
.. _`MTD utils`: http://www.linux-mtd.infradead.org/
.. _`magic binary`: https://github.com/linux-sunxi/sunxi-tools/raw/master/bin/fel-sdboot.sunxi
.. _`sunxi_fel`: https://github.com/linux-sunxi/sunxi-tools
.. _`FEL page`: https://linux-sunxi.org/FEL/USBBoot

View file

@ -9,6 +9,7 @@ Board-specific doc
actions/index
advantech/index
AndesTech/index
allwinner/index
amlogic/index
apple/index
atmel/index