mirror of
https://github.com/AsahiLinux/u-boot
synced 2024-11-10 15:14:43 +00:00
Prepare v2023.07-rc6
-----BEGIN PGP SIGNATURE----- iQGzBAABCgAdFiEEGjx/cOCPqxcHgJu/FHw5/5Y0tywFAmSjExsACgkQFHw5/5Y0 tywJ3gwAsTbr9mCmCzaKs2F/Jh6H47WEUMEz96wE8eXwuS57pfNJhml4v2rEhYpQ MlBjz6vTOyHDrtinRlvempJWVZEuoflMb6M2OTqVFqZPuPT3cLLuSdM4pgb5SdKS jNDWcxr12LqiDS0Mz+QOHdps3H8mzsCnOXeOTT+VaSeYHPOLQ+M9OV2o/aY2BsNi JLAGX+8i7FuZnVYZzSv6PQYYGZZV+Kvl5oLlPPJttsA7bGu4m2k8zRQQdzd+PIbu owAh3CHSKCy1g+y7ASn1Nd2VE06huvqGG7Qo2sj+Ypf/wbNy16qbMc2C7HDwDcul nrnf6BZ+MTelwxyPHBOR52ERgY6H8rgpvsCNL0arxaCHJOVddXtrUY1591vE71aB nGxhnyLnHwOXXdDGsPsR7p4SF16e6RzaINKmDorQ37nidRnTFLlFCxidnR8ztscR aUpLraqYUquGJf7lejYX2OZg2f36lvpYKy1lwuJfd9fUSgK8iyUKrE9wOJhWnTK8 cIOnS/A+ =DNor -----END PGP SIGNATURE----- Merge tag 'v2023.07-rc6' into next Prepare v2023.07-rc6
This commit is contained in:
commit
e80f4079b3
124 changed files with 5042 additions and 4066 deletions
|
@ -492,7 +492,7 @@ stages:
|
|||
nxp_ls101x:
|
||||
BUILDMAN: "freescale&ls101"
|
||||
nxp_ls102x:
|
||||
BUILDMAN: "freescale&ls102"
|
||||
BUILDMAN: "freescale&ls102 -x keymile"
|
||||
nxp_ls104x:
|
||||
BUILDMAN: "freescale&ls104"
|
||||
nxp_ls108x:
|
||||
|
@ -507,6 +507,8 @@ stages:
|
|||
BUILDMAN: "mx -x mx6,imx8,freescale,technexion,toradex"
|
||||
imx8_imx9:
|
||||
BUILDMAN: "imx8 imx9"
|
||||
keymile:
|
||||
BUILDMAN: "keymile"
|
||||
keystone2_keystone3:
|
||||
BUILDMAN: "k2 k3"
|
||||
sandbox_asan:
|
||||
|
@ -548,7 +550,7 @@ stages:
|
|||
mips:
|
||||
BUILDMAN: "mips"
|
||||
powerpc:
|
||||
BUILDMAN: "powerpc"
|
||||
BUILDMAN: "powerpc -x keymile"
|
||||
siemens:
|
||||
BUILDMAN: "siemens"
|
||||
tegra:
|
||||
|
|
4
Makefile
4
Makefile
|
@ -3,7 +3,7 @@
|
|||
VERSION = 2023
|
||||
PATCHLEVEL = 07
|
||||
SUBLEVEL =
|
||||
EXTRAVERSION = -rc4
|
||||
EXTRAVERSION = -rc6
|
||||
NAME =
|
||||
|
||||
# *DOCUMENTATION*
|
||||
|
@ -2164,7 +2164,7 @@ CLEAN_FILES += include/bmp_logo.h include/bmp_logo_data.h \
|
|||
mkimage-out.spl.mkimage mkimage.spl.mkimage imx-boot.map \
|
||||
itb.fit.fit itb.fit.itb itb.map spl.map mkimage-out.rom.mkimage \
|
||||
mkimage.rom.mkimage rom.map simple-bin.map simple-bin-spi.map \
|
||||
idbloader-spi.img
|
||||
idbloader-spi.img lib/efi_loader/helloworld_efi.S
|
||||
|
||||
# Directories & files removed with 'make mrproper'
|
||||
MRPROPER_DIRS += include/config include/generated spl tpl \
|
||||
|
|
|
@ -20,6 +20,7 @@
|
|||
#include <irq_func.h>
|
||||
#include <asm/cache.h>
|
||||
#include <asm/system.h>
|
||||
#include <asm/arm11.h>
|
||||
|
||||
static void cache_flush(void);
|
||||
|
||||
|
@ -43,6 +44,11 @@ int cleanup_before_linux (void)
|
|||
return 0;
|
||||
}
|
||||
|
||||
void allow_unaligned(void)
|
||||
{
|
||||
arm11_arch_cp15_allow_unaligned();
|
||||
}
|
||||
|
||||
static void cache_flush(void)
|
||||
{
|
||||
unsigned long i = 0;
|
||||
|
|
|
@ -8,7 +8,7 @@
|
|||
#include <linux/linkage.h>
|
||||
|
||||
/*
|
||||
* void allow_unaligned(void) - allow unaligned access
|
||||
* void arm11_arch_cp15_allow_unaligned(void) - allow unaligned access
|
||||
*
|
||||
* This routine sets the enable unaligned data support flag and clears the
|
||||
* aligned flag in the system control register.
|
||||
|
@ -16,10 +16,10 @@
|
|||
* data abort or undefined behavior but is handled by the CPU.
|
||||
* For details see the "ARM Architecture Reference Manual" for ARMv6.
|
||||
*/
|
||||
ENTRY(allow_unaligned)
|
||||
ENTRY(arm11_arch_cp15_allow_unaligned)
|
||||
mrc p15, 0, r0, c1, c0, 0 @ load system control register
|
||||
orr r0, r0, #1 << 22 @ set unaligned data support flag
|
||||
bic r0, r0, #2 @ clear aligned flag
|
||||
mcr p15, 0, r0, c1, c0, 0 @ write system control register
|
||||
bx lr @ return
|
||||
ENDPROC(allow_unaligned)
|
||||
ENDPROC(arm11_arch_cp15_allow_unaligned)
|
||||
|
|
|
@ -36,6 +36,7 @@ SECTIONS
|
|||
. = ALIGN(4);
|
||||
__image_copy_end = .;
|
||||
_end = .;
|
||||
_image_binary_end = .;
|
||||
|
||||
.bss :
|
||||
{
|
||||
|
|
|
@ -83,3 +83,8 @@ int cleanup_before_linux(void)
|
|||
{
|
||||
return cleanup_before_linux_select(CBL_ALL);
|
||||
}
|
||||
|
||||
void allow_unaligned(void)
|
||||
{
|
||||
v7_arch_cp15_allow_unaligned();
|
||||
}
|
||||
|
|
|
@ -8,15 +8,15 @@
|
|||
#include <linux/linkage.h>
|
||||
|
||||
/*
|
||||
* void allow_unaligned(void) - allow unaligned access
|
||||
* void v7_arch_cp15_allow_unaligned(void) - allow unaligned access
|
||||
*
|
||||
* This routine clears the aligned flag in the system control register.
|
||||
* After calling this routine unaligned access does no longer lead to a
|
||||
* data abort but is handled by the CPU.
|
||||
*/
|
||||
ENTRY(allow_unaligned)
|
||||
ENTRY(v7_arch_cp15_allow_unaligned)
|
||||
mrc p15, 0, r0, c1, c0, 0 @ load system control register
|
||||
bic r0, r0, #2 @ clear aligned flag
|
||||
mcr p15, 0, r0, c1, c0, 0 @ write system control register
|
||||
bx lr @ return
|
||||
ENDPROC(allow_unaligned)
|
||||
ENDPROC(v7_arch_cp15_allow_unaligned)
|
||||
|
|
|
@ -45,6 +45,7 @@ SECTIONS
|
|||
. = ALIGN(4);
|
||||
__image_copy_end = .;
|
||||
_end = .;
|
||||
_image_binary_end = .;
|
||||
|
||||
.bss :
|
||||
{
|
||||
|
|
|
@ -81,7 +81,9 @@
|
|||
|
||||
fit {
|
||||
description = "Configuration to load ATF before U-Boot";
|
||||
#ifndef CONFIG_IMX_HAB
|
||||
fit,external-offset = <CONFIG_FIT_EXTERNAL_OFFSET>;
|
||||
#endif
|
||||
fit,fdt-list = "of-list";
|
||||
#address-cells = <1>;
|
||||
|
||||
|
|
|
@ -145,7 +145,9 @@
|
|||
|
||||
fit {
|
||||
description = "Configuration to load ATF before U-Boot";
|
||||
#ifndef CONFIG_IMX_HAB
|
||||
fit,external-offset = <CONFIG_FIT_EXTERNAL_OFFSET>;
|
||||
#endif
|
||||
fit,fdt-list = "of-list";
|
||||
#address-cells = <1>;
|
||||
|
||||
|
|
|
@ -103,7 +103,9 @@
|
|||
|
||||
fit {
|
||||
description = "Configuration to load ATF before U-Boot";
|
||||
#ifndef CONFIG_IMX_HAB
|
||||
fit,external-offset = <CONFIG_FIT_EXTERNAL_OFFSET>;
|
||||
#endif
|
||||
fit,fdt-list = "of-list";
|
||||
#address-cells = <1>;
|
||||
|
||||
|
|
|
@ -97,7 +97,9 @@
|
|||
|
||||
fit {
|
||||
description = "Configuration to load ATF before U-Boot";
|
||||
#ifndef CONFIG_IMX_HAB
|
||||
fit,external-offset = <CONFIG_FIT_EXTERNAL_OFFSET>;
|
||||
#endif
|
||||
#address-cells = <1>;
|
||||
|
||||
images {
|
||||
|
|
12
arch/arm/include/asm/arm11.h
Normal file
12
arch/arm/include/asm/arm11.h
Normal file
|
@ -0,0 +1,12 @@
|
|||
/* SPDX-License-Identifier: GPL-2.0+ */
|
||||
/*
|
||||
* Copyright (C) 2023 Marek Vasut <marex@denx.de>
|
||||
*/
|
||||
#ifndef ARM11_H
|
||||
#define ARM11_H
|
||||
|
||||
#ifndef __ASSEMBLY__
|
||||
void arm11_arch_cp15_allow_unaligned(void);
|
||||
#endif /* ! __ASSEMBLY__ */
|
||||
|
||||
#endif /* ARM11_H */
|
|
@ -156,6 +156,7 @@ void v7_arch_cp15_set_l2aux_ctrl(u32 l2auxctrl, u32 cpu_midr,
|
|||
u32 cpu_rev);
|
||||
void v7_arch_cp15_set_acr(u32 acr, u32 cpu_midr, u32 cpu_rev_comb,
|
||||
u32 cpu_variant, u32 cpu_rev);
|
||||
void v7_arch_cp15_allow_unaligned(void);
|
||||
#endif /* ! __ASSEMBLY__ */
|
||||
|
||||
#endif
|
||||
|
|
|
@ -24,7 +24,7 @@
|
|||
|
||||
int arch_cpu_init(void)
|
||||
{
|
||||
#if defined(CONFIG_CLK_CCF)
|
||||
#if defined(CONFIG_CLK_CCF) || defined(CONFIG_CLK_SCMI)
|
||||
return 0;
|
||||
#else
|
||||
return at91_clock_init(CFG_SYS_AT91_MAIN_CLOCK);
|
||||
|
|
|
@ -510,3 +510,7 @@ char nxp_board_rev_string(void)
|
|||
return (*rev + nxp_board_rev() - 1);
|
||||
}
|
||||
#endif
|
||||
|
||||
__weak void reset_cpu(void)
|
||||
{
|
||||
}
|
||||
|
|
|
@ -932,10 +932,10 @@ int imx_hab_authenticate_image(uint32_t ddr_start, uint32_t image_size,
|
|||
printf("ivt entry = 0x%08x, dcd = 0x%08x, csf = 0x%08x\n", ivt->entry,
|
||||
ivt->dcd, ivt->csf);
|
||||
puts("Dumping IVT\n");
|
||||
print_buffer(ivt_addr, (void *)(ivt_addr), 4, 0x8, 0);
|
||||
print_buffer(ivt_addr, (void *)(uintptr_t)(ivt_addr), 4, 0x8, 0);
|
||||
|
||||
puts("Dumping CSF Header\n");
|
||||
print_buffer(ivt->csf, (void *)(ivt->csf), 4, 0x10, 0);
|
||||
print_buffer(ivt->csf, (void *)(uintptr_t)(ivt->csf), 4, 0x10, 0);
|
||||
|
||||
#if !defined(CONFIG_SPL_BUILD)
|
||||
get_hab_status();
|
||||
|
@ -944,7 +944,7 @@ int imx_hab_authenticate_image(uint32_t ddr_start, uint32_t image_size,
|
|||
puts("\nCalling authenticate_image in ROM\n");
|
||||
printf("\tivt_offset = 0x%x\n", ivt_offset);
|
||||
printf("\tstart = 0x%08lx\n", start);
|
||||
printf("\tbytes = 0x%x\n", bytes);
|
||||
printf("\tbytes = 0x%lx\n", (ulong)bytes);
|
||||
#endif
|
||||
|
||||
#ifndef CONFIG_ARM64
|
||||
|
|
|
@ -20,6 +20,7 @@
|
|||
#include <asm/mach-imx/boot_mode.h>
|
||||
#include <g_dnl.h>
|
||||
#include <linux/libfdt.h>
|
||||
#include <memalign.h>
|
||||
|
||||
DECLARE_GLOBAL_DATA_PTR;
|
||||
|
||||
|
@ -315,36 +316,49 @@ ulong board_spl_fit_size_align(ulong size)
|
|||
size = ALIGN(size, 0x1000);
|
||||
size += CONFIG_CSF_SIZE;
|
||||
|
||||
if (size > CONFIG_SYS_BOOTM_LEN)
|
||||
panic("spl: ERROR: image too big\n");
|
||||
|
||||
return size;
|
||||
}
|
||||
|
||||
void board_spl_fit_post_load(const void *fit)
|
||||
{
|
||||
u32 offset = ALIGN(fdt_totalsize(fit), 0x1000);
|
||||
|
||||
if (imx_hab_authenticate_image((uintptr_t)fit,
|
||||
offset + IVT_SIZE + CSF_PAD_SIZE,
|
||||
offset)) {
|
||||
panic("spl: ERROR: image authentication unsuccessful\n");
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
||||
void *board_spl_fit_buffer_addr(ulong fit_size, int sectors, int bl_len)
|
||||
{
|
||||
int align_len = ARCH_DMA_MINALIGN - 1;
|
||||
|
||||
/* Some devices like SDP, NOR, NAND, SPI are using bl_len =1, so their fit address
|
||||
* is different with SD/MMC, this cause mismatch with signed address. Thus, adjust
|
||||
* the bl_len to align with SD/MMC.
|
||||
*/
|
||||
if (bl_len < 512)
|
||||
bl_len = 512;
|
||||
|
||||
return (void *)((CONFIG_TEXT_BASE - fit_size - bl_len -
|
||||
align_len) & ~align_len);
|
||||
}
|
||||
#if defined(CONFIG_SPL_LOAD_FIT_ADDRESS)
|
||||
return (void *)CONFIG_SPL_LOAD_FIT_ADDRESS;
|
||||
#else
|
||||
return (void *)(CONFIG_TEXT_BASE + CONFIG_SYS_BOOTM_LEN);
|
||||
#endif
|
||||
}
|
||||
/*
|
||||
* read the address where the IVT header must sit
|
||||
* from IVT image header, loaded from SPL into
|
||||
* an malloced buffer and copy the IVT header
|
||||
* to this address
|
||||
*/
|
||||
void *spl_load_simple_fit_fix_load(const void *fit)
|
||||
{
|
||||
struct ivt *ivt;
|
||||
unsigned long offset;
|
||||
unsigned long size;
|
||||
u8 *tmp = (u8 *)fit;
|
||||
|
||||
offset = ALIGN(fdt_totalsize(fit), 0x1000);
|
||||
size = ALIGN(fdt_totalsize(fit), 4);
|
||||
size = board_spl_fit_size_align(size);
|
||||
tmp += offset;
|
||||
ivt = (struct ivt *)tmp;
|
||||
|
||||
debug("%s: ivt: %p offset: %lx size: %lx\n", __func__, ivt, offset, size);
|
||||
debug("%s: ivt self: %x\n", __func__, ivt->self);
|
||||
|
||||
if (imx_hab_authenticate_image((uintptr_t)fit, (uintptr_t)ivt, offset))
|
||||
panic("spl: ERROR: image authentication unsuccessful\n");
|
||||
|
||||
return (void *)fit;
|
||||
}
|
||||
#endif /* CONFIG_IMX_HAB */
|
||||
|
||||
#if defined(CONFIG_MX6) && defined(CONFIG_SPL_OS_BOOT)
|
||||
int dram_init_banksize(void)
|
||||
|
@ -355,36 +369,3 @@ int dram_init_banksize(void)
|
|||
return 0;
|
||||
}
|
||||
#endif
|
||||
|
||||
/*
|
||||
* read the address where the IVT header must sit
|
||||
* from IVT image header, loaded from SPL into
|
||||
* an malloced buffer and copy the IVT header
|
||||
* to this address
|
||||
*/
|
||||
void *spl_load_simple_fit_fix_load(const void *fit)
|
||||
{
|
||||
struct ivt *ivt;
|
||||
unsigned long new;
|
||||
unsigned long offset;
|
||||
unsigned long size;
|
||||
u8 *tmp = (u8 *)fit;
|
||||
|
||||
offset = ALIGN(fdt_totalsize(fit), 0x1000);
|
||||
size = ALIGN(fdt_totalsize(fit), 4);
|
||||
size = board_spl_fit_size_align(size);
|
||||
tmp += offset;
|
||||
ivt = (struct ivt *)tmp;
|
||||
if (ivt->hdr.magic != IVT_HEADER_MAGIC) {
|
||||
debug("no IVT header found\n");
|
||||
return (void *)fit;
|
||||
}
|
||||
debug("%s: ivt: %p offset: %lx size: %lx\n", __func__, ivt, offset, size);
|
||||
debug("%s: ivt self: %x\n", __func__, ivt->self);
|
||||
new = ivt->self;
|
||||
new -= offset;
|
||||
debug("%s: new %lx\n", __func__, new);
|
||||
memcpy((void *)new, fit, size);
|
||||
|
||||
return (void *)new;
|
||||
}
|
||||
|
|
|
@ -34,15 +34,15 @@ config TARGET_ROCK5B_RK3588
|
|||
4x ARM Cortex-A76, 4x ARM Cortex-A55
|
||||
4/8/16GB memory LPDDR4x
|
||||
Mali G610MC4 GPU
|
||||
MIPI CSI 2 multiple lanes connector
|
||||
2x MIPI CSI 2 multiple lanes connector
|
||||
eMMC module connector
|
||||
uSD slot (up to 128GB)
|
||||
2x USB 2.0, 2x USB 3.0
|
||||
2x HDMI output, 1x HDMI input
|
||||
Ethernet port
|
||||
2x USB 2.0 Type-A, 2x USB 3.0 Type-A, 1x USB 3.0 Type-C
|
||||
2x HDMI 2.1 output, 1x micro HDMI input
|
||||
2.5 Gbps Ethernet port
|
||||
40-pin IO header including UART, SPI, I2C and 5V DC power in
|
||||
USB PD over USB Type-C
|
||||
Size: 85mm x 54mm
|
||||
Size: 100mm x 72mm (Pico-ITX form factor)
|
||||
|
||||
config ROCKCHIP_BOOT_MODE_REG
|
||||
default 0xfd588080
|
||||
|
|
|
@ -54,6 +54,7 @@ SECTIONS
|
|||
__bss_end = .;
|
||||
}
|
||||
_end = . ;
|
||||
_image_binary_end = .;
|
||||
}
|
||||
|
||||
#if defined(CONFIG_SPL_MAX_FOOTPRINT)
|
||||
|
|
|
@ -15,7 +15,7 @@
|
|||
#if !CONFIG_IS_ENABLED(SYSRESET)
|
||||
void __weak _machine_restart(void)
|
||||
{
|
||||
fprintf(stderr, "*** reset failed ***\n");
|
||||
puts("*** reset failed ***\n");
|
||||
|
||||
while (1)
|
||||
/* NOP */;
|
||||
|
|
|
@ -48,7 +48,7 @@ SECTIONS
|
|||
KEEP(*(SORT(__u_boot_list*)));
|
||||
}
|
||||
|
||||
. = ALIGN(4);
|
||||
. = ALIGN(8);
|
||||
|
||||
.efi_runtime_rel : {
|
||||
__efi_runtime_rel_start = .;
|
||||
|
@ -57,8 +57,6 @@ SECTIONS
|
|||
__efi_runtime_rel_stop = .;
|
||||
}
|
||||
|
||||
. = ALIGN(8);
|
||||
|
||||
/DISCARD/ : { *(.rela.plt*) }
|
||||
.rela.dyn : {
|
||||
__rel_dyn_start = .;
|
||||
|
|
|
@ -15,7 +15,8 @@
|
|||
#include <asm/arch-rockchip/misc.h>
|
||||
#include <power/regulator.h>
|
||||
|
||||
#define GRF_IO_VSEL_BT565_SHIFT 0
|
||||
#define GRF_IO_VSEL_BT565_GPIO2AB 1
|
||||
#define GRF_IO_VSEL_AUDIO_GPIO3D4A 2
|
||||
#define PMUGRF_CON0_VSEL_SHIFT 8
|
||||
|
||||
#ifndef CONFIG_SPL_BUILD
|
||||
|
@ -48,7 +49,8 @@ static void setup_iodomain(void)
|
|||
syscon_get_first_range(ROCKCHIP_SYSCON_PMUGRF);
|
||||
|
||||
/* BT565 is in 1.8v domain */
|
||||
rk_setreg(&grf->io_vsel, 1 << GRF_IO_VSEL_BT565_SHIFT);
|
||||
rk_setreg(&grf->io_vsel,
|
||||
GRF_IO_VSEL_BT565_GPIO2AB | GRF_IO_VSEL_AUDIO_GPIO3D4A);
|
||||
|
||||
/* Set GPIO1 1.8v/3.0v source select to PMU1830_VOL */
|
||||
rk_setreg(&pmugrf->soc_con0, 1 << PMUGRF_CON0_VSEL_SHIFT);
|
||||
|
|
|
@ -67,10 +67,12 @@ static void pm9g45_nand_hw_init(void)
|
|||
|
||||
#ifdef CFG_SYS_NAND_READY_PIN
|
||||
/* Configure RDY/BSY */
|
||||
gpio_request(CFG_SYS_NAND_READY_PIN, "NAND RDY/BSY");
|
||||
gpio_direction_input(CFG_SYS_NAND_READY_PIN);
|
||||
#endif
|
||||
|
||||
/* Enable NandFlash */
|
||||
gpio_request(CFG_SYS_NAND_ENABLE_PIN, "NAND enable");
|
||||
gpio_direction_output(CFG_SYS_NAND_ENABLE_PIN, 1);
|
||||
}
|
||||
#endif
|
||||
|
|
|
@ -1,6 +1,5 @@
|
|||
SiFive HiFive Unmatched FU740 BOARD
|
||||
M: Paul Walmsley <paul.walmsley@sifive.com>
|
||||
M: Pragnesh Patel <pragnesh.patel@sifive.com>
|
||||
M: Green Wan <green.wan@sifive.com>
|
||||
S: Maintained
|
||||
F: board/sifive/unmatched/
|
||||
|
|
|
@ -1,5 +1,5 @@
|
|||
STARFIVE JH7110 VISIONFIVE2 BOARD
|
||||
M: startfive
|
||||
M: Yanhong Wang <yanhong.wang@starfivetech.com>
|
||||
S: Maintained
|
||||
F: arch/riscv/include/asm/arch-jh7110/
|
||||
F: board/starfive/visionfive2/
|
||||
|
|
|
@ -102,7 +102,7 @@ int board_late_init(void)
|
|||
return 0;
|
||||
}
|
||||
|
||||
uint board_mmc_get_env_part(struct mmc *mmc)
|
||||
uint mmc_get_env_part(struct mmc *mmc)
|
||||
{
|
||||
uint part = EXT_CSD_EXTRACT_BOOT_PART(mmc->part_config);
|
||||
|
||||
|
|
|
@ -29,7 +29,16 @@ altbootcmd=
|
|||
run bootcmd;
|
||||
boot_emmc=setenv mmcdev_wanted 1; run persist_mmcdev; run bootcmd;
|
||||
boot_sd=setenv mmcdev_wanted 0; run persist_mmcdev; run bootcmd;
|
||||
bootcmd=run finduuid; run distro_bootcmd
|
||||
bootcmd=
|
||||
if test "${bootcount}" -gt "${bootlimit}"; then
|
||||
run altbootcmd;
|
||||
else
|
||||
if test "${ustate}" = 1; then
|
||||
setenv upgrade_available 1;
|
||||
saveenv;
|
||||
fi;
|
||||
run mmcboot;
|
||||
fi;
|
||||
bootdelay=2
|
||||
bootlimit=3
|
||||
bootm_size=0x10000000
|
||||
|
|
26
boot/Kconfig
26
boot/Kconfig
|
@ -397,19 +397,6 @@ config BOOTSTD
|
|||
U-Boot)
|
||||
- bootflow - a description of how to boot (owned by the distro)
|
||||
|
||||
config BOOTSTD_FULL
|
||||
bool "Enhanced features for standard boot"
|
||||
default y if SANDBOX
|
||||
help
|
||||
This enables various useful features for standard boot, which are not
|
||||
essential for operation:
|
||||
|
||||
- bootdev, bootmeth commands
|
||||
- extra features in the bootflow command
|
||||
- support for selecting the ordering of bootmeths ("bootmeth order")
|
||||
- support for selecting the ordering of bootdevs using the devicetree
|
||||
as well as the "boot_targets" environment variable
|
||||
|
||||
config SPL_BOOTSTD
|
||||
bool "Standard boot support in SPL"
|
||||
depends on SPL && SPL_DM && SPL_OF_CONTROL && SPL_BLK
|
||||
|
@ -432,6 +419,19 @@ config VPL_BOOTSTD
|
|||
|
||||
if BOOTSTD
|
||||
|
||||
config BOOTSTD_FULL
|
||||
bool "Enhanced features for standard boot"
|
||||
default y if SANDBOX
|
||||
help
|
||||
This enables various useful features for standard boot, which are not
|
||||
essential for operation:
|
||||
|
||||
- bootdev, bootmeth commands
|
||||
- extra features in the bootflow command
|
||||
- support for selecting the ordering of bootmeths ("bootmeth order")
|
||||
- support for selecting the ordering of bootdevs using the devicetree
|
||||
as well as the "boot_targets" environment variable
|
||||
|
||||
config BOOTSTD_DEFAULTS
|
||||
bool "Select some common defaults for standard boot"
|
||||
depends on BOOTSTD
|
||||
|
|
|
@ -240,7 +240,8 @@ static int bootm_find_os(struct cmd_tbl *cmdtp, int flag, int argc,
|
|||
|
||||
if (images.os.type == IH_TYPE_KERNEL_NOLOAD) {
|
||||
if (IS_ENABLED(CONFIG_CMD_BOOTI) &&
|
||||
images.os.arch == IH_ARCH_ARM64) {
|
||||
images.os.arch == IH_ARCH_ARM64 &&
|
||||
images.os.os == IH_OS_LINUX) {
|
||||
ulong image_addr;
|
||||
ulong image_size;
|
||||
|
||||
|
|
|
@ -150,7 +150,7 @@ static int extlinux_boot(struct udevice *dev, struct bootflow *bflow)
|
|||
info.dev = dev;
|
||||
info.bflow = bflow;
|
||||
ret = pxe_setup_ctx(&ctx, &cmdtp, extlinux_getfile, &info, true,
|
||||
bflow->subdir, false);
|
||||
bflow->fname, false);
|
||||
if (ret)
|
||||
return log_msg_ret("ctx", -EINVAL);
|
||||
|
||||
|
|
|
@ -362,7 +362,8 @@ config BOOTM_VXWORKS
|
|||
|
||||
config SYS_BOOTM_LEN
|
||||
hex "Maximum size of a decompresed OS image"
|
||||
depends on CMD_BOOTM || CMD_BOOTI || CMD_BOOTZ
|
||||
depends on CMD_BOOTM || CMD_BOOTI || CMD_BOOTZ || \
|
||||
LEGACY_IMAGE_FORMAT || SPL_LEGACY_IMAGE_FORMAT
|
||||
default 0x4000000 if PPC || ARM64
|
||||
default 0x1000000 if X86 || ARCH_MX6 || ARCH_MX7
|
||||
default 0x800000
|
||||
|
|
12
cmd/net.c
12
cmd/net.c
|
@ -210,7 +210,7 @@ U_BOOT_CMD(
|
|||
|
||||
static void netboot_update_env(void)
|
||||
{
|
||||
char tmp[44];
|
||||
char tmp[46];
|
||||
|
||||
if (net_gateway.s_addr) {
|
||||
ip_to_string(net_gateway, tmp);
|
||||
|
@ -275,20 +275,20 @@ static void netboot_update_env(void)
|
|||
if (IS_ENABLED(CONFIG_IPV6)) {
|
||||
if (!ip6_is_unspecified_addr(&net_ip6) ||
|
||||
net_prefix_length != 0) {
|
||||
sprintf(tmp, "%pI6c", &net_ip6);
|
||||
if (net_prefix_length != 0)
|
||||
sprintf(tmp, "%s/%d", tmp, net_prefix_length);
|
||||
|
||||
snprintf(tmp, sizeof(tmp), "%pI6c/%d", &net_ip6, net_prefix_length);
|
||||
else
|
||||
snprintf(tmp, sizeof(tmp), "%pI6c", &net_ip6);
|
||||
env_set("ip6addr", tmp);
|
||||
}
|
||||
|
||||
if (!ip6_is_unspecified_addr(&net_server_ip6)) {
|
||||
sprintf(tmp, "%pI6c", &net_server_ip6);
|
||||
snprintf(tmp, sizeof(tmp), "%pI6c", &net_server_ip6);
|
||||
env_set("serverip6", tmp);
|
||||
}
|
||||
|
||||
if (!ip6_is_unspecified_addr(&net_gateway6)) {
|
||||
sprintf(tmp, "%pI6c", &net_gateway6);
|
||||
snprintf(tmp, sizeof(tmp), "%pI6c", &net_gateway6);
|
||||
env_set("gatewayip6", tmp);
|
||||
}
|
||||
}
|
||||
|
|
|
@ -421,7 +421,9 @@ static void usb_show_tree_graph(struct usb_device *dev, char *pre)
|
|||
* Ignore emulators and block child devices, we only want
|
||||
* real devices
|
||||
*/
|
||||
if ((device_get_uclass_id(child) != UCLASS_USB_EMUL) &&
|
||||
if (udev &&
|
||||
(device_get_uclass_id(child) != UCLASS_BOOTDEV) &&
|
||||
(device_get_uclass_id(child) != UCLASS_USB_EMUL) &&
|
||||
(device_get_uclass_id(child) != UCLASS_BLK)) {
|
||||
usb_show_tree_graph(udev, pre);
|
||||
pre[index] = 0;
|
||||
|
@ -604,10 +606,12 @@ static void usb_show_info(struct usb_device *udev)
|
|||
child;
|
||||
device_find_next_child(&child)) {
|
||||
if (device_active(child) &&
|
||||
(device_get_uclass_id(child) != UCLASS_BOOTDEV) &&
|
||||
(device_get_uclass_id(child) != UCLASS_USB_EMUL) &&
|
||||
(device_get_uclass_id(child) != UCLASS_BLK)) {
|
||||
udev = dev_get_parent_priv(child);
|
||||
usb_show_info(udev);
|
||||
if (udev)
|
||||
usb_show_info(udev);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
|
|
@ -15,7 +15,7 @@
|
|||
|
||||
#include "menu.h"
|
||||
|
||||
#define ansi 0
|
||||
#define ansi 1
|
||||
|
||||
/*
|
||||
* Internally, each item in a menu is represented by a struct menu_item.
|
||||
|
|
|
@ -28,7 +28,7 @@ int spl_load_image_ext(struct spl_image_info *spl_image,
|
|||
|
||||
ext4fs_set_blk_dev(block_dev, &part_info);
|
||||
|
||||
err = ext4fs_mount(0);
|
||||
err = ext4fs_mount(part_info.size);
|
||||
if (!err) {
|
||||
#ifdef CONFIG_SPL_LIBCOMMON_SUPPORT
|
||||
printf("%s: ext4fs mount err - %d\n", __func__, err);
|
||||
|
@ -82,7 +82,7 @@ int spl_load_image_ext_os(struct spl_image_info *spl_image,
|
|||
|
||||
ext4fs_set_blk_dev(block_dev, &part_info);
|
||||
|
||||
err = ext4fs_mount(0);
|
||||
err = ext4fs_mount(part_info.size);
|
||||
if (!err) {
|
||||
#ifdef CONFIG_SPL_LIBCOMMON_SUPPORT
|
||||
printf("%s: ext4fs mount err - %d\n", __func__, err);
|
||||
|
|
|
@ -27,10 +27,6 @@ struct spl_fit_info {
|
|||
int conf_node; /* FDT offset to selected configuration node */
|
||||
};
|
||||
|
||||
__weak void board_spl_fit_post_load(const void *fit)
|
||||
{
|
||||
}
|
||||
|
||||
__weak ulong board_spl_fit_size_align(ulong size)
|
||||
{
|
||||
return size;
|
||||
|
@ -829,8 +825,5 @@ int spl_load_simple_fit(struct spl_image_info *spl_image,
|
|||
|
||||
spl_image->flags |= SPL_FIT_FOUND;
|
||||
|
||||
if (IS_ENABLED(CONFIG_IMX_HAB))
|
||||
board_spl_fit_post_load(ctx.fit);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
|
|
@ -7,6 +7,7 @@
|
|||
#include <image.h>
|
||||
#include <log.h>
|
||||
#include <malloc.h>
|
||||
#include <asm/sections.h>
|
||||
#include <spl.h>
|
||||
|
||||
#include <lzma/LzmaTypes.h>
|
||||
|
@ -15,6 +16,22 @@
|
|||
|
||||
#define LZMA_LEN (1 << 20)
|
||||
|
||||
static void spl_parse_legacy_validate(uintptr_t start, uintptr_t size)
|
||||
{
|
||||
uintptr_t spl_start = (uintptr_t)_start;
|
||||
uintptr_t spl_end = (uintptr_t)_image_binary_end;
|
||||
uintptr_t end = start + size;
|
||||
|
||||
if ((start >= spl_start && start < spl_end) ||
|
||||
(end > spl_start && end <= spl_end) ||
|
||||
(start < spl_start && end >= spl_end) ||
|
||||
(start > end && end > spl_start))
|
||||
panic("SPL: Image overlaps SPL\n");
|
||||
|
||||
if (size > CONFIG_SYS_BOOTM_LEN)
|
||||
panic("SPL: Image too large\n");
|
||||
}
|
||||
|
||||
int spl_parse_legacy_header(struct spl_image_info *spl_image,
|
||||
const struct legacy_img_hdr *header)
|
||||
{
|
||||
|
@ -58,6 +75,9 @@ int spl_parse_legacy_header(struct spl_image_info *spl_image,
|
|||
"payload image: %32s load addr: 0x%lx size: %d\n",
|
||||
spl_image->name, spl_image->load_addr, spl_image->size);
|
||||
|
||||
spl_parse_legacy_validate(spl_image->load_addr, spl_image->size);
|
||||
spl_parse_legacy_validate(spl_image->entry_point, 0);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
|
|
|
@ -22,6 +22,7 @@ CONFIG_FIT=y
|
|||
CONFIG_FIT_VERBOSE=y
|
||||
CONFIG_SPL_FIT_SIGNATURE=y
|
||||
CONFIG_SPL_LOAD_FIT=y
|
||||
CONFIG_LEGACY_IMAGE_FORMAT=y
|
||||
CONFIG_DEFAULT_FDT_FILE="rockchip/rk3568-evb.dtb"
|
||||
# CONFIG_DISPLAY_CPUINFO is not set
|
||||
CONFIG_DISPLAY_BOARDINFO_LATE=y
|
||||
|
|
|
@ -23,6 +23,7 @@ CONFIG_FIT=y
|
|||
CONFIG_FIT_VERBOSE=y
|
||||
CONFIG_SPL_FIT_SIGNATURE=y
|
||||
CONFIG_SPL_LOAD_FIT=y
|
||||
CONFIG_LEGACY_IMAGE_FORMAT=y
|
||||
CONFIG_OF_BOARD_SETUP=y
|
||||
CONFIG_DEFAULT_FDT_FILE="rockchip/rk3588-evb1-v10.dtb"
|
||||
# CONFIG_DISPLAY_CPUINFO is not set
|
||||
|
|
|
@ -7,7 +7,7 @@ CONFIG_SPL_LIBCOMMON_SUPPORT=y
|
|||
CONFIG_SPL_LIBGENERIC_SUPPORT=y
|
||||
CONFIG_NR_DRAM_BANKS=2
|
||||
CONFIG_ENV_SIZE=0x4000
|
||||
CONFIG_ENV_OFFSET=0x400000
|
||||
CONFIG_ENV_OFFSET=0x700000
|
||||
CONFIG_DM_GPIO=y
|
||||
CONFIG_DEFAULT_DEVICE_TREE="imx93-11x11-evk"
|
||||
CONFIG_SPL_TEXT_BASE=0x2049A000
|
||||
|
|
|
@ -10,7 +10,7 @@ CONFIG_SOC_K3_J721E=y
|
|||
CONFIG_K3_EARLY_CONS=y
|
||||
CONFIG_TARGET_J721E_R5_EVM=y
|
||||
CONFIG_HAS_CUSTOM_SYS_INIT_SP_ADDR=y
|
||||
CONFIG_CUSTOM_SYS_INIT_SP_ADDR=0x41cf5bfc
|
||||
CONFIG_CUSTOM_SYS_INIT_SP_ADDR=0x41cf59f0
|
||||
CONFIG_ENV_SIZE=0x20000
|
||||
CONFIG_DM_GPIO=y
|
||||
CONFIG_SPL_DM_SPI=y
|
||||
|
@ -22,22 +22,19 @@ CONFIG_SPL_SERIAL=y
|
|||
CONFIG_SPL_DRIVERS_MISC=y
|
||||
CONFIG_SPL_STACK_R_ADDR=0x82000000
|
||||
CONFIG_SPL_SIZE_LIMIT=0xf59f0
|
||||
CONFIG_SPL_SIZE_LIMIT_SUBTRACT_GD=y
|
||||
CONFIG_SPL_SIZE_LIMIT_SUBTRACT_MALLOC=y
|
||||
CONFIG_SPL_SIZE_LIMIT_PROVIDE_STACK=0x4000
|
||||
CONFIG_SPL_FS_FAT=y
|
||||
CONFIG_SPL_LIBDISK_SUPPORT=y
|
||||
CONFIG_SPL_SPI_FLASH_SUPPORT=y
|
||||
CONFIG_SPL_SPI=y
|
||||
CONFIG_HAS_CUSTOM_SYS_INIT_SP_ADDR=y
|
||||
CONFIG_CUSTOM_SYS_INIT_SP_ADDR=0x41cf59f0
|
||||
# CONFIG_SYS_MALLOC_CLEAR_ON_INIT is not set
|
||||
CONFIG_SPL_LOAD_FIT=y
|
||||
CONFIG_SPL_LOAD_FIT_ADDRESS=0x80080000
|
||||
CONFIG_SPL_FIT_IMAGE_POST_PROCESS=y
|
||||
CONFIG_OF_BOARD_SETUP=y
|
||||
CONFIG_USE_BOOTCOMMAND=y
|
||||
# CONFIG_DISPLAY_CPUINFO is not set
|
||||
CONFIG_SPL_SIZE_LIMIT_SUBTRACT_GD=y
|
||||
CONFIG_SPL_SIZE_LIMIT_SUBTRACT_MALLOC=y
|
||||
CONFIG_SPL_MAX_SIZE=0xf59f0
|
||||
CONFIG_SPL_HAS_BSS_LINKER_SECTION=y
|
||||
CONFIG_SPL_BSS_START_ADDR=0x41cf59f0
|
||||
|
|
|
@ -73,6 +73,7 @@ CONFIG_PMIC_RK8XX=y
|
|||
CONFIG_REGULATOR_PWM=y
|
||||
CONFIG_REGULATOR_RK8XX=y
|
||||
CONFIG_PWM_ROCKCHIP=y
|
||||
CONFIG_RAM_ROCKCHIP_LPDDR4=y
|
||||
CONFIG_DM_RNG=y
|
||||
CONFIG_RNG_ROCKCHIP=y
|
||||
CONFIG_BAUDRATE=1500000
|
||||
|
|
|
@ -22,6 +22,7 @@ CONFIG_FIT=y
|
|||
CONFIG_FIT_VERBOSE=y
|
||||
CONFIG_SPL_FIT_SIGNATURE=y
|
||||
CONFIG_SPL_LOAD_FIT=y
|
||||
CONFIG_LEGACY_IMAGE_FORMAT=y
|
||||
CONFIG_DEFAULT_FDT_FILE="rockchip/rk3566-radxa-cm3-io.dtb"
|
||||
# CONFIG_DISPLAY_CPUINFO is not set
|
||||
CONFIG_DISPLAY_BOARDINFO_LATE=y
|
||||
|
|
|
@ -27,6 +27,7 @@ CONFIG_FIT=y
|
|||
CONFIG_FIT_VERBOSE=y
|
||||
CONFIG_SPL_FIT_SIGNATURE=y
|
||||
CONFIG_SPL_LOAD_FIT=y
|
||||
CONFIG_LEGACY_IMAGE_FORMAT=y
|
||||
CONFIG_DEFAULT_FDT_FILE="rockchip/rk3568-rock-3a.dtb"
|
||||
# CONFIG_DISPLAY_CPUINFO is not set
|
||||
CONFIG_DISPLAY_BOARDINFO_LATE=y
|
||||
|
|
|
@ -20,6 +20,7 @@ CONFIG_PCI=y
|
|||
CONFIG_DEBUG_UART=y
|
||||
# CONFIG_ANDROID_BOOT_IMAGE is not set
|
||||
CONFIG_SPL_FIT_SIGNATURE=y
|
||||
CONFIG_LEGACY_IMAGE_FORMAT=y
|
||||
CONFIG_DEFAULT_FDT_FILE="rockchip/rk3399-rock-pi-4a.dtb"
|
||||
CONFIG_DISPLAY_BOARDINFO_LATE=y
|
||||
CONFIG_MISC_INIT_R=y
|
||||
|
|
|
@ -29,6 +29,7 @@ CONFIG_FIT=y
|
|||
CONFIG_FIT_VERBOSE=y
|
||||
CONFIG_SPL_FIT_SIGNATURE=y
|
||||
CONFIG_SPL_LOAD_FIT=y
|
||||
CONFIG_LEGACY_IMAGE_FORMAT=y
|
||||
CONFIG_OF_BOARD_SETUP=y
|
||||
CONFIG_DEFAULT_FDT_FILE="rockchip/rk3588-rock-5b.dtb"
|
||||
# CONFIG_DISPLAY_CPUINFO is not set
|
||||
|
|
|
@ -23,6 +23,7 @@ CONFIG_PCI=y
|
|||
CONFIG_DEBUG_UART=y
|
||||
CONFIG_LTO=y
|
||||
CONFIG_SPL_FIT_SIGNATURE=y
|
||||
CONFIG_LEGACY_IMAGE_FORMAT=y
|
||||
CONFIG_BOOTSTAGE=y
|
||||
CONFIG_BOOTSTAGE_REPORT=y
|
||||
CONFIG_USE_PREBOOT=y
|
||||
|
|
|
@ -41,6 +41,7 @@ CONFIG_SPL_MAX_SIZE=0x10000
|
|||
CONFIG_SPL_HAS_BSS_LINKER_SECTION=y
|
||||
CONFIG_SPL_BSS_START_ADDR=0x20000000
|
||||
CONFIG_SPL_BSS_MAX_SIZE=0x80000
|
||||
CONFIG_SPL_SYS_MALLOC_SIMPLE=y
|
||||
# CONFIG_SPL_SHARES_INIT_SP_ADDR is not set
|
||||
CONFIG_SYS_SPL_MALLOC=y
|
||||
CONFIG_SYS_SPL_MALLOC_SIZE=0x80000
|
||||
|
|
|
@ -21,8 +21,6 @@ CONFIG_FIT_VERBOSE=y
|
|||
# CONFIG_BOOTSTD is not set
|
||||
CONFIG_AUTOBOOT_MENU_SHOW=y
|
||||
CONFIG_BOOTMENU_DISABLE_UBOOT_CONSOLE=y
|
||||
CONFIG_USE_BOOTCOMMAND=y
|
||||
CONFIG_BOOTCOMMAND="if test \"${bootcount}\" -gt \"${bootlimit}\"; then run altbootcmd; else if test \"${ustate}\" = 1; then setenv upgrade_available 1; saveenv; fi; run mmcboot; fi;"
|
||||
CONFIG_USE_PREBOOT=y
|
||||
CONFIG_PREBOOT="run setup_boot_menu;"
|
||||
CONFIG_HUSH_PARSER=y
|
||||
|
|
|
@ -28,8 +28,8 @@ To declare a spy, use something like this::
|
|||
}
|
||||
EVENT_SPY(EVT_DM_POST_INIT_F, snow_setup_cpus);
|
||||
|
||||
Your function is called when EVT_DM_POST_INIT_F is emitted, i.e. after driver
|
||||
model is inited (in SPL, or in U-Boot proper before and after relocation).
|
||||
This function is called when EVT_DM_POST_INIT_F is emitted, i.e. after the
|
||||
driver model is initialized (in U-Boot proper before and after relocation).
|
||||
|
||||
|
||||
Debugging
|
||||
|
|
|
@ -54,7 +54,7 @@ Current Status
|
|||
|
||||
* The next branch is now **open**.
|
||||
|
||||
* Release "v2023.07" is scheduled for 03 July 2023.
|
||||
* Release "v2023.07" is scheduled for 10 July 2023.
|
||||
|
||||
Future Releases
|
||||
---------------
|
||||
|
@ -72,12 +72,14 @@ For the next scheduled release, release candidates were made on::
|
|||
|
||||
* U-Boot v2023.07-rc4 was released on Mon 12 June 2023.
|
||||
|
||||
.. * U-Boot v2023.07-rc5 was released on Mon 19 June 2023.
|
||||
* U-Boot v2023.07-rc5 was released on Mon 26 June 2023.
|
||||
|
||||
* U-Boot v2023.07-rc6 was released on Mon 03 July 2023.
|
||||
|
||||
Please note that the following dates are planned only and may be deviated from
|
||||
as needed.
|
||||
|
||||
* "v2023.07": end of MW = Mon, Apr 24, 2023; release = Mon, Jul 03, 2023
|
||||
* "v2023.07": end of MW = Mon, Apr 24, 2023; release = Mon, Jul 10, 2023
|
||||
|
||||
* "v2023.10": end of MW = Mon, Jul 24, 2023; release = Mon, Oct 02, 2023
|
||||
|
||||
|
|
|
@ -607,20 +607,21 @@ Release Statistics for U-Boot v2022.10
|
|||
==================================== =====
|
||||
Name Count
|
||||
==================================== =====
|
||||
(Unknown) 590 (38.8%)
|
||||
(Unknown) 584 (38.4%)
|
||||
Konsulko Group 265 (17.4%)
|
||||
Google, Inc. 141 (9.3%)
|
||||
NXP 77 (5.1%)
|
||||
AMD 70 (4.6%)
|
||||
ST Microelectronics 67 (4.4%)
|
||||
Linaro 60 (3.9%)
|
||||
Texas Instruments 56 (3.7%)
|
||||
AMD 53 (3.5%)
|
||||
DENX Software Engineering 45 (3.0%)
|
||||
Toradex 45 (3.0%)
|
||||
Weidmüller Interface GmbH & Co. KG 41 (2.7%)
|
||||
Xilinx 29 (1.9%)
|
||||
Amarula Solutions 18 (1.2%)
|
||||
Xilinx 12 (0.8%)
|
||||
ARM 11 (0.7%)
|
||||
Collabora Ltd. 7 (0.5%)
|
||||
BayLibre SAS 5 (0.3%)
|
||||
SUSE 4 (0.3%)
|
||||
Socionext Inc. 3 (0.2%)
|
||||
|
@ -628,7 +629,6 @@ Release Statistics for U-Boot v2022.10
|
|||
IBM 2 (0.1%)
|
||||
Siemens 2 (0.1%)
|
||||
Broadcom 1 (0.1%)
|
||||
Collabora Ltd. 1 (0.1%)
|
||||
Debian.org 1 (0.1%)
|
||||
Marvell 1 (0.1%)
|
||||
Samsung 1 (0.1%)
|
||||
|
@ -642,7 +642,7 @@ Release Statistics for U-Boot v2022.10
|
|||
Name Count
|
||||
==================================== =====
|
||||
Konsulko Group 98915 (47.3%)
|
||||
(Unknown) 36773 (17.6%)
|
||||
(Unknown) 36630 (17.5%)
|
||||
Toradex 20197 (9.7%)
|
||||
NXP 11759 (5.6%)
|
||||
Google, Inc. 8739 (4.2%)
|
||||
|
@ -651,12 +651,13 @@ Release Statistics for U-Boot v2022.10
|
|||
Texas Instruments 5930 (2.8%)
|
||||
ST Microelectronics 3803 (1.8%)
|
||||
DENX Software Engineering 3551 (1.7%)
|
||||
AMD 2343 (1.1%)
|
||||
AMD 2591 (1.2%)
|
||||
Amarula Solutions 1360 (0.7%)
|
||||
Xilinx 1016 (0.5%)
|
||||
Xilinx 768 (0.4%)
|
||||
Broadcom 315 (0.2%)
|
||||
ARM 298 (0.1%)
|
||||
BayLibre SAS 197 (0.1%)
|
||||
Collabora Ltd. 144 (0.1%)
|
||||
SUSE 79 (0.0%)
|
||||
IBM 34 (0.0%)
|
||||
Bootlin 32 (0.0%)
|
||||
|
@ -665,7 +666,6 @@ Release Statistics for U-Boot v2022.10
|
|||
Debian.org 4 (0.0%)
|
||||
Marvell 3 (0.0%)
|
||||
Samsung 2 (0.0%)
|
||||
Collabora Ltd. 1 (0.0%)
|
||||
==================================== =====
|
||||
|
||||
|
||||
|
@ -677,13 +677,14 @@ Release Statistics for U-Boot v2022.10
|
|||
==================================== =====
|
||||
AMD 81 (30.5%)
|
||||
NXP 51 (19.2%)
|
||||
(Unknown) 33 (12.4%)
|
||||
(Unknown) 28 (10.5%)
|
||||
Texas Instruments 19 (7.1%)
|
||||
Linaro 16 (6.0%)
|
||||
ARM 16 (6.0%)
|
||||
Amarula Solutions 14 (5.3%)
|
||||
Xilinx 13 (4.9%)
|
||||
Konsulko Group 6 (2.3%)
|
||||
Canonical 5 (1.9%)
|
||||
Toradex 4 (1.5%)
|
||||
Google, Inc. 4 (1.5%)
|
||||
Socionext Inc. 4 (1.5%)
|
||||
|
@ -699,19 +700,20 @@ Release Statistics for U-Boot v2022.10
|
|||
==================================== =====
|
||||
Name Count
|
||||
==================================== =====
|
||||
(Unknown) 78 (51.0%)
|
||||
(Unknown) 77 (50.3%)
|
||||
Linaro 12 (7.8%)
|
||||
Texas Instruments 11 (7.2%)
|
||||
NXP 7 (4.6%)
|
||||
AMD 6 (3.9%)
|
||||
Google, Inc. 5 (3.3%)
|
||||
DENX Software Engineering 5 (3.3%)
|
||||
Xilinx 4 (2.6%)
|
||||
Toradex 4 (2.6%)
|
||||
ST Microelectronics 4 (2.6%)
|
||||
AMD 3 (2.0%)
|
||||
ARM 3 (2.0%)
|
||||
BayLibre SAS 3 (2.0%)
|
||||
Amarula Solutions 2 (1.3%)
|
||||
Collabora Ltd. 2 (1.3%)
|
||||
Xilinx 1 (0.7%)
|
||||
Konsulko Group 1 (0.7%)
|
||||
Socionext Inc. 1 (0.7%)
|
||||
Broadcom 1 (0.7%)
|
||||
|
@ -723,5 +725,4 @@ Release Statistics for U-Boot v2022.10
|
|||
Debian.org 1 (0.7%)
|
||||
Marvell 1 (0.7%)
|
||||
Samsung 1 (0.7%)
|
||||
Collabora Ltd. 1 (0.7%)
|
||||
==================================== =====
|
||||
|
|
|
@ -5,7 +5,7 @@ Release Statistics for U-Boot v2023.01
|
|||
|
||||
* Processed 1396 changesets from 152 developers
|
||||
|
||||
* 23 employers found
|
||||
* 24 employers found
|
||||
|
||||
* A total of 91252 lines added, 42422 removed (delta 48830)
|
||||
|
||||
|
@ -603,11 +603,11 @@ Release Statistics for U-Boot v2023.01
|
|||
==================================== =====
|
||||
Name Count
|
||||
==================================== =====
|
||||
(Unknown) 557 (39.9%)
|
||||
(Unknown) 556 (39.8%)
|
||||
Google, Inc. 270 (19.3%)
|
||||
AMD 90 (6.4%)
|
||||
DENX Software Engineering 86 (6.2%)
|
||||
Linaro 85 (6.1%)
|
||||
AMD 80 (5.7%)
|
||||
Konsulko Group 48 (3.4%)
|
||||
ST Microelectronics 47 (3.4%)
|
||||
SUSE 36 (2.6%)
|
||||
|
@ -616,16 +616,17 @@ Release Statistics for U-Boot v2023.01
|
|||
Broadcom 27 (1.9%)
|
||||
Texas Instruments 26 (1.9%)
|
||||
Amarula Solutions 24 (1.7%)
|
||||
Xilinx 13 (0.9%)
|
||||
NXP 8 (0.6%)
|
||||
BayLibre SAS 6 (0.4%)
|
||||
Collabora Ltd. 6 (0.4%)
|
||||
Weidmüller Interface GmbH & Co. KG 6 (0.4%)
|
||||
Socionext Inc. 4 (0.3%)
|
||||
Xilinx 3 (0.2%)
|
||||
Edgeble AI Technologies Pvt. Ltd. 1 (0.1%)
|
||||
Marvell 1 (0.1%)
|
||||
Rockchip 1 (0.1%)
|
||||
Siemens 1 (0.1%)
|
||||
Canonical 1 (0.1%)
|
||||
==================================== =====
|
||||
|
||||
|
||||
|
@ -635,7 +636,7 @@ Release Statistics for U-Boot v2023.01
|
|||
==================================== =====
|
||||
Name Count
|
||||
==================================== =====
|
||||
(Unknown) 41561 (37.8%)
|
||||
(Unknown) 41551 (37.8%)
|
||||
Google, Inc. 19204 (17.5%)
|
||||
Linaro 11194 (10.2%)
|
||||
Toradex 6724 (6.1%)
|
||||
|
@ -644,18 +645,19 @@ Release Statistics for U-Boot v2023.01
|
|||
Collabora Ltd. 3312 (3.0%)
|
||||
Amarula Solutions 3308 (3.0%)
|
||||
ST Microelectronics 3303 (3.0%)
|
||||
AMD 2379 (2.2%)
|
||||
Texas Instruments 2174 (2.0%)
|
||||
DENX Software Engineering 2105 (1.9%)
|
||||
AMD 2105 (1.9%)
|
||||
ARM 1569 (1.4%)
|
||||
SUSE 478 (0.4%)
|
||||
Weidmüller Interface GmbH & Co. KG 448 (0.4%)
|
||||
NXP 446 (0.4%)
|
||||
Xilinx 280 (0.3%)
|
||||
Marvell 200 (0.2%)
|
||||
Socionext Inc. 76 (0.1%)
|
||||
BayLibre SAS 65 (0.1%)
|
||||
Canonical 10 (0.0%)
|
||||
Siemens 9 (0.0%)
|
||||
Xilinx 6 (0.0%)
|
||||
Edgeble AI Technologies Pvt. Ltd. 1 (0.0%)
|
||||
Rockchip 1 (0.0%)
|
||||
==================================== =====
|
||||
|
@ -669,47 +671,49 @@ Release Statistics for U-Boot v2023.01
|
|||
==================================== =====
|
||||
AMD 79 (46.7%)
|
||||
Amarula Solutions 27 (16.0%)
|
||||
(Unknown) 22 (13.0%)
|
||||
(Unknown) 18 (10.7%)
|
||||
DENX Software Engineering 10 (5.9%)
|
||||
NXP 7 (4.1%)
|
||||
Linaro 5 (3.0%)
|
||||
Google, Inc. 4 (2.4%)
|
||||
ST Microelectronics 4 (2.4%)
|
||||
ARM 4 (2.4%)
|
||||
Canonical 4 (2.4%)
|
||||
Texas Instruments 3 (1.8%)
|
||||
Konsulko Group 2 (1.2%)
|
||||
BayLibre SAS 2 (1.2%)
|
||||
==================================== =====
|
||||
|
||||
|
||||
.. table:: Employers with the most hackers (total 154)
|
||||
.. table:: Employers with the most hackers (total 153)
|
||||
:widths: auto
|
||||
|
||||
==================================== =====
|
||||
Name Count
|
||||
==================================== =====
|
||||
(Unknown) 81 (52.6%)
|
||||
Linaro 9 (5.8%)
|
||||
(Unknown) 80 (52.3%)
|
||||
AMD 9 (5.9%)
|
||||
Linaro 9 (5.9%)
|
||||
Texas Instruments 8 (5.2%)
|
||||
AMD 7 (4.5%)
|
||||
ST Microelectronics 6 (3.9%)
|
||||
DENX Software Engineering 5 (3.2%)
|
||||
DENX Software Engineering 5 (3.3%)
|
||||
Amarula Solutions 4 (2.6%)
|
||||
Toradex 4 (2.6%)
|
||||
Xilinx 4 (2.6%)
|
||||
NXP 3 (1.9%)
|
||||
Google, Inc. 3 (1.9%)
|
||||
ARM 3 (1.9%)
|
||||
BayLibre SAS 3 (1.9%)
|
||||
NXP 3 (2.0%)
|
||||
Google, Inc. 3 (2.0%)
|
||||
ARM 3 (2.0%)
|
||||
BayLibre SAS 3 (2.0%)
|
||||
Collabora Ltd. 2 (1.3%)
|
||||
SUSE 2 (1.3%)
|
||||
Weidmüller Interface GmbH & Co. KG 2 (1.3%)
|
||||
Socionext Inc. 2 (1.3%)
|
||||
Konsulko Group 1 (0.6%)
|
||||
Broadcom 1 (0.6%)
|
||||
Marvell 1 (0.6%)
|
||||
Siemens 1 (0.6%)
|
||||
Edgeble AI Technologies Pvt. Ltd. 1 (0.6%)
|
||||
Rockchip 1 (0.6%)
|
||||
Canonical 1 (0.7%)
|
||||
Konsulko Group 1 (0.7%)
|
||||
Broadcom 1 (0.7%)
|
||||
Marvell 1 (0.7%)
|
||||
Siemens 1 (0.7%)
|
||||
Xilinx 1 (0.7%)
|
||||
Edgeble AI Technologies Pvt. Ltd. 1 (0.7%)
|
||||
Rockchip 1 (0.7%)
|
||||
==================================== =====
|
||||
|
||||
|
|
|
@ -5,7 +5,7 @@ Release Statistics for U-Boot v2023.04
|
|||
|
||||
* Processed 1691 changesets from 157 developers
|
||||
|
||||
* 29 employers found
|
||||
* 28 employers found
|
||||
|
||||
* A total of 174471 lines added, 78380 removed (delta 96091)
|
||||
|
||||
|
@ -631,17 +631,17 @@ Release Statistics for U-Boot v2023.04
|
|||
==================================== =====
|
||||
Name Count
|
||||
==================================== =====
|
||||
(Unknown) 524 (31.0%)
|
||||
(Unknown) 464 (27.4%)
|
||||
Google, Inc. 381 (22.5%)
|
||||
Konsulko Group 333 (19.7%)
|
||||
Renesas Electronics 84 (5.0%)
|
||||
DENX Software Engineering 72 (4.3%)
|
||||
Texas Instruments 49 (2.9%)
|
||||
Linaro 47 (2.8%)
|
||||
Edgeble AI Technologies Pvt. Ltd. 46 (2.7%)
|
||||
ST Microelectronics 40 (2.4%)
|
||||
AMD 34 (2.0%)
|
||||
AMD 35 (2.1%)
|
||||
NXP 25 (1.5%)
|
||||
Renesas Electronics 24 (1.4%)
|
||||
Toradex 24 (1.4%)
|
||||
Amarula Solutions 20 (1.2%)
|
||||
Collabora Ltd. 20 (1.2%)
|
||||
|
@ -659,7 +659,6 @@ Release Statistics for U-Boot v2023.04
|
|||
Intel 1 (0.1%)
|
||||
linutronix 1 (0.1%)
|
||||
Samsung 1 (0.1%)
|
||||
Xilinx 1 (0.1%)
|
||||
==================================== =====
|
||||
|
||||
|
||||
|
@ -669,18 +668,18 @@ Release Statistics for U-Boot v2023.04
|
|||
==================================== =====
|
||||
Name Count
|
||||
==================================== =====
|
||||
(Unknown) 64681 (30.1%)
|
||||
(Unknown) 51007 (23.8%)
|
||||
Texas Instruments 42105 (19.6%)
|
||||
Konsulko Group 36464 (17.0%)
|
||||
Google, Inc. 30090 (14.0%)
|
||||
Edgeble AI Technologies Pvt. Ltd. 23070 (10.7%)
|
||||
Renesas Electronics 14449 (6.7%)
|
||||
Linaro 4601 (2.1%)
|
||||
DENX Software Engineering 4582 (2.1%)
|
||||
AMD 1741 (0.8%)
|
||||
AMD 1744 (0.8%)
|
||||
Amarula Solutions 1649 (0.8%)
|
||||
ST Microelectronics 882 (0.4%)
|
||||
Bootlin 860 (0.4%)
|
||||
Renesas Electronics 775 (0.4%)
|
||||
Socionext Inc. 760 (0.4%)
|
||||
ARM 724 (0.3%)
|
||||
Collabora Ltd. 413 (0.2%)
|
||||
|
@ -695,7 +694,6 @@ Release Statistics for U-Boot v2023.04
|
|||
Pengutronix 13 (0.0%)
|
||||
Samsung 9 (0.0%)
|
||||
Ronetix 4 (0.0%)
|
||||
Xilinx 3 (0.0%)
|
||||
Intel 1 (0.0%)
|
||||
linutronix 1 (0.0%)
|
||||
==================================== =====
|
||||
|
@ -707,14 +705,14 @@ Release Statistics for U-Boot v2023.04
|
|||
==================================== =====
|
||||
Name Count
|
||||
==================================== =====
|
||||
(Unknown) 48 (22.3%)
|
||||
Renesas Electronics 30 (14.0%)
|
||||
Rockchip 29 (13.5%)
|
||||
Toradex 28 (13.0%)
|
||||
(Unknown) 27 (12.6%)
|
||||
Amarula Solutions 24 (11.2%)
|
||||
AMD 23 (10.7%)
|
||||
NVidia 19 (8.8%)
|
||||
Linaro 9 (4.2%)
|
||||
Renesas Electronics 9 (4.2%)
|
||||
Texas Instruments 5 (2.3%)
|
||||
Konsulko Group 5 (2.3%)
|
||||
NXP 4 (1.9%)
|
||||
|
@ -734,18 +732,18 @@ Release Statistics for U-Boot v2023.04
|
|||
==================================== =====
|
||||
Name Count
|
||||
==================================== =====
|
||||
(Unknown) 86 (53.8%)
|
||||
(Unknown) 85 (53.1%)
|
||||
Linaro 9 (5.6%)
|
||||
Texas Instruments 8 (5.0%)
|
||||
AMD 6 (3.8%)
|
||||
AMD 7 (4.4%)
|
||||
Collabora Ltd. 6 (3.8%)
|
||||
Toradex 5 (3.1%)
|
||||
DENX Software Engineering 5 (3.1%)
|
||||
Amarula Solutions 4 (2.5%)
|
||||
NXP 4 (2.5%)
|
||||
Renesas Electronics 3 (1.9%)
|
||||
ARM 3 (1.9%)
|
||||
ST Microelectronics 3 (1.9%)
|
||||
Renesas Electronics 2 (1.2%)
|
||||
SUSE 2 (1.2%)
|
||||
Socionext Inc. 2 (1.2%)
|
||||
Konsulko Group 1 (0.6%)
|
||||
|
@ -761,7 +759,6 @@ Release Statistics for U-Boot v2023.04
|
|||
Pengutronix 1 (0.6%)
|
||||
Samsung 1 (0.6%)
|
||||
Ronetix 1 (0.6%)
|
||||
Xilinx 1 (0.6%)
|
||||
linutronix 1 (0.6%)
|
||||
==================================== =====
|
||||
|
||||
|
|
|
@ -37,29 +37,11 @@ dd if=csf_spl.bin of=flash.bin bs=1 seek=${spl_dd_offset} conv=notrunc
|
|||
|
||||
# 3) Sign u-boot.itb
|
||||
|
||||
# fitImage tree
|
||||
fit_block_base=$(printf "0x%x" $(( $(sed -n "/CONFIG_TEXT_BASE=/ s@.*=@@p" .config) - $(sed -n "/CONFIG_FIT_EXTERNAL_OFFSET=/ s@.*=@@p" .config) - 0x200 - 0x40)) )
|
||||
# fitImage
|
||||
fit_block_base=$(printf "0x%x" $(sed -n "/CONFIG_SPL_LOAD_FIT_ADDRESS=/ s@.*=@@p" .config) )
|
||||
fit_block_offset=$(printf "0x%s" $(fdtget -t x u-boot.dtb /binman/imx-boot/uboot offset))
|
||||
fit_block_size=$(printf "0x%x" $(( ( ($(fdtdump u-boot.itb 2>/dev/null | sed -n "/^...totalsize:/ s@.*\(0x[0-9a-f]\+\).*@\1@p") + 0x1000 - 0x1 ) & ~(0x1000 - 0x1)) + 0x20 )) )
|
||||
sed -i "/Blocks = / s@.*@ Blocks = $fit_block_base $fit_block_offset $fit_block_size \"flash.bin\", \\\\@" csf_fit.tmp
|
||||
|
||||
# U-Boot
|
||||
uboot_block_base=$(printf "0x%s" $(fdtget -t x u-boot.itb /images/uboot load))
|
||||
uboot_block_offset=$(printf "0x%x" $(( $(printf "0x%s" $(fdtget -t x u-boot.itb /images/uboot data-position)) + ${fit_block_offset} )))
|
||||
uboot_block_size=$(printf "0x%s" $(fdtget -t x u-boot.itb /images/uboot data-size))
|
||||
sed -i "/0xuuuu/ s@.*@ $uboot_block_base $uboot_block_offset $uboot_block_size \"flash.bin\", \\\\@" csf_fit.tmp
|
||||
|
||||
# ATF
|
||||
atf_block_base=$(printf "0x%s" $(fdtget -t x u-boot.itb /images/atf load))
|
||||
atf_block_offset=$(printf "0x%x" $(( $(printf "0x%s" $(fdtget -t x u-boot.itb /images/atf data-position)) + ${fit_block_offset} )))
|
||||
atf_block_size=$(printf "0x%s" $(fdtget -t x u-boot.itb /images/atf data-size))
|
||||
sed -i "/0xaaaa/ s@.*@ $atf_block_base $atf_block_offset $atf_block_size \"flash.bin\", \\\\@" csf_fit.tmp
|
||||
|
||||
# DTB
|
||||
dtb_block_base=$(printf "0x%x" $(( ${uboot_block_base} + ${uboot_block_size} )))
|
||||
dtb_block_offset=$(printf "0x%x" $(( $(printf "0x%s" $(fdtget -t x u-boot.itb /images/fdt-1 data-position)) + ${fit_block_offset} )))
|
||||
dtb_block_size=$(printf "0x%s" $(fdtget -t x u-boot.itb /images/fdt-1 data-size))
|
||||
sed -i "/0xdddd/ s@.*@ $dtb_block_base $dtb_block_offset $dtb_block_size \"flash.bin\"@" csf_fit.tmp
|
||||
fit_block_size=$(printf "0x%x" $(( ( ( $(stat -tc %s u-boot.itb) + 0x1000 - 0x1 ) & ~(0x1000 - 0x1)) + 0x20 )) )
|
||||
sed -i "/Blocks = / s@.*@ Blocks = $fit_block_base $fit_block_offset $fit_block_size \"flash.bin\"@" csf_fit.tmp
|
||||
|
||||
# IVT
|
||||
ivt_ptr_base=$(printf "%08x" ${fit_block_base} | sed "s@\(..\)\(..\)\(..\)\(..\)@0x\4\3\2\1@")
|
||||
|
@ -68,7 +50,7 @@ csf_block_base=$(printf "%08x" $(( ${fit_block_base} + ${fit_block_size} )) | se
|
|||
ivt_block_offset=$((${fit_block_offset} + ${fit_block_size} - 0x20))
|
||||
csf_block_offset=$((${ivt_block_offset} + 0x20))
|
||||
|
||||
echo "0xd1002041 ${ivt_ptr_base} 0x00000000 0x00000000 0x00000000 ${ivt_block_base} ${csf_block_base} 0x00000000" | xxd -r -p > ivt.bin
|
||||
echo "0xd1002041 ${ivt_block_base} 0x00000000 0x00000000 0x00000000 ${ivt_block_base} ${csf_block_base} 0x00000000" | xxd -r -p > ivt.bin
|
||||
dd if=ivt.bin of=flash.bin bs=1 seek=${ivt_block_offset} conv=notrunc
|
||||
|
||||
# Generate CSF blob
|
||||
|
|
|
@ -26,11 +26,5 @@
|
|||
[Authenticate Data]
|
||||
Verification index = 2
|
||||
# FIXME:
|
||||
# Line 1 -- fitImage tree
|
||||
# Line 2 -- U-Boot u-boot-nodtb.bin blob
|
||||
# Line 3 -- ATF BL31 blob
|
||||
# Line 4 -- DT blob
|
||||
Blocks = 0x401fcdc0 0x57c00 0xffff "flash.bin", \
|
||||
0x40200000 0x62c00 0xuuuu "flash.bin", \
|
||||
0x920000 0x00000 0xaaaa "flash.bin", \
|
||||
0x40200000 0x00000 0xdddd "flash.bin"
|
||||
# Line 1 -- fitImage
|
||||
Blocks = 0x401fcdc0 0x57c00 0xffff "flash.bin"
|
||||
|
|
|
@ -113,7 +113,7 @@ the U-Boot build, the example below is a log for mx7dsabresd_defconfig target:
|
|||
1.4 Signing the U-Boot binary
|
||||
------------------------------
|
||||
|
||||
The CST tool is used for singing the U-Boot binary and generating a CSF binary,
|
||||
The CST tool is used for signing the U-Boot binary and generating a CSF binary,
|
||||
users should input the CSF description file created in the step above and
|
||||
should receive a CSF binary, which contains the CSF commands, SRK table,
|
||||
signatures and certificates.
|
||||
|
|
|
@ -145,7 +145,7 @@ addresses, the csf_uboot.txt can be used as example:
|
|||
1.4 Signing the images
|
||||
-----------------------
|
||||
|
||||
The CST tool is used for singing the U-Boot binary and generating a CSF binary,
|
||||
The CST tool is used for signing the U-Boot binary and generating a CSF binary,
|
||||
users should input the CSF description file created in the step above and
|
||||
receive a CSF binary, which contains the CSF commands, SRK table, signatures
|
||||
and certificates.
|
||||
|
|
|
@ -79,18 +79,16 @@ code within it:
|
|||
|
||||
The diagram below illustrate a signed U-Boot binary, DT blob and external
|
||||
ATF BL31 blob combined to form fitImage part of flash.bin container layout.
|
||||
The *load_address is derived from CONFIG_TEXT_BASE such that the U-Boot
|
||||
binary *start is placed exactly at CONFIG_SPL_TEXT_BASE in DRAM, however the
|
||||
SPL moves the fitImage tree further to location:
|
||||
*load_address = CONFIG_SPL_TEXT_BASE - CONFIG_FIT_EXTERNAL_OFFSET (=12kiB) -
|
||||
512 Byte sector - sizeof(mkimage header)
|
||||
The *load_address is CONFIG_SPL_LOAD_FIT_ADDRESS, the fitImage is loaded
|
||||
including all of its embedded data, authenticated using IVT+CSF concatenated
|
||||
at the end of the fitImage at offset aligned to 4 kiB. The fitImage with
|
||||
external data is not supported.
|
||||
|
||||
------- +-----------------------------+ <-- *load_address
|
||||
^ | |
|
||||
| | fitImage tree |
|
||||
| | with external data at |
|
||||
| | offset 12 kiB from tree |
|
||||
| | (cca. 1 kiB) |
|
||||
| | with embedded data |
|
||||
| | (cca. 1 MiB) |
|
||||
Signed | | |
|
||||
.----- Tree | +-----------------------------+
|
||||
| Data | | Padding to next 4k aligned |
|
||||
|
@ -101,34 +99,9 @@ SPL moves the fitImage tree further to location:
|
|||
| ------- +-----------------------------+ <-- *csf
|
||||
| | Command Sequence File (CSF) |
|
||||
| | for all signed entries in |
|
||||
>--------------->| the fitImage, tree and data |
|
||||
| | (cca 6-7 kiB) |
|
||||
| +-----------------------------+
|
||||
| | Padding to 12 kiB offset |
|
||||
| | from *load_address |
|
||||
| ------- +-----------------------------+ <-- *start
|
||||
| ^ | |
|
||||
| Signed | | |
|
||||
|---- Payload | | U-Boot external data blob |
|
||||
| Data | | |
|
||||
| v | |
|
||||
| ------- +-----------------------------+
|
||||
| | Padding to 4 Bytes |
|
||||
| ------- +-----------------------------+
|
||||
| ^ | |
|
||||
| Signed | | |
|
||||
|---- Payload | | ATF external data blob |
|
||||
| Data | | |
|
||||
| v | |
|
||||
| ------- +-----------------------------+
|
||||
| | Padding to 4 Bytes |
|
||||
| ------- +-----------------------------+
|
||||
| ^ | |
|
||||
| Signed | | |
|
||||
'---- Payload | | DTB external data blob |
|
||||
Data | | |
|
||||
v | |
|
||||
------- +-----------------------------+
|
||||
'---------------->| the fitImage, tree and data |
|
||||
| (cca 6-7 kiB) |
|
||||
+-----------------------------+
|
||||
|
||||
The diagram below illustrate a combined flash.bin container layout:
|
||||
|
||||
|
@ -202,29 +175,11 @@ dd if=csf_spl.bin of=flash.bin bs=1 seek=${spl_dd_offset} conv=notrunc
|
|||
|
||||
CSF "Blocks" line for csf_fit.txt can be generated as follows:
|
||||
```
|
||||
# fitImage tree
|
||||
fit_block_base=$(printf "0x%x" $(( $(sed -n "/CONFIG_TEXT_BASE=/ s@.*=@@p" .config) - $(sed -n "/CONFIG_FIT_EXTERNAL_OFFSET=/ s@.*=@@p" .config) - 0x200 - 0x40)) )
|
||||
# fitImage
|
||||
fit_block_base=$(printf "0x%x" $(sed -n "/CONFIG_SPL_LOAD_FIT_ADDRESS=/ s@.*=@@p" .config) )
|
||||
fit_block_offset=$(printf "0x%s" $(fdtget -t x u-boot.dtb /binman/imx-boot/uboot offset))
|
||||
fit_block_size=$(printf "0x%x" $(( ( $(fdtdump u-boot.itb 2>/dev/null | sed -n "/^...totalsize:/ s@.*\(0x[0-9a-f]\+\).*@\1@p") + 0x1000 - 0x1 ) & ~(0x1000 - 0x1) + 0x20 )) )
|
||||
sed -i "/Blocks = / s@.*@ Blocks = $fit_block_base $fit_block_offset $fit_block_size \"flash.bin\", \\\\@" csf_fit.tmp
|
||||
|
||||
# U-Boot
|
||||
uboot_block_base=$(printf "0x%s" $(fdtget -t x u-boot.itb /images/uboot load))
|
||||
uboot_block_offset=$(printf "0x%x" $(( $(printf "0x%s" $(fdtget -t x u-boot.itb /images/uboot data-position)) + ${fit_block_offset} )))
|
||||
uboot_block_size=$(printf "0x%s" $(fdtget -t x u-boot.itb /images/uboot data-size))
|
||||
sed -i "/0xuuuu/ s@.*@ $uboot_block_base $uboot_block_offset $uboot_block_size \"flash.bin\", \\\\@" csf_fit.tmp
|
||||
|
||||
# ATF
|
||||
atf_block_base=$(printf "0x%s" $(fdtget -t x u-boot.itb /images/atf load))
|
||||
atf_block_offset=$(printf "0x%x" $(( $(printf "0x%s" $(fdtget -t x u-boot.itb /images/atf data-position)) + ${fit_block_offset} )))
|
||||
atf_block_size=$(printf "0x%s" $(fdtget -t x u-boot.itb /images/atf data-size))
|
||||
sed -i "/0xaaaa/ s@.*@ $atf_block_base $atf_block_offset $atf_block_size \"flash.bin\", \\\\@" csf_fit.tmp
|
||||
|
||||
# DTB
|
||||
dtb_block_base=$(printf "0x%x" $(( ${uboot_block_base} + ${uboot_block_size} )))
|
||||
dtb_block_offset=$(printf "0x%x" $(( $(printf "0x%s" $(fdtget -t x u-boot.itb /images/fdt-1 data-position)) + ${fit_block_offset} )))
|
||||
dtb_block_size=$(printf "0x%s" $(fdtget -t x u-boot.itb /images/fdt-1 data-size))
|
||||
sed -i "/0xdddd/ s@.*@ $dtb_block_base $dtb_block_offset $dtb_block_size \"flash.bin\"@" csf_fit.tmp
|
||||
fit_block_size=$(printf "0x%x" $(( ( ( $(stat -tc %s u-boot.itb) + 0x1000 - 0x1 ) & ~(0x1000 - 0x1)) + 0x20 )) )
|
||||
sed -i "/Blocks = / s@.*@ Blocks = $fit_block_base $fit_block_offset $fit_block_size \"flash.bin\"@" csf_fit.tmp
|
||||
```
|
||||
|
||||
The fitImage part of flash.bin requires separate IVT. Generate the IVT and
|
||||
|
@ -237,8 +192,9 @@ csf_block_base=$(printf "%08x" $(( ${fit_block_base} + ${fit_block_size} )) | se
|
|||
ivt_block_offset=$((${fit_block_offset} + ${fit_block_size} - 0x20))
|
||||
csf_block_offset=$((${ivt_block_offset} + 0x20))
|
||||
|
||||
echo "0xd1002041 ${ivt_ptr_base} 0x00000000 0x00000000 0x00000000 ${ivt_block_base} ${csf_block_base} 0x00000000" | xxd -r -p > ivt.bin
|
||||
echo "0xd1002041 ${ivt_block_base} 0x00000000 0x00000000 0x00000000 ${ivt_block_base} ${csf_block_base} 0x00000000" | xxd -r -p > ivt.bin
|
||||
dd if=ivt.bin of=flash.bin bs=1 seek=${ivt_block_offset} conv=notrunc
|
||||
```
|
||||
|
||||
To generate CSF signature for the fitImage part of flash.bin container, use CST:
|
||||
```
|
||||
|
|
|
@ -1,607 +0,0 @@
|
|||
Verified Boot on the Beaglebone Black
|
||||
=====================================
|
||||
|
||||
Introduction
|
||||
------------
|
||||
|
||||
Before reading this, please read verified-boot.txt and signature.txt. These
|
||||
instructions are for mainline U-Boot from v2014.07 onwards.
|
||||
|
||||
There is quite a bit of documentation in this directory describing how
|
||||
verified boot works in U-Boot. There is also a test which runs through the
|
||||
entire process of signing an image and running U-Boot (sandbox) to check it.
|
||||
However, it might be useful to also have an example on a real board.
|
||||
|
||||
Beaglebone Black is a fairly common board so seems to be a reasonable choice
|
||||
for an example of how to enable verified boot using U-Boot.
|
||||
|
||||
First a note that may to help avoid confusion. U-Boot and Linux both use
|
||||
device tree. They may use the same device tree source, but it is seldom useful
|
||||
for them to use the exact same binary from the same place. More typically,
|
||||
U-Boot has its device tree packaged wtih it, and the kernel's device tree is
|
||||
packaged with the kernel. In particular this is important with verified boot,
|
||||
since U-Boot's device tree must be immutable. If it can be changed then the
|
||||
public keys can be changed and verified boot is useless. An attacker can
|
||||
simply generate a new key and put his public key into U-Boot so that
|
||||
everything verifies. On the other hand the kernel's device tree typically
|
||||
changes when the kernel changes, so it is useful to package an updated device
|
||||
tree with the kernel binary. U-Boot supports the latter with its flexible FIT
|
||||
format (Flat Image Tree).
|
||||
|
||||
|
||||
Overview
|
||||
--------
|
||||
|
||||
The steps are roughly as follows:
|
||||
|
||||
1. Build U-Boot for the board, with the verified boot options enabled.
|
||||
|
||||
2. Obtain a suitable Linux kernel
|
||||
|
||||
3. Create a Image Tree Source file (ITS) file describing how you want the
|
||||
kernel to be packaged, compressed and signed.
|
||||
|
||||
4. Create a key pair
|
||||
|
||||
5. Sign the kernel
|
||||
|
||||
6. Put the public key into U-Boot's image
|
||||
|
||||
7. Put U-Boot and the kernel onto the board
|
||||
|
||||
8. Try it
|
||||
|
||||
|
||||
Step 1: Build U-Boot
|
||||
--------------------
|
||||
|
||||
a. Set up the environment variable to point to your toolchain. You will need
|
||||
this for U-Boot and also for the kernel if you build it. For example if you
|
||||
installed a Linaro version manually it might be something like:
|
||||
|
||||
export CROSS_COMPILE=/opt/linaro/gcc-linaro-arm-linux-gnueabihf-4.8-2013.08_linux/bin/arm-linux-gnueabihf-
|
||||
|
||||
or if you just installed gcc-arm-linux-gnueabi then it might be
|
||||
|
||||
export CROSS_COMPILE=arm-linux-gnueabi-
|
||||
|
||||
b. Configure and build U-Boot with verified boot enabled:
|
||||
|
||||
export UBOOT=/path/to/u-boot
|
||||
cd $UBOOT
|
||||
# You can add -j10 if you have 10 CPUs to make it faster
|
||||
make O=b/am335x_boneblack_vboot am335x_boneblack_vboot_config all
|
||||
export UOUT=$UBOOT/b/am335x_boneblack_vboot
|
||||
|
||||
c. You will now have a U-Boot image:
|
||||
|
||||
file b/am335x_boneblack_vboot/u-boot-dtb.img
|
||||
b/am335x_boneblack_vboot/u-boot-dtb.img: u-boot legacy uImage, U-Boot 2014.07-rc2-00065-g2f69f8, Firmware/ARM, Firmware Image (Not compressed), 395375 bytes, Sat May 31 16:19:04 2014, Load Address: 0x80800000, Entry Point: 0x00000000, Header CRC: 0x0ABD6ACA, Data CRC: 0x36DEF7E4
|
||||
|
||||
|
||||
Step 2: Build Linux
|
||||
--------------------
|
||||
|
||||
a. Find the kernel image ('Image') and device tree (.dtb) file you plan to
|
||||
use. In our case it is am335x-boneblack.dtb and it is built with the kernel.
|
||||
At the time of writing an SD Boot image can be obtained from here:
|
||||
|
||||
http://www.elinux.org/Beagleboard:Updating_The_Software#Image_For_Booting_From_microSD
|
||||
|
||||
You can write this to an SD card and then mount it to extract the kernel and
|
||||
device tree files.
|
||||
|
||||
You can also build a kernel. Instructions for this are are here:
|
||||
|
||||
http://elinux.org/Building_BBB_Kernel
|
||||
|
||||
or you can use your favourite search engine. Following these instructions
|
||||
produces a kernel Image and device tree files. For the record the steps were:
|
||||
|
||||
export KERNEL=/path/to/kernel
|
||||
cd $KERNEL
|
||||
git clone git://github.com/beagleboard/kernel.git .
|
||||
git checkout v3.14
|
||||
./patch.sh
|
||||
cp configs/beaglebone kernel/arch/arm/configs/beaglebone_defconfig
|
||||
cd kernel
|
||||
make beaglebone_defconfig
|
||||
make uImage dtbs # -j10 if you have 10 CPUs
|
||||
export OKERNEL=$KERNEL/kernel/arch/arm/boot
|
||||
|
||||
c. You now have the 'Image' and 'am335x-boneblack.dtb' files needed to boot.
|
||||
|
||||
|
||||
Step 3: Create the ITS
|
||||
----------------------
|
||||
|
||||
Set up a directory for your work.
|
||||
|
||||
export WORK=/path/to/dir
|
||||
cd $WORK
|
||||
|
||||
Put this into a file in that directory called sign.its:
|
||||
|
||||
/dts-v1/;
|
||||
|
||||
/ {
|
||||
description = "Beaglebone black";
|
||||
#address-cells = <1>;
|
||||
|
||||
images {
|
||||
kernel {
|
||||
data = /incbin/("Image.lzo");
|
||||
type = "kernel";
|
||||
arch = "arm";
|
||||
os = "linux";
|
||||
compression = "lzo";
|
||||
load = <0x80008000>;
|
||||
entry = <0x80008000>;
|
||||
hash-1 {
|
||||
algo = "sha1";
|
||||
};
|
||||
};
|
||||
fdt-1 {
|
||||
description = "beaglebone-black";
|
||||
data = /incbin/("am335x-boneblack.dtb");
|
||||
type = "flat_dt";
|
||||
arch = "arm";
|
||||
compression = "none";
|
||||
hash-1 {
|
||||
algo = "sha1";
|
||||
};
|
||||
};
|
||||
};
|
||||
configurations {
|
||||
default = "conf-1";
|
||||
conf-1 {
|
||||
kernel = "kernel";
|
||||
fdt = "fdt-1";
|
||||
signature-1 {
|
||||
algo = "sha1,rsa2048";
|
||||
key-name-hint = "dev";
|
||||
sign-images = "fdt", "kernel";
|
||||
};
|
||||
};
|
||||
};
|
||||
};
|
||||
|
||||
|
||||
The explanation for this is all in the documentation you have already read.
|
||||
But briefly it packages a kernel and device tree, and provides a single
|
||||
configuration to be signed with a key named 'dev'. The kernel is compressed
|
||||
with LZO to make it smaller.
|
||||
|
||||
|
||||
Step 4: Create a key pair
|
||||
-------------------------
|
||||
|
||||
See signature.txt for details on this step.
|
||||
|
||||
cd $WORK
|
||||
mkdir keys
|
||||
openssl genrsa -F4 -out keys/dev.key 2048
|
||||
openssl req -batch -new -x509 -key keys/dev.key -out keys/dev.crt
|
||||
|
||||
Note: keys/dev.key contains your private key and is very secret. If anyone
|
||||
gets access to that file they can sign kernels with it. Keep it secure.
|
||||
|
||||
|
||||
Step 5: Sign the kernel
|
||||
-----------------------
|
||||
|
||||
We need to use mkimage (which was built when you built U-Boot) to package the
|
||||
Linux kernel into a FIT (Flat Image Tree, a flexible file format that U-Boot
|
||||
can load) using the ITS file you just created.
|
||||
|
||||
At the same time we must put the public key into U-Boot device tree, with the
|
||||
'required' property, which tells U-Boot that this key must be verified for the
|
||||
image to be valid. You will make this key available to U-Boot for booting in
|
||||
step 6.
|
||||
|
||||
ln -s $OKERNEL/dts/am335x-boneblack.dtb
|
||||
ln -s $OKERNEL/Image
|
||||
ln -s $UOUT/u-boot-dtb.img
|
||||
cp $UOUT/arch/arm/dts/am335x-boneblack.dtb am335x-boneblack-pubkey.dtb
|
||||
lzop Image
|
||||
$UOUT/tools/mkimage -f sign.its -K am335x-boneblack-pubkey.dtb -k keys -r image.fit
|
||||
|
||||
You should see something like this:
|
||||
|
||||
FIT description: Beaglebone black
|
||||
Created: Sun Jun 1 12:50:30 2014
|
||||
Image 0 (kernel)
|
||||
Description: unavailable
|
||||
Created: Sun Jun 1 12:50:30 2014
|
||||
Type: Kernel Image
|
||||
Compression: lzo compressed
|
||||
Data Size: 7790938 Bytes = 7608.34 kB = 7.43 MB
|
||||
Architecture: ARM
|
||||
OS: Linux
|
||||
Load Address: 0x80008000
|
||||
Entry Point: 0x80008000
|
||||
Hash algo: sha1
|
||||
Hash value: c94364646427e10f423837e559898ef02c97b988
|
||||
Image 1 (fdt-1)
|
||||
Description: beaglebone-black
|
||||
Created: Sun Jun 1 12:50:30 2014
|
||||
Type: Flat Device Tree
|
||||
Compression: uncompressed
|
||||
Data Size: 31547 Bytes = 30.81 kB = 0.03 MB
|
||||
Architecture: ARM
|
||||
Hash algo: sha1
|
||||
Hash value: cb09202f889d824f23b8e4404b781be5ad38a68d
|
||||
Default Configuration: 'conf-1'
|
||||
Configuration 0 (conf-1)
|
||||
Description: unavailable
|
||||
Kernel: kernel
|
||||
FDT: fdt-1
|
||||
|
||||
|
||||
Now am335x-boneblack-pubkey.dtb contains the public key and image.fit contains
|
||||
the signed kernel. Jump to step 6 if you like, or continue reading to increase
|
||||
your understanding.
|
||||
|
||||
You can also run fit_check_sign to check it:
|
||||
|
||||
$UOUT/tools/fit_check_sign -f image.fit -k am335x-boneblack-pubkey.dtb
|
||||
|
||||
which results in:
|
||||
|
||||
Verifying Hash Integrity ... sha1,rsa2048:dev+
|
||||
## Loading kernel from FIT Image at 7fc6ee469000 ...
|
||||
Using 'conf-1' configuration
|
||||
Verifying Hash Integrity ...
|
||||
sha1,rsa2048:dev+
|
||||
OK
|
||||
|
||||
Trying 'kernel' kernel subimage
|
||||
Description: unavailable
|
||||
Created: Sun Jun 1 12:50:30 2014
|
||||
Type: Kernel Image
|
||||
Compression: lzo compressed
|
||||
Data Size: 7790938 Bytes = 7608.34 kB = 7.43 MB
|
||||
Architecture: ARM
|
||||
OS: Linux
|
||||
Load Address: 0x80008000
|
||||
Entry Point: 0x80008000
|
||||
Hash algo: sha1
|
||||
Hash value: c94364646427e10f423837e559898ef02c97b988
|
||||
Verifying Hash Integrity ...
|
||||
sha1+
|
||||
OK
|
||||
|
||||
Unimplemented compression type 4
|
||||
## Loading fdt from FIT Image at 7fc6ee469000 ...
|
||||
Using 'conf-1' configuration
|
||||
Trying 'fdt-1' fdt subimage
|
||||
Description: beaglebone-black
|
||||
Created: Sun Jun 1 12:50:30 2014
|
||||
Type: Flat Device Tree
|
||||
Compression: uncompressed
|
||||
Data Size: 31547 Bytes = 30.81 kB = 0.03 MB
|
||||
Architecture: ARM
|
||||
Hash algo: sha1
|
||||
Hash value: cb09202f889d824f23b8e4404b781be5ad38a68d
|
||||
Verifying Hash Integrity ...
|
||||
sha1+
|
||||
OK
|
||||
|
||||
Loading Flat Device Tree ... OK
|
||||
|
||||
## Loading ramdisk from FIT Image at 7fc6ee469000 ...
|
||||
Using 'conf-1' configuration
|
||||
Could not find subimage node
|
||||
|
||||
Signature check OK
|
||||
|
||||
|
||||
At the top, you see "sha1,rsa2048:dev+". This means that it checked an RSA key
|
||||
of size 2048 bits using SHA1 as the hash algorithm. The key name checked was
|
||||
'dev' and the '+' means that it verified. If it showed '-' that would be bad.
|
||||
|
||||
Once the configuration is verified it is then possible to rely on the hashes
|
||||
in each image referenced by that configuration. So fit_check_sign goes on to
|
||||
load each of the images. We have a kernel and an FDT but no ramkdisk. In each
|
||||
case fit_check_sign checks the hash and prints sha1+ meaning that the SHA1
|
||||
hash verified. This means that none of the images has been tampered with.
|
||||
|
||||
There is a test in test/vboot which uses U-Boot's sandbox build to verify that
|
||||
the above flow works.
|
||||
|
||||
But it is fun to do this by hand, so you can load image.fit into a hex editor
|
||||
like ghex, and change a byte in the kernel:
|
||||
|
||||
$UOUT/tools/fit_info -f image.fit -n /images/kernel -p data
|
||||
NAME: kernel
|
||||
LEN: 7790938
|
||||
OFF: 168
|
||||
|
||||
This tells us that the kernel starts at byte offset 168 (decimal) in image.fit
|
||||
and extends for about 7MB. Try changing a byte at 0x2000 (say) and run
|
||||
fit_check_sign again. You should see something like:
|
||||
|
||||
Verifying Hash Integrity ... sha1,rsa2048:dev+
|
||||
## Loading kernel from FIT Image at 7f5a39571000 ...
|
||||
Using 'conf-1' configuration
|
||||
Verifying Hash Integrity ...
|
||||
sha1,rsa2048:dev+
|
||||
OK
|
||||
|
||||
Trying 'kernel' kernel subimage
|
||||
Description: unavailable
|
||||
Created: Sun Jun 1 13:09:21 2014
|
||||
Type: Kernel Image
|
||||
Compression: lzo compressed
|
||||
Data Size: 7790938 Bytes = 7608.34 kB = 7.43 MB
|
||||
Architecture: ARM
|
||||
OS: Linux
|
||||
Load Address: 0x80008000
|
||||
Entry Point: 0x80008000
|
||||
Hash algo: sha1
|
||||
Hash value: c94364646427e10f423837e559898ef02c97b988
|
||||
Verifying Hash Integrity ...
|
||||
sha1 error
|
||||
Bad hash value for 'hash-1' hash node in 'kernel' image node
|
||||
Bad Data Hash
|
||||
|
||||
## Loading fdt from FIT Image at 7f5a39571000 ...
|
||||
Using 'conf-1' configuration
|
||||
Trying 'fdt-1' fdt subimage
|
||||
Description: beaglebone-black
|
||||
Created: Sun Jun 1 13:09:21 2014
|
||||
Type: Flat Device Tree
|
||||
Compression: uncompressed
|
||||
Data Size: 31547 Bytes = 30.81 kB = 0.03 MB
|
||||
Architecture: ARM
|
||||
Hash algo: sha1
|
||||
Hash value: cb09202f889d824f23b8e4404b781be5ad38a68d
|
||||
Verifying Hash Integrity ...
|
||||
sha1+
|
||||
OK
|
||||
|
||||
Loading Flat Device Tree ... OK
|
||||
|
||||
## Loading ramdisk from FIT Image at 7f5a39571000 ...
|
||||
Using 'conf-1' configuration
|
||||
Could not find subimage node
|
||||
|
||||
Signature check Bad (error 1)
|
||||
|
||||
|
||||
It has detected the change in the kernel.
|
||||
|
||||
You can also be sneaky and try to switch images, using the libfdt utilities
|
||||
that come with dtc (package name is device-tree-compiler but you will need a
|
||||
recent version like 1.4:
|
||||
|
||||
dtc -v
|
||||
Version: DTC 1.4.0
|
||||
|
||||
First we can check which nodes are actually hashed by the configuration:
|
||||
|
||||
fdtget -l image.fit /
|
||||
images
|
||||
configurations
|
||||
|
||||
fdtget -l image.fit /configurations
|
||||
conf-1
|
||||
fdtget -l image.fit /configurations/conf-1
|
||||
signature-1
|
||||
|
||||
fdtget -p image.fit /configurations/conf-1/signature-1
|
||||
hashed-strings
|
||||
hashed-nodes
|
||||
timestamp
|
||||
signer-version
|
||||
signer-name
|
||||
value
|
||||
algo
|
||||
key-name-hint
|
||||
sign-images
|
||||
|
||||
fdtget image.fit /configurations/conf-1/signature-1 hashed-nodes
|
||||
/ /configurations/conf-1 /images/fdt-1 /images/fdt-1/hash /images/kernel /images/kernel/hash-1
|
||||
|
||||
This gives us a bit of a look into the signature that mkimage added. Note you
|
||||
can also use fdtdump to list the entire device tree.
|
||||
|
||||
Say we want to change the kernel that this configuration uses
|
||||
(/images/kernel). We could just put a new kernel in the image, but we will
|
||||
need to change the hash to match. Let's simulate that by changing a byte of
|
||||
the hash:
|
||||
|
||||
fdtget -tx image.fit /images/kernel/hash-1 value
|
||||
c9436464 6427e10f 423837e5 59898ef0 2c97b988
|
||||
fdtput -tx image.fit /images/kernel/hash-1 value c9436464 6427e10f 423837e5 59898ef0 2c97b981
|
||||
|
||||
Now check it again:
|
||||
|
||||
$UOUT/tools/fit_check_sign -f image.fit -k am335x-boneblack-pubkey.dtb
|
||||
Verifying Hash Integrity ... sha1,rsa2048:devrsa_verify_with_keynode: RSA failed to verify: -13
|
||||
rsa_verify_with_keynode: RSA failed to verify: -13
|
||||
-
|
||||
Failed to verify required signature 'key-dev'
|
||||
Signature check Bad (error 1)
|
||||
|
||||
This time we don't even get as far as checking the images, since the
|
||||
configuration signature doesn't match. We can't change any hashes without the
|
||||
signature check noticing. The configuration is essentially locked. U-Boot has
|
||||
a public key for which it requires a match, and will not permit the use of any
|
||||
configuration that does not match that public key. The only way the
|
||||
configuration will match is if it was signed by the matching private key.
|
||||
|
||||
It would also be possible to add a new signature node that does match your new
|
||||
configuration. But that won't work since you are not allowed to change the
|
||||
configuration in any way. Try it with a fresh (valid) image if you like by
|
||||
running the mkimage link again. Then:
|
||||
|
||||
fdtput -p image.fit /configurations/conf-1/signature-1 value fred
|
||||
$UOUT/tools/fit_check_sign -f image.fit -k am335x-boneblack-pubkey.dtb
|
||||
Verifying Hash Integrity ... -
|
||||
sha1,rsa2048:devrsa_verify_with_keynode: RSA failed to verify: -13
|
||||
rsa_verify_with_keynode: RSA failed to verify: -13
|
||||
-
|
||||
Failed to verify required signature 'key-dev'
|
||||
Signature check Bad (error 1)
|
||||
|
||||
|
||||
Of course it would be possible to add an entirely new configuration and boot
|
||||
with that, but it still needs to be signed, so it won't help.
|
||||
|
||||
|
||||
6. Put the public key into U-Boot's image
|
||||
-----------------------------------------
|
||||
|
||||
Having confirmed that the signature is doing its job, let's try it out in
|
||||
U-Boot on the board. U-Boot needs access to the public key corresponding to
|
||||
the private key that you signed with so that it can verify any kernels that
|
||||
you sign.
|
||||
|
||||
cd $UBOOT
|
||||
make O=b/am335x_boneblack_vboot EXT_DTB=${WORK}/am335x-boneblack-pubkey.dtb
|
||||
|
||||
Here we are overriding the normal device tree file with our one, which
|
||||
contains the public key.
|
||||
|
||||
Now you have a special U-Boot image with the public key. It can verify can
|
||||
kernel that you sign with the private key as in step 5.
|
||||
|
||||
If you like you can take a look at the public key information that mkimage
|
||||
added to U-Boot's device tree:
|
||||
|
||||
fdtget -p am335x-boneblack-pubkey.dtb /signature/key-dev
|
||||
required
|
||||
algo
|
||||
rsa,r-squared
|
||||
rsa,modulus
|
||||
rsa,n0-inverse
|
||||
rsa,num-bits
|
||||
key-name-hint
|
||||
|
||||
This has information about the key and some pre-processed values which U-Boot
|
||||
can use to verify against it. These values are obtained from the public key
|
||||
certificate by mkimage, but require quite a bit of code to generate. To save
|
||||
code space in U-Boot, the information is extracted and written in raw form for
|
||||
U-Boot to easily use. The same mechanism is used in Google's Chrome OS.
|
||||
|
||||
Notice the 'required' property. This marks the key as required - U-Boot will
|
||||
not boot any image that does not verify against this key.
|
||||
|
||||
|
||||
7. Put U-Boot and the kernel onto the board
|
||||
-------------------------------------------
|
||||
|
||||
The method here varies depending on how you are booting. For this example we
|
||||
are booting from an micro-SD card with two partitions, one for U-Boot and one
|
||||
for Linux. Put it into your machine and write U-Boot and the kernel to it.
|
||||
Here the card is /dev/sde:
|
||||
|
||||
cd $WORK
|
||||
export UDEV=/dev/sde1 # Change thes two lines to the correct device
|
||||
export KDEV=/dev/sde2
|
||||
sudo mount $UDEV /mnt/tmp && sudo cp $UOUT/u-boot-dtb.img /mnt/tmp/u-boot.img && sleep 1 && sudo umount $UDEV
|
||||
sudo mount $KDEV /mnt/tmp && sudo cp $WORK/image.fit /mnt/tmp/boot/image.fit && sleep 1 && sudo umount $KDEV
|
||||
|
||||
|
||||
8. Try it
|
||||
---------
|
||||
|
||||
Boot the board using the commands below:
|
||||
|
||||
setenv bootargs console=ttyO0,115200n8 quiet root=/dev/mmcblk0p2 ro rootfstype=ext4 rootwait
|
||||
ext2load mmc 0:2 82000000 /boot/image.fit
|
||||
bootm 82000000
|
||||
|
||||
You should then see something like this:
|
||||
|
||||
U-Boot# setenv bootargs console=ttyO0,115200n8 quiet root=/dev/mmcblk0p2 ro rootfstype=ext4 rootwait
|
||||
U-Boot# ext2load mmc 0:2 82000000 /boot/image.fit
|
||||
7824930 bytes read in 589 ms (12.7 MiB/s)
|
||||
U-Boot# bootm 82000000
|
||||
## Loading kernel from FIT Image at 82000000 ...
|
||||
Using 'conf-1' configuration
|
||||
Verifying Hash Integrity ... sha1,rsa2048:dev+ OK
|
||||
Trying 'kernel' kernel subimage
|
||||
Description: unavailable
|
||||
Created: 2014-06-01 19:32:54 UTC
|
||||
Type: Kernel Image
|
||||
Compression: lzo compressed
|
||||
Data Start: 0x820000a8
|
||||
Data Size: 7790938 Bytes = 7.4 MiB
|
||||
Architecture: ARM
|
||||
OS: Linux
|
||||
Load Address: 0x80008000
|
||||
Entry Point: 0x80008000
|
||||
Hash algo: sha1
|
||||
Hash value: c94364646427e10f423837e559898ef02c97b988
|
||||
Verifying Hash Integrity ... sha1+ OK
|
||||
## Loading fdt from FIT Image at 82000000 ...
|
||||
Using 'conf-1' configuration
|
||||
Trying 'fdt-1' fdt subimage
|
||||
Description: beaglebone-black
|
||||
Created: 2014-06-01 19:32:54 UTC
|
||||
Type: Flat Device Tree
|
||||
Compression: uncompressed
|
||||
Data Start: 0x8276e2ec
|
||||
Data Size: 31547 Bytes = 30.8 KiB
|
||||
Architecture: ARM
|
||||
Hash algo: sha1
|
||||
Hash value: cb09202f889d824f23b8e4404b781be5ad38a68d
|
||||
Verifying Hash Integrity ... sha1+ OK
|
||||
Booting using the fdt blob at 0x8276e2ec
|
||||
Uncompressing Kernel Image ... OK
|
||||
Loading Device Tree to 8fff5000, end 8ffffb3a ... OK
|
||||
|
||||
Starting kernel ...
|
||||
|
||||
[ 0.582377] omap_init_mbox: hwmod doesn't have valid attrs
|
||||
[ 2.589651] musb-hdrc musb-hdrc.0.auto: Failed to request rx1.
|
||||
[ 2.595830] musb-hdrc musb-hdrc.0.auto: musb_init_controller failed with status -517
|
||||
[ 2.606470] musb-hdrc musb-hdrc.1.auto: Failed to request rx1.
|
||||
[ 2.612723] musb-hdrc musb-hdrc.1.auto: musb_init_controller failed with status -517
|
||||
[ 2.940808] drivers/rtc/hctosys.c: unable to open rtc device (rtc0)
|
||||
[ 7.248889] libphy: PHY 4a101000.mdio:01 not found
|
||||
[ 7.253995] net eth0: phy 4a101000.mdio:01 not found on slave 1
|
||||
systemd-fsck[83]: Angstrom: clean, 50607/218160 files, 306348/872448 blocks
|
||||
|
||||
.---O---.
|
||||
| | .-. o o
|
||||
| | |-----.-----.-----.| | .----..-----.-----.
|
||||
| | | __ | ---'| '--.| .-'| | |
|
||||
| | | | | |--- || --'| | | ' | | | |
|
||||
'---'---'--'--'--. |-----''----''--' '-----'-'-'-'
|
||||
-' |
|
||||
'---'
|
||||
|
||||
The Angstrom Distribution beaglebone ttyO0
|
||||
|
||||
Angstrom v2012.12 - Kernel 3.14.1+
|
||||
|
||||
beaglebone login:
|
||||
|
||||
At this point your kernel has been verified and you can be sure that it is one
|
||||
that you signed. As an exercise, try changing image.fit as in step 5 and see
|
||||
what happens.
|
||||
|
||||
|
||||
Further Improvements
|
||||
--------------------
|
||||
|
||||
Several of the steps here can be easily automated. In particular it would be
|
||||
capital if signing and packaging a kernel were easy, perhaps a simple make
|
||||
target in the kernel.
|
||||
|
||||
Some mention of how to use multiple .dtb files in a FIT might be useful.
|
||||
|
||||
U-Boot's verified boot mechanism has not had a robust and independent security
|
||||
review. Such a review should look at the implementation and its resistance to
|
||||
attacks.
|
||||
|
||||
Perhaps the verified boot feature could could be integrated into the Amstrom
|
||||
distribution.
|
||||
|
||||
|
||||
Simon Glass
|
||||
sjg@chromium.org
|
||||
2-June-14
|
|
@ -1,201 +0,0 @@
|
|||
Command syntax extensions for the new uImage format
|
||||
===================================================
|
||||
|
||||
Author: Bartlomiej Sieka <tur@semihalf.com>
|
||||
|
||||
With the introduction of the new uImage format, bootm command (and other
|
||||
commands as well) have to understand new syntax of the arguments. This is
|
||||
necessary in order to specify objects contained in the new uImage, on which
|
||||
bootm has to operate. This note attempts to first summarize bootm usage
|
||||
scenarios, and then introduces new argument syntax.
|
||||
|
||||
|
||||
bootm usage scenarios
|
||||
---------------------
|
||||
|
||||
Below is a summary of bootm usage scenarios, focused on booting a PowerPC
|
||||
Linux kernel. The purpose of the following list is to document a complete list
|
||||
of supported bootm usages.
|
||||
|
||||
Note: U-Boot supports two methods of booting a PowerPC Linux kernel: old way,
|
||||
i.e., without passing the Flattened Device Tree (FDT), and new way, where the
|
||||
kernel is passed a pointer to the FDT. The boot method is indicated for each
|
||||
scenario.
|
||||
|
||||
|
||||
1. bootm boot image at the current address, equivalent to 2,3,8
|
||||
|
||||
Old uImage:
|
||||
2. bootm <addr1> /* single image at <addr1> */
|
||||
3. bootm <addr1> /* multi-image at <addr1> */
|
||||
4. bootm <addr1> - /* multi-image at <addr1> */
|
||||
5. bootm <addr1> <addr2> /* single image at <addr1> */
|
||||
6. bootm <addr1> <addr2> <addr3> /* single image at <addr1> */
|
||||
7. bootm <addr1> - <addr3> /* single image at <addr1> */
|
||||
|
||||
New uImage:
|
||||
8. bootm <addr1>
|
||||
9. bootm [<addr1>]:<subimg1>
|
||||
10. bootm [<addr1>]#<conf>[#<extra-conf[#...]]
|
||||
11. bootm [<addr1>]:<subimg1> [<addr2>]:<subimg2>
|
||||
12. bootm [<addr1>]:<subimg1> [<addr2>]:<subimg2> [<addr3>]:<subimg3>
|
||||
13. bootm [<addr1>]:<subimg1> [<addr2>]:<subimg2> <addr3>
|
||||
14. bootm [<addr1>]:<subimg1> - [<addr3>]:<subimg3>
|
||||
15. bootm [<addr1>]:<subimg1> - <addr3>
|
||||
|
||||
|
||||
Ad. 1. This is equivalent to cases 2,3,8, depending on the type of image at
|
||||
the current image address.
|
||||
- boot method: see cases 2,3,8
|
||||
|
||||
Ad. 2. Boot kernel image located at <addr1>.
|
||||
- boot method: non-FDT
|
||||
|
||||
Ad. 3. First and second components of the image at <addr1> are assumed to be a
|
||||
kernel and a ramdisk, respectively. The kernel is booted with initrd loaded
|
||||
with the ramdisk from the image.
|
||||
- boot method: depends on the number of components at <addr1>, and on whether
|
||||
U-Boot is compiled with OF support:
|
||||
|
||||
| 2 components | 3 components |
|
||||
| (kernel, initrd) | (kernel, initrd, fdt) |
|
||||
---------------------------------------------------------------------
|
||||
#ifdef CONFIG_OF_* | non-FDT | FDT |
|
||||
#ifndef CONFIG_OF_* | non-FDT | non-FDT |
|
||||
|
||||
Ad. 4. Similar to case 3, but the kernel is booted without initrd. Second
|
||||
component of the multi-image is irrelevant (it can be a dummy, 1-byte file).
|
||||
- boot method: see case 3
|
||||
|
||||
Ad. 5. Boot kernel image located at <addr1> with initrd loaded with ramdisk
|
||||
from the image at <addr2>.
|
||||
- boot method: non-FDT
|
||||
|
||||
Ad. 6. <addr1> is the address of a kernel image, <addr2> is the address of a
|
||||
ramdisk image, and <addr3> is the address of a FDT binary blob. Kernel is
|
||||
booted with initrd loaded with ramdisk from the image at <addr2>.
|
||||
- boot method: FDT
|
||||
|
||||
Ad. 7. <addr1> is the address of a kernel image and <addr3> is the address of
|
||||
a FDT binary blob. Kernel is booted without initrd.
|
||||
- boot method: FDT
|
||||
|
||||
Ad. 8. Image at <addr1> is assumed to contain a default configuration, which
|
||||
is booted.
|
||||
- boot method: FDT or non-FDT, depending on whether the default configuration
|
||||
defines FDT
|
||||
|
||||
Ad. 9. Similar to case 2: boot kernel stored in <subimg1> from the image at
|
||||
address <addr1>.
|
||||
- boot method: non-FDT
|
||||
|
||||
Ad. 10. Boot configuration <conf> from the image at <addr1>.
|
||||
- boot method: FDT or non-FDT, depending on whether the configuration given
|
||||
defines FDT
|
||||
|
||||
Ad. 11. Equivalent to case 5: boot kernel stored in <subimg1> from the image
|
||||
at <addr1> with initrd loaded with ramdisk <subimg2> from the image at
|
||||
<addr2>.
|
||||
- boot method: non-FDT
|
||||
|
||||
Ad. 12. Equivalent to case 6: boot kernel stored in <subimg1> from the image
|
||||
at <addr1> with initrd loaded with ramdisk <subimg2> from the image at
|
||||
<addr2>, and pass FDT blob <subimg3> from the image at <addr3>.
|
||||
- boot method: FDT
|
||||
|
||||
Ad. 13. Similar to case 12, the difference being that <addr3> is the address
|
||||
of FDT binary blob that is to be passed to the kernel.
|
||||
- boot method: FDT
|
||||
|
||||
Ad. 14. Equivalent to case 7: boot kernel stored in <subimg1> from the image
|
||||
at <addr1>, without initrd, and pass FDT blob <subimg3> from the image at
|
||||
<addr3>.
|
||||
- boot method: FDT
|
||||
|
||||
Ad. 15. Similar to case 14, the difference being that <addr3> is the address
|
||||
of the FDT binary blob that is to be passed to the kernel.
|
||||
- boot method: FDT
|
||||
|
||||
|
||||
New uImage argument syntax
|
||||
--------------------------
|
||||
|
||||
New uImage support introduces two new forms for bootm arguments, with the
|
||||
following syntax:
|
||||
|
||||
- new uImage sub-image specification
|
||||
<addr>:<sub-image unit_name>
|
||||
|
||||
- new uImage configuration specification
|
||||
<addr>#<configuration unit_name>
|
||||
|
||||
- new uImage configuration specification with extra configuration components
|
||||
<addr>#<configuration unit_name>[#<extra configuration unit_name>[#..]]
|
||||
|
||||
The extra configuration currently is supported only for additional device tree
|
||||
overlays to apply on the base device tree supplied by the first configuration
|
||||
unit.
|
||||
|
||||
Examples:
|
||||
|
||||
- boot kernel "kernel-1" stored in a new uImage located at 200000:
|
||||
bootm 200000:kernel-1
|
||||
|
||||
- boot configuration "cfg-1" from a new uImage located at 200000:
|
||||
bootm 200000#cfg-1
|
||||
|
||||
- boot configuration "cfg-1" with extra "cfg-2" from a new uImage located
|
||||
at 200000:
|
||||
bootm 200000#cfg-1#cfg-2
|
||||
|
||||
- boot "kernel-1" from a new uImage at 200000 with initrd "ramdisk-2" found in
|
||||
some other new uImage stored at address 800000:
|
||||
bootm 200000:kernel-1 800000:ramdisk-2
|
||||
|
||||
- boot "kernel-2" from a new uImage at 200000, with initrd "ramdisk-1" and FDT
|
||||
"fdt-1", both stored in some other new uImage located at 800000:
|
||||
bootm 200000:kernel-1 800000:ramdisk-1 800000:fdt-1
|
||||
|
||||
- boot kernel "kernel-2" with initrd "ramdisk-2", both stored in a new uImage
|
||||
at address 200000, with a raw FDT blob stored at address 600000:
|
||||
bootm 200000:kernel-2 200000:ramdisk-2 600000
|
||||
|
||||
- boot kernel "kernel-2" from new uImage at 200000 with FDT "fdt-1" from the
|
||||
same new uImage:
|
||||
bootm 200000:kernel-2 - 200000:fdt-1
|
||||
|
||||
|
||||
Note on current image address
|
||||
-----------------------------
|
||||
|
||||
When bootm is called without arguments, the image at current image address is
|
||||
booted. The current image address is the address set most recently by a load
|
||||
command, etc, and is by default equal to CONFIG_SYS_LOAD_ADDR. For example, consider
|
||||
the following commands:
|
||||
|
||||
tftp 200000 /tftpboot/kernel
|
||||
bootm
|
||||
Last command is equivalent to:
|
||||
bootm 200000
|
||||
|
||||
In case of the new uImage argument syntax, the address portion of any argument
|
||||
can be omitted. If <addr3> is omitted, then it is assumed that image at
|
||||
<addr2> should be used. Similarly, when <addr2> is omitted, it is assumed that
|
||||
image at <addr1> should be used. If <addr1> is omitted, it is assumed that the
|
||||
current image address is to be used. For example, consider the following
|
||||
commands:
|
||||
|
||||
tftp 200000 /tftpboot/uImage
|
||||
bootm :kernel-1
|
||||
Last command is equivalent to:
|
||||
bootm 200000:kernel-1
|
||||
|
||||
tftp 200000 /tftpboot/uImage
|
||||
bootm 400000:kernel-1 :ramdisk-1
|
||||
Last command is equivalent to:
|
||||
bootm 400000:kernel-1 400000:ramdisk-1
|
||||
|
||||
tftp 200000 /tftpboot/uImage
|
||||
bootm :kernel-1 400000:ramdisk-1 :fdt-1
|
||||
Last command is equivalent to:
|
||||
bootm 200000:kernel-1 400000:ramdisk-1 400000:fdt-1
|
|
@ -1,411 +0,0 @@
|
|||
How to use images in the new image format
|
||||
=========================================
|
||||
|
||||
Author: Bartlomiej Sieka <tur@semihalf.com>
|
||||
|
||||
|
||||
Overview
|
||||
--------
|
||||
|
||||
The new uImage format allows more flexibility in handling images of various
|
||||
types (kernel, ramdisk, etc.), it also enhances integrity protection of images
|
||||
with sha1 and md5 checksums.
|
||||
|
||||
Two auxiliary tools are needed on the development host system in order to
|
||||
create an uImage in the new format: mkimage and dtc, although only one
|
||||
(mkimage) is invoked directly. dtc is called from within mkimage and operates
|
||||
behind the scenes, but needs to be present in the $PATH nevertheless. It is
|
||||
important that the dtc used has support for binary includes -- refer to
|
||||
|
||||
git://git.kernel.org/pub/scm/utils/dtc/dtc.git
|
||||
|
||||
for its latest version. mkimage (together with dtc) takes as input
|
||||
an image source file, which describes the contents of the image and defines
|
||||
its various properties used during booting. By convention, image source file
|
||||
has the ".its" extension, also, the details of its format are given in
|
||||
doc/uImage.FIT/source_file_format.txt. The actual data that is to be included in
|
||||
the uImage (kernel, ramdisk, etc.) is specified in the image source file in the
|
||||
form of paths to appropriate data files. The outcome of the image creation
|
||||
process is a binary file (by convention with the ".itb" extension) that
|
||||
contains all the referenced data (kernel, ramdisk, etc.) and other information
|
||||
needed by U-Boot to handle the uImage properly. The uImage file is then
|
||||
transferred to the target (e.g., via tftp) and booted using the bootm command.
|
||||
|
||||
To summarize the prerequisites needed for new uImage creation:
|
||||
- mkimage
|
||||
- dtc (with support for binary includes)
|
||||
- image source file (*.its)
|
||||
- image data file(s)
|
||||
|
||||
|
||||
Here's a graphical overview of the image creation and booting process:
|
||||
|
||||
image source file mkimage + dtc transfer to target
|
||||
+ ---------------> image file --------------------> bootm
|
||||
image data file(s)
|
||||
|
||||
SPL usage
|
||||
---------
|
||||
|
||||
The SPL can make use of the new image format as well, this traditionally
|
||||
is used to ship multiple device tree files within one image. Code in the SPL
|
||||
will choose the one matching the current board and append this to the
|
||||
U-Boot proper binary to be automatically used up by it.
|
||||
Aside from U-Boot proper and one device tree blob the SPL can load multiple,
|
||||
arbitrary image files as well. These binaries should be specified in their
|
||||
own subnode under the /images node, which should then be referenced from one or
|
||||
multiple /configurations subnodes. The required images must be enumerated in
|
||||
the "loadables" property as a list of strings.
|
||||
|
||||
If a platform specific image source file (.its) is shipped with the U-Boot
|
||||
source, it can be specified using the CONFIG_SPL_FIT_SOURCE Kconfig symbol.
|
||||
In this case it will be automatically used by U-Boot's Makefile to generate
|
||||
the image.
|
||||
If a static source file is not flexible enough, CONFIG_SPL_FIT_GENERATOR
|
||||
can point to a script which generates this image source file during
|
||||
the build process. It gets passed a list of device tree files (taken from the
|
||||
CONFIG_OF_LIST symbol).
|
||||
|
||||
The SPL also records to a DT all additional images (called loadables) which are
|
||||
loaded. The information about loadables locations is passed via the DT node with
|
||||
fit-images name.
|
||||
|
||||
Finally, if there are multiple xPL phases (e.g. SPL, VPL), images can be marked
|
||||
as intended for a particular phase using the 'phase' property. For example, if
|
||||
fit_image_load() is called with image_ph(IH_PHASE_SPL, IH_TYPE_FIRMWARE), then
|
||||
only the image listed into the "firmware" property where phase is set to "spl"
|
||||
will be loaded.
|
||||
|
||||
Loadables Example
|
||||
-----------------
|
||||
Consider the following case for an ARM64 platform where U-Boot runs in EL2
|
||||
started by ATF where SPL is loading U-Boot (as loadables) and ATF (as firmware).
|
||||
|
||||
/dts-v1/;
|
||||
|
||||
/ {
|
||||
description = "Configuration to load ATF before U-Boot";
|
||||
|
||||
images {
|
||||
uboot {
|
||||
description = "U-Boot (64-bit)";
|
||||
data = /incbin/("u-boot-nodtb.bin");
|
||||
type = "firmware";
|
||||
os = "u-boot";
|
||||
arch = "arm64";
|
||||
compression = "none";
|
||||
load = <0x8 0x8000000>;
|
||||
entry = <0x8 0x8000000>;
|
||||
hash {
|
||||
algo = "md5";
|
||||
};
|
||||
};
|
||||
atf {
|
||||
description = "ARM Trusted Firmware";
|
||||
data = /incbin/("bl31.bin");
|
||||
type = "firmware";
|
||||
os = "arm-trusted-firmware";
|
||||
arch = "arm64";
|
||||
compression = "none";
|
||||
load = <0xfffea000>;
|
||||
entry = <0xfffea000>;
|
||||
hash {
|
||||
algo = "md5";
|
||||
};
|
||||
};
|
||||
fdt_1 {
|
||||
description = "zynqmp-zcu102-revA";
|
||||
data = /incbin/("arch/arm/dts/zynqmp-zcu102-revA.dtb");
|
||||
type = "flat_dt";
|
||||
arch = "arm64";
|
||||
compression = "none";
|
||||
load = <0x100000>;
|
||||
hash {
|
||||
algo = "md5";
|
||||
};
|
||||
};
|
||||
};
|
||||
configurations {
|
||||
default = "config_1";
|
||||
|
||||
config_1 {
|
||||
description = "zynqmp-zcu102-revA";
|
||||
firmware = "atf";
|
||||
loadables = "uboot";
|
||||
fdt = "fdt_1";
|
||||
};
|
||||
};
|
||||
};
|
||||
|
||||
In this case the SPL records via fit-images DT node the information about
|
||||
loadables U-Boot image.
|
||||
|
||||
ZynqMP> fdt addr $fdtcontroladdr
|
||||
ZynqMP> fdt print /fit-images
|
||||
fit-images {
|
||||
uboot {
|
||||
os = "u-boot";
|
||||
type = "firmware";
|
||||
size = <0x001017c8>;
|
||||
entry = <0x00000008 0x08000000>;
|
||||
load = <0x00000008 0x08000000>;
|
||||
};
|
||||
};
|
||||
|
||||
As you can see entry and load properties are 64bit wide to support loading
|
||||
images above 4GB (in past entry and load properties where just 32bit).
|
||||
|
||||
|
||||
Example 1 -- old-style (non-FDT) kernel booting
|
||||
-----------------------------------------------
|
||||
|
||||
Consider a simple scenario, where a PPC Linux kernel built from sources on the
|
||||
development host is to be booted old-style (non-FDT) by U-Boot on an embedded
|
||||
target. Assume that the outcome of the build is vmlinux.bin.gz, a file which
|
||||
contains a gzip-compressed PPC Linux kernel (the only data file in this case).
|
||||
The uImage can be produced using the image source file
|
||||
doc/uImage.FIT/kernel.its (note that kernel.its assumes that vmlinux.bin.gz is
|
||||
in the current working directory; if desired, an alternative path can be
|
||||
specified in the kernel.its file). Here's how to create the image and inspect
|
||||
its contents:
|
||||
|
||||
[on the host system]
|
||||
$ mkimage -f kernel.its kernel.itb
|
||||
DTC: dts->dtb on file "kernel.its"
|
||||
$
|
||||
$ mkimage -l kernel.itb
|
||||
FIT description: Simple image with single Linux kernel
|
||||
Created: Tue Mar 11 17:26:15 2008
|
||||
Image 0 (kernel)
|
||||
Description: Vanilla Linux kernel
|
||||
Type: Kernel Image
|
||||
Compression: gzip compressed
|
||||
Data Size: 943347 Bytes = 921.24 kB = 0.90 MB
|
||||
Architecture: PowerPC
|
||||
OS: Linux
|
||||
Load Address: 0x00000000
|
||||
Entry Point: 0x00000000
|
||||
Hash algo: crc32
|
||||
Hash value: 2ae2bb40
|
||||
Hash algo: sha1
|
||||
Hash value: 3c200f34e2c226ddc789240cca0c59fc54a67cf4
|
||||
Default Configuration: 'config-1'
|
||||
Configuration 0 (config-1)
|
||||
Description: Boot Linux kernel
|
||||
Kernel: kernel
|
||||
|
||||
|
||||
The resulting image file kernel.itb can be now transferred to the target,
|
||||
inspected and booted (note that first three U-Boot commands below are shown
|
||||
for completeness -- they are part of the standard booting procedure and not
|
||||
specific to the new image format).
|
||||
|
||||
[on the target system]
|
||||
=> print nfsargs
|
||||
nfsargs=setenv bootargs root=/dev/nfs rw nfsroot=${serverip}:${rootpath}
|
||||
=> print addip
|
||||
addip=setenv bootargs ${bootargs} ip=${ipaddr}:${serverip}:${gatewayip}:${netmask}:${hostname}:${netdev}:off panic=1
|
||||
=> run nfsargs addip
|
||||
=> tftp 900000 /path/to/tftp/location/kernel.itb
|
||||
Using FEC device
|
||||
TFTP from server 192.168.1.1; our IP address is 192.168.160.5
|
||||
Filename '/path/to/tftp/location/kernel.itb'.
|
||||
Load address: 0x900000
|
||||
Loading: #################################################################
|
||||
done
|
||||
Bytes transferred = 944464 (e6950 hex)
|
||||
=> iminfo
|
||||
|
||||
## Checking Image at 00900000 ...
|
||||
FIT image found
|
||||
FIT description: Simple image with single Linux kernel
|
||||
Created: 2008-03-11 16:26:15 UTC
|
||||
Image 0 (kernel)
|
||||
Description: Vanilla Linux kernel
|
||||
Type: Kernel Image
|
||||
Compression: gzip compressed
|
||||
Data Start: 0x009000e0
|
||||
Data Size: 943347 Bytes = 921.2 kB
|
||||
Architecture: PowerPC
|
||||
OS: Linux
|
||||
Load Address: 0x00000000
|
||||
Entry Point: 0x00000000
|
||||
Hash algo: crc32
|
||||
Hash value: 2ae2bb40
|
||||
Hash algo: sha1
|
||||
Hash value: 3c200f34e2c226ddc789240cca0c59fc54a67cf4
|
||||
Default Configuration: 'config-1'
|
||||
Configuration 0 (config-1)
|
||||
Description: Boot Linux kernel
|
||||
Kernel: kernel
|
||||
|
||||
=> bootm
|
||||
## Booting kernel from FIT Image at 00900000 ...
|
||||
Using 'config-1' configuration
|
||||
Trying 'kernel' kernel subimage
|
||||
Description: Vanilla Linux kernel
|
||||
Type: Kernel Image
|
||||
Compression: gzip compressed
|
||||
Data Start: 0x009000e0
|
||||
Data Size: 943347 Bytes = 921.2 kB
|
||||
Architecture: PowerPC
|
||||
OS: Linux
|
||||
Load Address: 0x00000000
|
||||
Entry Point: 0x00000000
|
||||
Hash algo: crc32
|
||||
Hash value: 2ae2bb40
|
||||
Hash algo: sha1
|
||||
Hash value: 3c200f34e2c226ddc789240cca0c59fc54a67cf4
|
||||
Verifying Hash Integrity ... crc32+ sha1+ OK
|
||||
Uncompressing Kernel Image ... OK
|
||||
Memory BAT mapping: BAT2=256Mb, BAT3=0Mb, residual: 0Mb
|
||||
Linux version 2.4.25 (m8@hekate) (gcc version 4.0.0 (DENX ELDK 4.0 4.0.0)) #2 czw lip 5 17:56:18 CEST 2007
|
||||
On node 0 totalpages: 65536
|
||||
zone(0): 65536 pages.
|
||||
zone(1): 0 pages.
|
||||
zone(2): 0 pages.
|
||||
Kernel command line: root=/dev/nfs rw nfsroot=192.168.1.1:/opt/eldk-4.1/ppc_6xx ip=192.168.160.5:192.168.1.1::255.255.0.0:lite5200b:eth0:off panic=1
|
||||
Calibrating delay loop... 307.20 BogoMIPS
|
||||
|
||||
|
||||
Example 2 -- new-style (FDT) kernel booting
|
||||
-------------------------------------------
|
||||
|
||||
Consider another simple scenario, where a PPC Linux kernel is to be booted
|
||||
new-style, i.e., with a FDT blob. In this case there are two prerequisite data
|
||||
files: vmlinux.bin.gz (Linux kernel) and target.dtb (FDT blob). The uImage can
|
||||
be produced using image source file doc/uImage.FIT/kernel_fdt.its like this
|
||||
(note again, that both prerequisite data files are assumed to be present in
|
||||
the current working directory -- image source file kernel_fdt.its can be
|
||||
modified to take the files from some other location if needed):
|
||||
|
||||
[on the host system]
|
||||
$ mkimage -f kernel_fdt.its kernel_fdt.itb
|
||||
DTC: dts->dtb on file "kernel_fdt.its"
|
||||
$
|
||||
$ mkimage -l kernel_fdt.itb
|
||||
FIT description: Simple image with single Linux kernel and FDT blob
|
||||
Created: Tue Mar 11 16:29:22 2008
|
||||
Image 0 (kernel)
|
||||
Description: Vanilla Linux kernel
|
||||
Type: Kernel Image
|
||||
Compression: gzip compressed
|
||||
Data Size: 1092037 Bytes = 1066.44 kB = 1.04 MB
|
||||
Architecture: PowerPC
|
||||
OS: Linux
|
||||
Load Address: 0x00000000
|
||||
Entry Point: 0x00000000
|
||||
Hash algo: crc32
|
||||
Hash value: 2c0cc807
|
||||
Hash algo: sha1
|
||||
Hash value: 264b59935470e42c418744f83935d44cdf59a3bb
|
||||
Image 1 (fdt-1)
|
||||
Description: Flattened Device Tree blob
|
||||
Type: Flat Device Tree
|
||||
Compression: uncompressed
|
||||
Data Size: 16384 Bytes = 16.00 kB = 0.02 MB
|
||||
Architecture: PowerPC
|
||||
Hash algo: crc32
|
||||
Hash value: 0d655d71
|
||||
Hash algo: sha1
|
||||
Hash value: 25ab4e15cd4b8a5144610394560d9c318ce52def
|
||||
Default Configuration: 'conf-1'
|
||||
Configuration 0 (conf-1)
|
||||
Description: Boot Linux kernel with FDT blob
|
||||
Kernel: kernel
|
||||
FDT: fdt-1
|
||||
|
||||
|
||||
The resulting image file kernel_fdt.itb can be now transferred to the target,
|
||||
inspected and booted:
|
||||
|
||||
[on the target system]
|
||||
=> tftp 900000 /path/to/tftp/location/kernel_fdt.itb
|
||||
Using FEC device
|
||||
TFTP from server 192.168.1.1; our IP address is 192.168.160.5
|
||||
Filename '/path/to/tftp/location/kernel_fdt.itb'.
|
||||
Load address: 0x900000
|
||||
Loading: #################################################################
|
||||
###########
|
||||
done
|
||||
Bytes transferred = 1109776 (10ef10 hex)
|
||||
=> iminfo
|
||||
|
||||
## Checking Image at 00900000 ...
|
||||
FIT image found
|
||||
FIT description: Simple image with single Linux kernel and FDT blob
|
||||
Created: 2008-03-11 15:29:22 UTC
|
||||
Image 0 (kernel)
|
||||
Description: Vanilla Linux kernel
|
||||
Type: Kernel Image
|
||||
Compression: gzip compressed
|
||||
Data Start: 0x009000ec
|
||||
Data Size: 1092037 Bytes = 1 MB
|
||||
Architecture: PowerPC
|
||||
OS: Linux
|
||||
Load Address: 0x00000000
|
||||
Entry Point: 0x00000000
|
||||
Hash algo: crc32
|
||||
Hash value: 2c0cc807
|
||||
Hash algo: sha1
|
||||
Hash value: 264b59935470e42c418744f83935d44cdf59a3bb
|
||||
Image 1 (fdt-1)
|
||||
Description: Flattened Device Tree blob
|
||||
Type: Flat Device Tree
|
||||
Compression: uncompressed
|
||||
Data Start: 0x00a0abdc
|
||||
Data Size: 16384 Bytes = 16 kB
|
||||
Architecture: PowerPC
|
||||
Hash algo: crc32
|
||||
Hash value: 0d655d71
|
||||
Hash algo: sha1
|
||||
Hash value: 25ab4e15cd4b8a5144610394560d9c318ce52def
|
||||
Default Configuration: 'conf-1'
|
||||
Configuration 0 (conf-1)
|
||||
Description: Boot Linux kernel with FDT blob
|
||||
Kernel: kernel
|
||||
FDT: fdt-1
|
||||
=> bootm
|
||||
## Booting kernel from FIT Image at 00900000 ...
|
||||
Using 'conf-1' configuration
|
||||
Trying 'kernel' kernel subimage
|
||||
Description: Vanilla Linux kernel
|
||||
Type: Kernel Image
|
||||
Compression: gzip compressed
|
||||
Data Start: 0x009000ec
|
||||
Data Size: 1092037 Bytes = 1 MB
|
||||
Architecture: PowerPC
|
||||
OS: Linux
|
||||
Load Address: 0x00000000
|
||||
Entry Point: 0x00000000
|
||||
Hash algo: crc32
|
||||
Hash value: 2c0cc807
|
||||
Hash algo: sha1
|
||||
Hash value: 264b59935470e42c418744f83935d44cdf59a3bb
|
||||
Verifying Hash Integrity ... crc32+ sha1+ OK
|
||||
Uncompressing Kernel Image ... OK
|
||||
## Flattened Device Tree from FIT Image at 00900000
|
||||
Using 'conf-1' configuration
|
||||
Trying 'fdt-1' FDT blob subimage
|
||||
Description: Flattened Device Tree blob
|
||||
Type: Flat Device Tree
|
||||
Compression: uncompressed
|
||||
Data Start: 0x00a0abdc
|
||||
Data Size: 16384 Bytes = 16 kB
|
||||
Architecture: PowerPC
|
||||
Hash algo: crc32
|
||||
Hash value: 0d655d71
|
||||
Hash algo: sha1
|
||||
Hash value: 25ab4e15cd4b8a5144610394560d9c318ce52def
|
||||
Verifying Hash Integrity ... crc32+ sha1+ OK
|
||||
Booting using the fdt blob at 0xa0abdc
|
||||
Loading Device Tree to 007fc000, end 007fffff ... OK
|
||||
[ 0.000000] Using lite5200 machine description
|
||||
[ 0.000000] Linux version 2.6.24-rc6-gaebecdfc (m8@hekate) (gcc version 4.0.0 (DENX ELDK 4.1 4.0.0)) #1 Sat Jan 12 15:38:48 CET 2008
|
||||
|
||||
|
||||
Example 3 -- advanced booting
|
||||
-----------------------------
|
||||
|
||||
Refer to doc/uImage.FIT/multi.its for an image source file that allows more
|
||||
sophisticated booting scenarios (multiple kernels, ramdisks and fdt blobs).
|
|
@ -1,91 +0,0 @@
|
|||
/*
|
||||
* Simple U-Boot uImage source file containing a single kernel
|
||||
*/
|
||||
|
||||
/dts-v1/;
|
||||
|
||||
/ {
|
||||
description = "Simple image with single Linux kernel";
|
||||
#address-cells = <1>;
|
||||
|
||||
images {
|
||||
kernel {
|
||||
description = "Vanilla Linux kernel";
|
||||
data = /incbin/("./vmlinux.bin.gz");
|
||||
type = "kernel";
|
||||
arch = "ppc";
|
||||
os = "linux";
|
||||
compression = "gzip";
|
||||
load = <00000000>;
|
||||
entry = <00000000>;
|
||||
hash-1 {
|
||||
algo = "crc32";
|
||||
};
|
||||
hash-2 {
|
||||
algo = "sha1";
|
||||
};
|
||||
};
|
||||
};
|
||||
|
||||
configurations {
|
||||
default = "config-1";
|
||||
config-1 {
|
||||
description = "Boot Linux kernel";
|
||||
kernel = "kernel";
|
||||
};
|
||||
};
|
||||
};
|
||||
|
||||
|
||||
|
||||
For x86 a setup node is also required: see x86-fit-boot.txt.
|
||||
|
||||
/dts-v1/;
|
||||
|
||||
/ {
|
||||
description = "Simple image with single Linux kernel on x86";
|
||||
#address-cells = <1>;
|
||||
|
||||
images {
|
||||
kernel {
|
||||
description = "Vanilla Linux kernel";
|
||||
data = /incbin/("./image.bin.lzo");
|
||||
type = "kernel";
|
||||
arch = "x86";
|
||||
os = "linux";
|
||||
compression = "lzo";
|
||||
load = <0x01000000>;
|
||||
entry = <0x00000000>;
|
||||
hash-2 {
|
||||
algo = "sha1";
|
||||
};
|
||||
};
|
||||
|
||||
setup {
|
||||
description = "Linux setup.bin";
|
||||
data = /incbin/("./setup.bin");
|
||||
type = "x86_setup";
|
||||
arch = "x86";
|
||||
os = "linux";
|
||||
compression = "none";
|
||||
load = <0x00090000>;
|
||||
entry = <0x00090000>;
|
||||
hash-2 {
|
||||
algo = "sha1";
|
||||
};
|
||||
};
|
||||
};
|
||||
|
||||
configurations {
|
||||
default = "config-1";
|
||||
config-1 {
|
||||
description = "Boot Linux kernel";
|
||||
kernel = "kernel";
|
||||
setup = "setup";
|
||||
};
|
||||
};
|
||||
};
|
||||
|
||||
Note: the above assumes a 32-bit kernel. To directly boot a 64-bit kernel,
|
||||
change both arch values to "x86_64". U-Boot will then change to 64-bit mode
|
||||
before booting the kernel (see boot_linux_kernel()).
|
|
@ -1,51 +0,0 @@
|
|||
/*
|
||||
* Simple U-Boot uImage source file containing a single kernel and FDT blob
|
||||
*/
|
||||
|
||||
/dts-v1/;
|
||||
|
||||
/ {
|
||||
description = "Simple image with single Linux kernel and FDT blob";
|
||||
#address-cells = <1>;
|
||||
|
||||
images {
|
||||
kernel {
|
||||
description = "Vanilla Linux kernel";
|
||||
data = /incbin/("./vmlinux.bin.gz");
|
||||
type = "kernel";
|
||||
arch = "ppc";
|
||||
os = "linux";
|
||||
compression = "gzip";
|
||||
load = <00000000>;
|
||||
entry = <00000000>;
|
||||
hash-1 {
|
||||
algo = "crc32";
|
||||
};
|
||||
hash-2 {
|
||||
algo = "sha1";
|
||||
};
|
||||
};
|
||||
fdt-1 {
|
||||
description = "Flattened Device Tree blob";
|
||||
data = /incbin/("./target.dtb");
|
||||
type = "flat_dt";
|
||||
arch = "ppc";
|
||||
compression = "none";
|
||||
hash-1 {
|
||||
algo = "crc32";
|
||||
};
|
||||
hash-2 {
|
||||
algo = "sha1";
|
||||
};
|
||||
};
|
||||
};
|
||||
|
||||
configurations {
|
||||
default = "conf-1";
|
||||
conf-1 {
|
||||
description = "Boot Linux kernel with FDT blob";
|
||||
kernel = "kernel";
|
||||
fdt = "fdt-1";
|
||||
};
|
||||
};
|
||||
};
|
|
@ -1,73 +0,0 @@
|
|||
/*
|
||||
* U-Boot uImage source file with a kernel and multiple compressed FDT blobs.
|
||||
* Since the FDTs are compressed, configurations must provide a compatible
|
||||
* string to match directly.
|
||||
*/
|
||||
|
||||
/dts-v1/;
|
||||
|
||||
/ {
|
||||
description = "Image with single Linux kernel and compressed FDT blobs";
|
||||
#address-cells = <1>;
|
||||
|
||||
images {
|
||||
kernel {
|
||||
description = "Vanilla Linux kernel";
|
||||
data = /incbin/("./vmlinux.bin.gz");
|
||||
type = "kernel";
|
||||
arch = "ppc";
|
||||
os = "linux";
|
||||
compression = "gzip";
|
||||
load = <00000000>;
|
||||
entry = <00000000>;
|
||||
hash-1 {
|
||||
algo = "crc32";
|
||||
};
|
||||
hash-2 {
|
||||
algo = "sha1";
|
||||
};
|
||||
};
|
||||
fdt@1 {
|
||||
description = "Flattened Device Tree blob 1";
|
||||
data = /incbin/("./myboard-var1.dtb");
|
||||
type = "flat_dt";
|
||||
arch = "ppc";
|
||||
compression = "gzip";
|
||||
hash-1 {
|
||||
algo = "crc32";
|
||||
};
|
||||
hash-2 {
|
||||
algo = "sha1";
|
||||
};
|
||||
};
|
||||
fdt@2 {
|
||||
description = "Flattened Device Tree blob 2";
|
||||
data = /incbin/("./myboard-var2.dtb");
|
||||
type = "flat_dt";
|
||||
arch = "ppc";
|
||||
compression = "lzma";
|
||||
hash-1 {
|
||||
algo = "crc32";
|
||||
};
|
||||
hash-2 {
|
||||
algo = "sha1";
|
||||
};
|
||||
};
|
||||
};
|
||||
|
||||
configurations {
|
||||
default = "conf@1";
|
||||
conf@1 {
|
||||
description = "Boot Linux kernel with FDT blob 1";
|
||||
kernel = "kernel";
|
||||
fdt = "fdt@1";
|
||||
compatible = "myvendor,myboard-variant1";
|
||||
};
|
||||
conf@2 {
|
||||
description = "Boot Linux kernel with FDT blob 2";
|
||||
kernel = "kernel";
|
||||
fdt = "fdt@2";
|
||||
compatible = "myvendor,myboard-variant2";
|
||||
};
|
||||
};
|
||||
};
|
|
@ -1,68 +0,0 @@
|
|||
/*
|
||||
* U-Boot uImage source file with multiple kernels, ramdisks and FDT blobs
|
||||
* This example makes use of the 'loadables' field
|
||||
*/
|
||||
|
||||
/dts-v1/;
|
||||
|
||||
/ {
|
||||
description = "Configuration to load fpga before Kernel";
|
||||
#address-cells = <1>;
|
||||
|
||||
images {
|
||||
fdt-1 {
|
||||
description = "zc706";
|
||||
data = /incbin/("/tftpboot/devicetree.dtb");
|
||||
type = "flat_dt";
|
||||
arch = "arm";
|
||||
compression = "none";
|
||||
load = <0x10000000>;
|
||||
hash-1 {
|
||||
algo = "md5";
|
||||
};
|
||||
};
|
||||
|
||||
fpga {
|
||||
description = "FPGA";
|
||||
data = /incbin/("/tftpboot/download.bit");
|
||||
type = "fpga";
|
||||
arch = "arm";
|
||||
compression = "none";
|
||||
load = <0x30000000>;
|
||||
compatible = "u-boot,fpga-legacy"
|
||||
hash-1 {
|
||||
algo = "md5";
|
||||
};
|
||||
};
|
||||
|
||||
linux_kernel {
|
||||
description = "Linux";
|
||||
data = /incbin/("/tftpboot/zImage");
|
||||
type = "kernel";
|
||||
arch = "arm";
|
||||
os = "linux";
|
||||
compression = "none";
|
||||
load = <0x8000>;
|
||||
entry = <0x8000>;
|
||||
hash-1 {
|
||||
algo = "md5";
|
||||
};
|
||||
};
|
||||
};
|
||||
|
||||
configurations {
|
||||
default = "config-2";
|
||||
config-1 {
|
||||
description = "Linux";
|
||||
kernel = "linux_kernel";
|
||||
fdt = "fdt-1";
|
||||
};
|
||||
|
||||
config-2 {
|
||||
description = "Linux with fpga";
|
||||
kernel = "linux_kernel";
|
||||
fdt = "fdt-1";
|
||||
loadables = "fpga";
|
||||
};
|
||||
};
|
||||
};
|
|
@ -1,89 +0,0 @@
|
|||
/*
|
||||
* U-Boot uImage source file with multiple kernels, ramdisks and FDT blobs
|
||||
* This example makes use of the 'loadables' field
|
||||
*/
|
||||
|
||||
/dts-v1/;
|
||||
|
||||
/ {
|
||||
description = "Configuration to load a Xen Kernel";
|
||||
#address-cells = <1>;
|
||||
|
||||
images {
|
||||
xen_kernel {
|
||||
description = "xen binary";
|
||||
data = /incbin/("./xen");
|
||||
type = "kernel";
|
||||
arch = "arm";
|
||||
os = "linux";
|
||||
compression = "none";
|
||||
load = <0xa0000000>;
|
||||
entry = <0xa0000000>;
|
||||
hash-1 {
|
||||
algo = "md5";
|
||||
};
|
||||
};
|
||||
|
||||
fdt-1 {
|
||||
description = "xexpress-ca15 tree blob";
|
||||
data = /incbin/("./vexpress-v2p-ca15-tc1.dtb");
|
||||
type = "flat_dt";
|
||||
arch = "arm";
|
||||
compression = "none";
|
||||
load = <0xb0000000>;
|
||||
hash-1 {
|
||||
algo = "md5";
|
||||
};
|
||||
};
|
||||
|
||||
fdt-2 {
|
||||
description = "xexpress-ca15 tree blob";
|
||||
data = /incbin/("./vexpress-v2p-ca15-tc1.dtb");
|
||||
type = "flat_dt";
|
||||
arch = "arm";
|
||||
compression = "none";
|
||||
load = <0xb0400000>;
|
||||
hash-1 {
|
||||
algo = "md5";
|
||||
};
|
||||
};
|
||||
|
||||
linux_kernel {
|
||||
description = "Linux Image";
|
||||
data = /incbin/("./Image");
|
||||
type = "kernel";
|
||||
arch = "arm";
|
||||
os = "linux";
|
||||
compression = "none";
|
||||
load = <0xa0000000>;
|
||||
entry = <0xa0000000>;
|
||||
hash-1 {
|
||||
algo = "md5";
|
||||
};
|
||||
};
|
||||
};
|
||||
|
||||
configurations {
|
||||
default = "config-2";
|
||||
|
||||
config-1 {
|
||||
description = "Just plain Linux";
|
||||
kernel = "linux_kernel";
|
||||
fdt = "fdt-1";
|
||||
};
|
||||
|
||||
config-2 {
|
||||
description = "Xen one loadable";
|
||||
kernel = "xen_kernel";
|
||||
fdt = "fdt-1";
|
||||
loadables = "linux_kernel";
|
||||
};
|
||||
|
||||
config-3 {
|
||||
description = "Xen two loadables";
|
||||
kernel = "xen_kernel";
|
||||
fdt = "fdt-1";
|
||||
loadables = "linux_kernel", "fdt-2";
|
||||
};
|
||||
};
|
||||
};
|
|
@ -1,133 +0,0 @@
|
|||
/*
|
||||
* U-Boot uImage source file with multiple kernels, ramdisks and FDT blobs
|
||||
*/
|
||||
|
||||
/dts-v1/;
|
||||
|
||||
/ {
|
||||
description = "Various kernels, ramdisks and FDT blobs";
|
||||
#address-cells = <1>;
|
||||
|
||||
images {
|
||||
kernel-1 {
|
||||
description = "vanilla-2.6.23";
|
||||
data = /incbin/("./vmlinux.bin.gz");
|
||||
type = "kernel";
|
||||
arch = "ppc";
|
||||
os = "linux";
|
||||
compression = "gzip";
|
||||
load = <00000000>;
|
||||
entry = <00000000>;
|
||||
hash-1 {
|
||||
algo = "md5";
|
||||
};
|
||||
hash-2 {
|
||||
algo = "sha1";
|
||||
};
|
||||
};
|
||||
|
||||
kernel-2 {
|
||||
description = "2.6.23-denx";
|
||||
data = /incbin/("./2.6.23-denx.bin.gz");
|
||||
type = "kernel";
|
||||
arch = "ppc";
|
||||
os = "linux";
|
||||
compression = "gzip";
|
||||
load = <00000000>;
|
||||
entry = <00000000>;
|
||||
hash-1 {
|
||||
algo = "sha1";
|
||||
};
|
||||
};
|
||||
|
||||
kernel-3 {
|
||||
description = "2.4.25-denx";
|
||||
data = /incbin/("./2.4.25-denx.bin.gz");
|
||||
type = "kernel";
|
||||
arch = "ppc";
|
||||
os = "linux";
|
||||
compression = "gzip";
|
||||
load = <00000000>;
|
||||
entry = <00000000>;
|
||||
hash-1 {
|
||||
algo = "md5";
|
||||
};
|
||||
};
|
||||
|
||||
ramdisk-1 {
|
||||
description = "eldk-4.2-ramdisk";
|
||||
data = /incbin/("./eldk-4.2-ramdisk");
|
||||
type = "ramdisk";
|
||||
arch = "ppc";
|
||||
os = "linux";
|
||||
compression = "gzip";
|
||||
load = <00000000>;
|
||||
entry = <00000000>;
|
||||
hash-1 {
|
||||
algo = "sha1";
|
||||
};
|
||||
};
|
||||
|
||||
ramdisk-2 {
|
||||
description = "eldk-3.1-ramdisk";
|
||||
data = /incbin/("./eldk-3.1-ramdisk");
|
||||
type = "ramdisk";
|
||||
arch = "ppc";
|
||||
os = "linux";
|
||||
compression = "gzip";
|
||||
load = <00000000>;
|
||||
entry = <00000000>;
|
||||
hash-1 {
|
||||
algo = "crc32";
|
||||
};
|
||||
};
|
||||
|
||||
fdt-1 {
|
||||
description = "tqm5200-fdt";
|
||||
data = /incbin/("./tqm5200.dtb");
|
||||
type = "flat_dt";
|
||||
arch = "ppc";
|
||||
compression = "none";
|
||||
hash-1 {
|
||||
algo = "crc32";
|
||||
};
|
||||
};
|
||||
|
||||
fdt-2 {
|
||||
description = "tqm5200s-fdt";
|
||||
data = /incbin/("./tqm5200s.dtb");
|
||||
type = "flat_dt";
|
||||
arch = "ppc";
|
||||
compression = "none";
|
||||
load = <00700000>;
|
||||
hash-1 {
|
||||
algo = "sha1";
|
||||
};
|
||||
};
|
||||
|
||||
};
|
||||
|
||||
configurations {
|
||||
default = "config-1";
|
||||
|
||||
config-1 {
|
||||
description = "tqm5200 vanilla-2.6.23 configuration";
|
||||
kernel = "kernel-1";
|
||||
ramdisk = "ramdisk-1";
|
||||
fdt = "fdt-1";
|
||||
};
|
||||
|
||||
config-2 {
|
||||
description = "tqm5200s denx-2.6.23 configuration";
|
||||
kernel = "kernel-2";
|
||||
ramdisk = "ramdisk-1";
|
||||
fdt = "fdt-2";
|
||||
};
|
||||
|
||||
config-3 {
|
||||
description = "tqm5200s denx-2.4.25 configuration";
|
||||
kernel = "kernel-3";
|
||||
ramdisk = "ramdisk-2";
|
||||
};
|
||||
};
|
||||
};
|
|
@ -1,96 +0,0 @@
|
|||
/dts-v1/;
|
||||
|
||||
/*
|
||||
* (Bogus) example FIT image description file demonstrating the usage
|
||||
* of multiple images loaded by the SPL.
|
||||
* Several binaries will be loaded at their respective load addresses.
|
||||
*
|
||||
* For booting U-Boot, "firmware" is searched first. If not found, "loadables"
|
||||
* is used to identify images to be loaded into memory. If falcon boot is
|
||||
* enabled, "kernel" is searched first. If not found, it falls back to the
|
||||
* same flow as booting U-Boot. Changing image type will result skipping
|
||||
* specific image.
|
||||
*
|
||||
* Finally the one image specifying an entry point will be entered by the SPL.
|
||||
*/
|
||||
|
||||
/ {
|
||||
description = "multiple firmware blobs and U-Boot, loaded by SPL";
|
||||
#address-cells = <0x1>;
|
||||
|
||||
images {
|
||||
|
||||
uboot {
|
||||
description = "U-Boot (64-bit)";
|
||||
type = "standalone";
|
||||
arch = "arm64";
|
||||
compression = "none";
|
||||
load = <0x4a000000>;
|
||||
};
|
||||
|
||||
atf {
|
||||
description = "ARM Trusted Firmware";
|
||||
type = "firmware";
|
||||
arch = "arm64";
|
||||
compression = "none";
|
||||
load = <0x18000>;
|
||||
entry = <0x18000>;
|
||||
};
|
||||
|
||||
mgmt-firmware {
|
||||
description = "arisc management processor firmware";
|
||||
type = "firmware";
|
||||
arch = "or1k";
|
||||
compression = "none";
|
||||
load = <0x40000>;
|
||||
};
|
||||
|
||||
fdt-1 {
|
||||
description = "Pine64+ DT";
|
||||
type = "flat_dt";
|
||||
compression = "none";
|
||||
load = <0x4fa00000>;
|
||||
arch = "arm64";
|
||||
};
|
||||
|
||||
fdt-2 {
|
||||
description = "Pine64 DT";
|
||||
type = "flat_dt";
|
||||
compression = "none";
|
||||
load = <0x4fa00000>;
|
||||
arch = "arm64";
|
||||
};
|
||||
|
||||
kernel {
|
||||
description = "4.7-rc5 kernel";
|
||||
type = "kernel";
|
||||
compression = "none";
|
||||
load = <0x40080000>;
|
||||
arch = "arm64";
|
||||
};
|
||||
|
||||
initrd {
|
||||
description = "Debian installer initrd";
|
||||
type = "ramdisk";
|
||||
compression = "none";
|
||||
load = <0x4fe00000>;
|
||||
arch = "arm64";
|
||||
};
|
||||
};
|
||||
|
||||
configurations {
|
||||
default = "config-1";
|
||||
|
||||
config-1 {
|
||||
description = "sun50i-a64-pine64-plus";
|
||||
loadables = "uboot", "atf", "kernel", "initrd";
|
||||
fdt = "fdt-1";
|
||||
};
|
||||
|
||||
config-2 {
|
||||
description = "sun50i-a64-pine64";
|
||||
loadables = "uboot", "atf", "mgmt-firmware";
|
||||
fdt = "fdt-2";
|
||||
};
|
||||
};
|
||||
};
|
|
@ -1,225 +0,0 @@
|
|||
U-Boot FDT Overlay FIT usage
|
||||
============================
|
||||
|
||||
Introduction
|
||||
------------
|
||||
In many cases it is desirable to have a single FIT image support a multitude
|
||||
of similar boards and their expansion options. The same kernel on DT enabled
|
||||
platforms can support this easily enough by providing a DT blob upon boot
|
||||
that matches the desired configuration.
|
||||
|
||||
This document focuses on specifically using overlays as part of a FIT image.
|
||||
General information regarding overlays including its syntax and building it
|
||||
can be found in doc/README.fdt-overlays
|
||||
|
||||
Configuration without overlays
|
||||
------------------------------
|
||||
|
||||
Take a hypothetical board named 'foo' where there are different supported
|
||||
revisions, reva and revb. Assume that both board revisions can use add a bar
|
||||
add-on board, while only the revb board can use a baz add-on board.
|
||||
|
||||
Without using overlays the configuration would be as follows for every case.
|
||||
|
||||
/dts-v1/;
|
||||
/ {
|
||||
images {
|
||||
kernel {
|
||||
data = /incbin/("./zImage");
|
||||
type = "kernel";
|
||||
arch = "arm";
|
||||
os = "linux";
|
||||
load = <0x82000000>;
|
||||
entry = <0x82000000>;
|
||||
};
|
||||
fdt-1 {
|
||||
data = /incbin/("./foo-reva.dtb");
|
||||
type = "flat_dt";
|
||||
arch = "arm";
|
||||
};
|
||||
fdt-2 {
|
||||
data = /incbin/("./foo-revb.dtb");
|
||||
type = "flat_dt";
|
||||
arch = "arm";
|
||||
};
|
||||
fdt-3 {
|
||||
data = /incbin/("./foo-reva-bar.dtb");
|
||||
type = "flat_dt";
|
||||
arch = "arm";
|
||||
};
|
||||
fdt-4 {
|
||||
data = /incbin/("./foo-revb-bar.dtb");
|
||||
type = "flat_dt";
|
||||
arch = "arm";
|
||||
};
|
||||
fdt-5 {
|
||||
data = /incbin/("./foo-revb-baz.dtb");
|
||||
type = "flat_dt";
|
||||
arch = "arm";
|
||||
};
|
||||
fdt-6 {
|
||||
data = /incbin/("./foo-revb-bar-baz.dtb");
|
||||
type = "flat_dt";
|
||||
arch = "arm";
|
||||
};
|
||||
};
|
||||
|
||||
configurations {
|
||||
default = "foo-reva.dtb;
|
||||
foo-reva.dtb {
|
||||
kernel = "kernel";
|
||||
fdt = "fdt-1";
|
||||
};
|
||||
foo-revb.dtb {
|
||||
kernel = "kernel";
|
||||
fdt = "fdt-2";
|
||||
};
|
||||
foo-reva-bar.dtb {
|
||||
kernel = "kernel";
|
||||
fdt = "fdt-3";
|
||||
};
|
||||
foo-revb-bar.dtb {
|
||||
kernel = "kernel";
|
||||
fdt = "fdt-4";
|
||||
};
|
||||
foo-revb-baz.dtb {
|
||||
kernel = "kernel";
|
||||
fdt = "fdt-5";
|
||||
};
|
||||
foo-revb-bar-baz.dtb {
|
||||
kernel = "kernel";
|
||||
fdt = "fdt-6";
|
||||
};
|
||||
};
|
||||
};
|
||||
|
||||
Note the blob needs to be compiled for each case and the combinatorial explosion of
|
||||
configurations. A typical device tree blob is in the low hunderds of kbytes so a
|
||||
multitude of configuration grows the image quite a bit.
|
||||
|
||||
Booting this image is done by using
|
||||
|
||||
# bootm <addr>#<config>
|
||||
|
||||
Where config is one of:
|
||||
foo-reva.dtb, foo-revb.dtb, foo-reva-bar.dtb, foo-revb-bar.dtb,
|
||||
foo-revb-baz.dtb, foo-revb-bar-baz.dtb
|
||||
|
||||
This selects the DTB to use when booting.
|
||||
|
||||
Configuration using overlays
|
||||
----------------------------
|
||||
|
||||
Device tree overlays can be applied to a base DT and result in the same blob
|
||||
being passed to the booting kernel. This saves on space and avoid the combinatorial
|
||||
explosion problem.
|
||||
|
||||
/dts-v1/;
|
||||
/ {
|
||||
images {
|
||||
kernel {
|
||||
data = /incbin/("./zImage");
|
||||
type = "kernel";
|
||||
arch = "arm";
|
||||
os = "linux";
|
||||
load = <0x82000000>;
|
||||
entry = <0x82000000>;
|
||||
};
|
||||
fdt-1 {
|
||||
data = /incbin/("./foo.dtb");
|
||||
type = "flat_dt";
|
||||
arch = "arm";
|
||||
load = <0x87f00000>;
|
||||
};
|
||||
fdt-2 {
|
||||
data = /incbin/("./reva.dtbo");
|
||||
type = "flat_dt";
|
||||
arch = "arm";
|
||||
load = <0x87fc0000>;
|
||||
};
|
||||
fdt-3 {
|
||||
data = /incbin/("./revb.dtbo");
|
||||
type = "flat_dt";
|
||||
arch = "arm";
|
||||
load = <0x87fc0000>;
|
||||
};
|
||||
fdt-4 {
|
||||
data = /incbin/("./bar.dtbo");
|
||||
type = "flat_dt";
|
||||
arch = "arm";
|
||||
load = <0x87fc0000>;
|
||||
};
|
||||
fdt-5 {
|
||||
data = /incbin/("./baz.dtbo");
|
||||
type = "flat_dt";
|
||||
arch = "arm";
|
||||
load = <0x87fc0000>;
|
||||
};
|
||||
};
|
||||
|
||||
configurations {
|
||||
default = "foo-reva.dtb;
|
||||
foo-reva.dtb {
|
||||
kernel = "kernel";
|
||||
fdt = "fdt-1", "fdt-2";
|
||||
};
|
||||
foo-revb.dtb {
|
||||
kernel = "kernel";
|
||||
fdt = "fdt-1", "fdt-3";
|
||||
};
|
||||
foo-reva-bar.dtb {
|
||||
kernel = "kernel";
|
||||
fdt = "fdt-1", "fdt-2", "fdt-4";
|
||||
};
|
||||
foo-revb-bar.dtb {
|
||||
kernel = "kernel";
|
||||
fdt = "fdt-1", "fdt-3", "fdt-4";
|
||||
};
|
||||
foo-revb-baz.dtb {
|
||||
kernel = "kernel";
|
||||
fdt = "fdt-1", "fdt-3", "fdt-5";
|
||||
};
|
||||
foo-revb-bar-baz.dtb {
|
||||
kernel = "kernel";
|
||||
fdt = "fdt-1", "fdt-3", "fdt-4", "fdt-5";
|
||||
};
|
||||
bar {
|
||||
fdt = "fdt-4";
|
||||
};
|
||||
baz {
|
||||
fdt = "fdt-5";
|
||||
};
|
||||
};
|
||||
};
|
||||
|
||||
Booting this image is exactly the same as the non-overlay example.
|
||||
u-boot will retrieve the base blob and apply the overlays in sequence as
|
||||
they are declared in the configuration.
|
||||
|
||||
Note the minimum amount of different DT blobs, as well as the requirement for
|
||||
the DT blobs to have a load address; the overlay application requires the blobs
|
||||
to be writeable.
|
||||
|
||||
Configuration using overlays and feature selection
|
||||
--------------------------------------------------
|
||||
|
||||
Although the configuration in the previous section works is a bit inflexible
|
||||
since it requires all possible configuration options to be laid out before
|
||||
hand in the FIT image. For the add-on boards the extra config selection method
|
||||
might make sense.
|
||||
|
||||
Note the two bar & baz configuration nodes. To boot a reva board with
|
||||
the bar add-on board enabled simply use:
|
||||
|
||||
# bootm <addr>#foo-reva.dtb#bar
|
||||
|
||||
While booting a revb with bar and baz is as follows:
|
||||
|
||||
# bootm <addr>#foo-revb.dtb#bar#baz
|
||||
|
||||
The limitation for a feature selection configuration node is that a single
|
||||
fdt option is currently supported.
|
||||
|
||||
Pantelis Antoniou
|
||||
pantelis.antoniou@konsulko.com
|
||||
12/6/2017
|
|
@ -1,49 +0,0 @@
|
|||
/dts-v1/;
|
||||
|
||||
/*
|
||||
* Example FIT image description file demonstrating the usage
|
||||
* of SEC Firmware and multiple loadable images loaded by the u-boot.
|
||||
* For booting PPA (SEC Firmware), "firmware" is searched and loaded.
|
||||
*
|
||||
* Multiple binaries will be loaded as "loadables" (if present) at their
|
||||
* respective load offsets from firmware image address.
|
||||
*/
|
||||
|
||||
/{
|
||||
description = "PPA Firmware";
|
||||
#address-cells = <1>;
|
||||
images {
|
||||
firmware@1 {
|
||||
description = "PPA Firmware: <version>";
|
||||
data = /incbin/("../obj/monitor.bin");
|
||||
type = "firmware";
|
||||
arch = "arm64";
|
||||
compression = "none";
|
||||
};
|
||||
trustedOS@1 {
|
||||
description = "Trusted OS";
|
||||
data = /incbin/("../../tee.bin");
|
||||
type = "OS";
|
||||
arch = "arm64";
|
||||
compression = "none";
|
||||
load = <0x00200000>;
|
||||
};
|
||||
fuse_scr {
|
||||
description = "Fuse Script";
|
||||
data = /incbin/("../../fuse_scr.bin");
|
||||
type = "firmware";
|
||||
arch = "arm64";
|
||||
compression = "none";
|
||||
load = <0x00180000>;
|
||||
};
|
||||
};
|
||||
|
||||
configurations {
|
||||
default = "config-1";
|
||||
config-1 {
|
||||
description = "PPA Secure firmware";
|
||||
firmware = "firmware@1";
|
||||
loadables = "trustedOS@1", "fuse_scr";
|
||||
};
|
||||
};
|
||||
};
|
|
@ -1,45 +0,0 @@
|
|||
/dts-v1/;
|
||||
|
||||
/ {
|
||||
description = "Chrome OS kernel image with one or more FDT blobs";
|
||||
#address-cells = <1>;
|
||||
|
||||
images {
|
||||
kernel {
|
||||
data = /incbin/("test-kernel.bin");
|
||||
type = "kernel_noload";
|
||||
arch = "sandbox";
|
||||
os = "linux";
|
||||
compression = "lzo";
|
||||
load = <0x4>;
|
||||
entry = <0x8>;
|
||||
kernel-version = <1>;
|
||||
hash-1 {
|
||||
algo = "sha1";
|
||||
};
|
||||
};
|
||||
fdt-1 {
|
||||
description = "snow";
|
||||
data = /incbin/("sandbox-kernel.dtb");
|
||||
type = "flat_dt";
|
||||
arch = "sandbox";
|
||||
compression = "none";
|
||||
fdt-version = <1>;
|
||||
hash-1 {
|
||||
algo = "sha1";
|
||||
};
|
||||
};
|
||||
};
|
||||
configurations {
|
||||
default = "conf-1";
|
||||
conf-1 {
|
||||
kernel = "kernel";
|
||||
fdt = "fdt-1";
|
||||
signature {
|
||||
algo = "sha1,rsa2048";
|
||||
key-name-hint = "dev";
|
||||
sign-images = "fdt", "kernel";
|
||||
};
|
||||
};
|
||||
};
|
||||
};
|
|
@ -1,42 +0,0 @@
|
|||
/dts-v1/;
|
||||
|
||||
/ {
|
||||
description = "Chrome OS kernel image with one or more FDT blobs";
|
||||
#address-cells = <1>;
|
||||
|
||||
images {
|
||||
kernel {
|
||||
data = /incbin/("test-kernel.bin");
|
||||
type = "kernel_noload";
|
||||
arch = "sandbox";
|
||||
os = "linux";
|
||||
compression = "none";
|
||||
load = <0x4>;
|
||||
entry = <0x8>;
|
||||
kernel-version = <1>;
|
||||
signature {
|
||||
algo = "sha1,rsa2048";
|
||||
key-name-hint = "dev";
|
||||
};
|
||||
};
|
||||
fdt-1 {
|
||||
description = "snow";
|
||||
data = /incbin/("sandbox-kernel.dtb");
|
||||
type = "flat_dt";
|
||||
arch = "sandbox";
|
||||
compression = "none";
|
||||
fdt-version = <1>;
|
||||
signature {
|
||||
algo = "sha1,rsa2048";
|
||||
key-name-hint = "dev";
|
||||
};
|
||||
};
|
||||
};
|
||||
configurations {
|
||||
default = "conf-1";
|
||||
conf-1 {
|
||||
kernel = "kernel";
|
||||
fdt = "fdt-1";
|
||||
};
|
||||
};
|
||||
};
|
|
@ -1,707 +0,0 @@
|
|||
U-Boot FIT Signature Verification
|
||||
=================================
|
||||
|
||||
Introduction
|
||||
------------
|
||||
FIT supports hashing of images so that these hashes can be checked on
|
||||
loading. This protects against corruption of the image. However it does not
|
||||
prevent the substitution of one image for another.
|
||||
|
||||
The signature feature allows the hash to be signed with a private key such
|
||||
that it can be verified using a public key later. Provided that the private
|
||||
key is kept secret and the public key is stored in a non-volatile place,
|
||||
any image can be verified in this way.
|
||||
|
||||
See verified-boot.txt for more general information on verified boot.
|
||||
|
||||
|
||||
Concepts
|
||||
--------
|
||||
Some familiarity with public key cryptography is assumed in this section.
|
||||
|
||||
The procedure for signing is as follows:
|
||||
|
||||
- hash an image in the FIT
|
||||
- sign the hash with a private key to produce a signature
|
||||
- store the resulting signature in the FIT
|
||||
|
||||
The procedure for verification is:
|
||||
|
||||
- read the FIT
|
||||
- obtain the public key
|
||||
- extract the signature from the FIT
|
||||
- hash the image from the FIT
|
||||
- verify (with the public key) that the extracted signature matches the
|
||||
hash
|
||||
|
||||
The signing is generally performed by mkimage, as part of making a firmware
|
||||
image for the device. The verification is normally done in U-Boot on the
|
||||
device.
|
||||
|
||||
|
||||
Algorithms
|
||||
----------
|
||||
In principle any suitable algorithm can be used to sign and verify a hash.
|
||||
U-Boot supports a few hashing and verification algorithms. See below for
|
||||
details.
|
||||
|
||||
While it is acceptable to bring in large cryptographic libraries such as
|
||||
openssl on the host side (e.g. mkimage), it is not desirable for U-Boot.
|
||||
For the run-time verification side, it is important to keep code and data
|
||||
size as small as possible.
|
||||
|
||||
For this reason the RSA image verification uses pre-processed public keys
|
||||
which can be used with a very small amount of code - just some extraction
|
||||
of data from the FDT and exponentiation mod n. Code size impact is a little
|
||||
under 5KB on Tegra Seaboard, for example.
|
||||
|
||||
It is relatively straightforward to add new algorithms if required. If
|
||||
another RSA variant is needed, then it can be added with the
|
||||
U_BOOT_CRYPTO_ALGO() macro. If another algorithm is needed (such as DSA) then
|
||||
it can be placed in a directory alongside lib/rsa/, and its functions added
|
||||
using U_BOOT_CRYPTO_ALGO().
|
||||
|
||||
|
||||
Creating an RSA key pair and certificate
|
||||
----------------------------------------
|
||||
To create a new public/private key pair, size 2048 bits:
|
||||
|
||||
$ openssl genpkey -algorithm RSA -out keys/dev.key \
|
||||
-pkeyopt rsa_keygen_bits:2048 -pkeyopt rsa_keygen_pubexp:65537
|
||||
|
||||
To create a certificate for this containing the public key:
|
||||
|
||||
$ openssl req -batch -new -x509 -key keys/dev.key -out keys/dev.crt
|
||||
|
||||
If you like you can look at the public key also:
|
||||
|
||||
$ openssl rsa -in keys/dev.key -pubout
|
||||
|
||||
|
||||
Device Tree Bindings
|
||||
--------------------
|
||||
The following properties are required in the FIT's signature node(s) to
|
||||
allow the signer to operate. These should be added to the .its file.
|
||||
Signature nodes sit at the same level as hash nodes and are called
|
||||
signature-1, signature-2, etc.
|
||||
|
||||
- algo: Algorithm name (e.g. "sha1,rsa2048")
|
||||
|
||||
- key-name-hint: Name of key to use for signing. The keys will normally be in
|
||||
a single directory (parameter -k to mkimage). For a given key <name>, its
|
||||
private key is stored in <name>.key and the certificate is stored in
|
||||
<name>.crt.
|
||||
|
||||
When the image is signed, the following properties are added (mandatory):
|
||||
|
||||
- value: The signature data (e.g. 256 bytes for 2048-bit RSA)
|
||||
|
||||
When the image is signed, the following properties are optional:
|
||||
|
||||
- timestamp: Time when image was signed (standard Unix time_t format)
|
||||
|
||||
- signer-name: Name of the signer (e.g. "mkimage")
|
||||
|
||||
- signer-version: Version string of the signer (e.g. "2013.01")
|
||||
|
||||
- comment: Additional information about the signer or image
|
||||
|
||||
- padding: The padding algorithm, it may be pkcs-1.5 or pss,
|
||||
if no value is provided we assume pkcs-1.5
|
||||
|
||||
For config bindings (see Signed Configurations below), the following
|
||||
additional properties are optional:
|
||||
|
||||
- sign-images: A list of images to sign, each being a property of the conf
|
||||
node that contains then. The default is "kernel,fdt" which means that these
|
||||
two images will be looked up in the config and signed if present.
|
||||
|
||||
For config bindings, these properties are added by the signer:
|
||||
|
||||
- hashed-nodes: A list of nodes which were hashed by the signer. Each is
|
||||
a string - the full path to node. A typical value might be:
|
||||
|
||||
hashed-nodes = "/", "/configurations/conf-1", "/images/kernel",
|
||||
"/images/kernel/hash-1", "/images/fdt-1",
|
||||
"/images/fdt-1/hash-1";
|
||||
|
||||
- hashed-strings: The start and size of the string region of the FIT that
|
||||
was hashed
|
||||
|
||||
Example: See sign-images.its for an example image tree source file and
|
||||
sign-configs.its for config signing.
|
||||
|
||||
|
||||
Public Key Storage
|
||||
------------------
|
||||
In order to verify an image that has been signed with a public key we need to
|
||||
have a trusted public key. This cannot be stored in the signed image, since
|
||||
it would be easy to alter. For this implementation we choose to store the
|
||||
public key in U-Boot's control FDT (using CONFIG_OF_CONTROL).
|
||||
|
||||
Public keys should be stored as sub-nodes in a /signature node. Required
|
||||
properties are:
|
||||
|
||||
- algo: Algorithm name (e.g. "sha1,rsa2048" or "sha256,ecdsa256")
|
||||
|
||||
Optional properties are:
|
||||
|
||||
- key-name-hint: Name of key used for signing. This is only a hint since it
|
||||
is possible for the name to be changed. Verification can proceed by checking
|
||||
all available signing keys until one matches.
|
||||
|
||||
- required: If present this indicates that the key must be verified for the
|
||||
image / configuration to be considered valid. Only required keys are
|
||||
normally verified by the FIT image booting algorithm. Valid values are
|
||||
"image" to force verification of all images, and "conf" to force verification
|
||||
of the selected configuration (which then relies on hashes in the images to
|
||||
verify those).
|
||||
|
||||
Each signing algorithm has its own additional properties.
|
||||
|
||||
For RSA the following are mandatory:
|
||||
|
||||
- rsa,num-bits: Number of key bits (e.g. 2048)
|
||||
- rsa,modulus: Modulus (N) as a big-endian multi-word integer
|
||||
- rsa,exponent: Public exponent (E) as a 64 bit unsigned integer
|
||||
- rsa,r-squared: (2^num-bits)^2 as a big-endian multi-word integer
|
||||
- rsa,n0-inverse: -1 / modulus[0] mod 2^32
|
||||
|
||||
For ECDSA the following are mandatory:
|
||||
- ecdsa,curve: Name of ECDSA curve (e.g. "prime256v1")
|
||||
- ecdsa,x-point: Public key X coordinate as a big-endian multi-word integer
|
||||
- ecdsa,y-point: Public key Y coordinate as a big-endian multi-word integer
|
||||
|
||||
These parameters can be added to a binary device tree using parameter -K of the
|
||||
mkimage command::
|
||||
|
||||
tools/mkimage -f fit.its -K control.dtb -k keys -r image.fit
|
||||
|
||||
Here is an example of a generated device tree node::
|
||||
|
||||
signature {
|
||||
key-dev {
|
||||
required = "conf";
|
||||
algo = "sha256,rsa2048";
|
||||
rsa,r-squared = <0xb76d1acf 0xa1763ca5 0xeb2f126
|
||||
0x742edc80 0xd3f42177 0x9741d9d9
|
||||
0x35bb476e 0xff41c718 0xd3801430
|
||||
0xf22537cb 0xa7e79960 0xae32a043
|
||||
0x7da1427a 0x341d6492 0x3c2762f5
|
||||
0xaac04726 0x5b262d96 0xf984e86d
|
||||
0xb99443c7 0x17080c33 0x940f6892
|
||||
0xd57a95d1 0x6ea7b691 0xc5038fa8
|
||||
0x6bb48a6e 0x73f1b1ea 0x37160841
|
||||
0xe05715ce 0xa7c45bbd 0x690d82d5
|
||||
0x99c2454c 0x6ff117b3 0xd830683b
|
||||
0x3f81c9cf 0x1ca38a91 0x0c3392e4
|
||||
0xd817c625 0x7b8e9a24 0x175b89ea
|
||||
0xad79f3dc 0x4d50d7b4 0x9d4e90f8
|
||||
0xad9e2939 0xc165d6a4 0x0ada7e1b
|
||||
0xfb1bf495 0xfc3131c2 0xb8c6e604
|
||||
0xc2761124 0xf63de4a6 0x0e9565f9
|
||||
0xc8e53761 0x7e7a37a5 0xe99dcdae
|
||||
0x9aff7e1e 0xbd44b13d 0x6b0e6aa4
|
||||
0x038907e4 0x8e0d6850 0xef51bc20
|
||||
0xf73c94af 0x88bea7b1 0xcbbb1b30
|
||||
0xd024b7f3>;
|
||||
rsa,modulus = <0xc0711d6cb 0x9e86db7f 0x45986dbe
|
||||
0x023f1e8c9 0xe1a4c4d0 0x8a0dfdc9
|
||||
0x023ba0c48 0x06815f6a 0x5caa0654
|
||||
0x07078c4b7 0x3d154853 0x40729023
|
||||
0x0b007c8fe 0x5a3647e5 0x23b41e20
|
||||
0x024720591 0x66915305 0x0e0b29b0
|
||||
0x0de2ad30d 0x8589430f 0xb1590325
|
||||
0x0fb9f5d5e 0x9eba752a 0xd88e6de9
|
||||
0x056b3dcc6 0x9a6b8e61 0x6784f61f
|
||||
0x000f39c21 0x5eec6b33 0xd78e4f78
|
||||
0x0921a305f 0xaa2cc27e 0x1ca917af
|
||||
0x06e1134f4 0xd48cac77 0x4e914d07
|
||||
0x0f707aa5a 0x0d141f41 0x84677f1d
|
||||
0x0ad47a049 0x028aedb6 0xd5536fcf
|
||||
0x03fef1e4f 0x133a03d2 0xfd7a750a
|
||||
0x0f9159732 0xd207812e 0x6a807375
|
||||
0x06434230d 0xc8e22dad 0x9f29b3d6
|
||||
0x07c44ac2b 0xfa2aad88 0xe2429504
|
||||
0x041febd41 0x85d0d142 0x7b194d65
|
||||
0x06e5d55ea 0x41116961 0xf3181dde
|
||||
0x068bf5fbc 0x3dd82047 0x00ee647e
|
||||
0x0d7a44ab3>;
|
||||
rsa,exponent = <0x00 0x10001>;
|
||||
rsa,n0-inverse = <0xb3928b85>;
|
||||
rsa,num-bits = <0x800>;
|
||||
key-name-hint = "dev";
|
||||
};
|
||||
};
|
||||
|
||||
|
||||
Signed Configurations
|
||||
---------------------
|
||||
While signing images is useful, it does not provide complete protection
|
||||
against several types of attack. For example, it it possible to create a
|
||||
FIT with the same signed images, but with the configuration changed such
|
||||
that a different one is selected (mix and match attack). It is also possible
|
||||
to substitute a signed image from an older FIT version into a newer FIT
|
||||
(roll-back attack).
|
||||
|
||||
As an example, consider this FIT:
|
||||
|
||||
/ {
|
||||
images {
|
||||
kernel-1 {
|
||||
data = <data for kernel1>
|
||||
signature-1 {
|
||||
algo = "sha1,rsa2048";
|
||||
value = <...kernel signature 1...>
|
||||
};
|
||||
};
|
||||
kernel-2 {
|
||||
data = <data for kernel2>
|
||||
signature-1 {
|
||||
algo = "sha1,rsa2048";
|
||||
value = <...kernel signature 2...>
|
||||
};
|
||||
};
|
||||
fdt-1 {
|
||||
data = <data for fdt1>;
|
||||
signature-1 {
|
||||
algo = "sha1,rsa2048";
|
||||
value = <...fdt signature 1...>
|
||||
};
|
||||
};
|
||||
fdt-2 {
|
||||
data = <data for fdt2>;
|
||||
signature-1 {
|
||||
algo = "sha1,rsa2048";
|
||||
value = <...fdt signature 2...>
|
||||
};
|
||||
};
|
||||
};
|
||||
configurations {
|
||||
default = "conf-1";
|
||||
conf-1 {
|
||||
kernel = "kernel-1";
|
||||
fdt = "fdt-1";
|
||||
};
|
||||
conf-2 {
|
||||
kernel = "kernel-2";
|
||||
fdt = "fdt-2";
|
||||
};
|
||||
};
|
||||
};
|
||||
|
||||
Since both kernels are signed it is easy for an attacker to add a new
|
||||
configuration 3 with kernel 1 and fdt 2:
|
||||
|
||||
configurations {
|
||||
default = "conf-1";
|
||||
conf-1 {
|
||||
kernel = "kernel-1";
|
||||
fdt = "fdt-1";
|
||||
};
|
||||
conf-2 {
|
||||
kernel = "kernel-2";
|
||||
fdt = "fdt-2";
|
||||
};
|
||||
conf-3 {
|
||||
kernel = "kernel-1";
|
||||
fdt = "fdt-2";
|
||||
};
|
||||
};
|
||||
|
||||
With signed images, nothing protects against this. Whether it gains an
|
||||
advantage for the attacker is debatable, but it is not secure.
|
||||
|
||||
To solve this problem, we support signed configurations. In this case it
|
||||
is the configurations that are signed, not the image. Each image has its
|
||||
own hash, and we include the hash in the configuration signature.
|
||||
|
||||
So the above example is adjusted to look like this:
|
||||
|
||||
/ {
|
||||
images {
|
||||
kernel-1 {
|
||||
data = <data for kernel1>
|
||||
hash-1 {
|
||||
algo = "sha1";
|
||||
value = <...kernel hash 1...>
|
||||
};
|
||||
};
|
||||
kernel-2 {
|
||||
data = <data for kernel2>
|
||||
hash-1 {
|
||||
algo = "sha1";
|
||||
value = <...kernel hash 2...>
|
||||
};
|
||||
};
|
||||
fdt-1 {
|
||||
data = <data for fdt1>;
|
||||
hash-1 {
|
||||
algo = "sha1";
|
||||
value = <...fdt hash 1...>
|
||||
};
|
||||
};
|
||||
fdt-2 {
|
||||
data = <data for fdt2>;
|
||||
hash-1 {
|
||||
algo = "sha1";
|
||||
value = <...fdt hash 2...>
|
||||
};
|
||||
};
|
||||
};
|
||||
configurations {
|
||||
default = "conf-1";
|
||||
conf-1 {
|
||||
kernel = "kernel-1";
|
||||
fdt = "fdt-1";
|
||||
signature-1 {
|
||||
algo = "sha1,rsa2048";
|
||||
value = <...conf 1 signature...>;
|
||||
};
|
||||
};
|
||||
conf-2 {
|
||||
kernel = "kernel-2";
|
||||
fdt = "fdt-2";
|
||||
signature-1 {
|
||||
algo = "sha1,rsa2048";
|
||||
value = <...conf 1 signature...>;
|
||||
};
|
||||
};
|
||||
};
|
||||
};
|
||||
|
||||
|
||||
You can see that we have added hashes for all images (since they are no
|
||||
longer signed), and a signature to each configuration. In the above example,
|
||||
mkimage will sign configurations/conf-1, the kernel and fdt that are
|
||||
pointed to by the configuration (/images/kernel-1, /images/kernel-1/hash-1,
|
||||
/images/fdt-1, /images/fdt-1/hash-1) and the root structure of the image
|
||||
(so that it isn't possible to add or remove root nodes). The signature is
|
||||
written into /configurations/conf-1/signature-1/value. It can easily be
|
||||
verified later even if the FIT has been signed with other keys in the
|
||||
meantime.
|
||||
|
||||
|
||||
Details
|
||||
-------
|
||||
The signature node contains a property ('hashed-nodes') which lists all the
|
||||
nodes that the signature was made over. The image is walked in order and each
|
||||
tag processed as follows:
|
||||
- DTB_BEGIN_NODE: The tag and the following name are included in the signature
|
||||
if the node or its parent are present in 'hashed-nodes'
|
||||
- DTB_END_NODE: The tag is included in the signature if the node or its parent
|
||||
are present in 'hashed-nodes'
|
||||
- DTB_PROPERTY: The tag, the length word, the offset in the string table, and
|
||||
the data are all included if the current node is present in 'hashed-nodes'
|
||||
and the property name is not 'data'.
|
||||
- DTB_END: The tag is always included in the signature.
|
||||
- DTB_NOP: The tag is included in the signature if the current node is present
|
||||
in 'hashed-nodes'
|
||||
|
||||
In addition, the signature contains a property 'hashed-strings' which contains
|
||||
the offset and length in the string table of the strings that are to be
|
||||
included in the signature (this is done last).
|
||||
|
||||
IMPORTANT: To verify the signature outside u-boot, it is vital to not only
|
||||
calculate the hash of the image and verify the signature with that, but also to
|
||||
calculate the hashes of the kernel, fdt, and ramdisk images and check those
|
||||
match the hash values in the corresponding 'hash*' subnodes.
|
||||
|
||||
|
||||
Verification
|
||||
------------
|
||||
FITs are verified when loaded. After the configuration is selected a list
|
||||
of required images is produced. If there are 'required' public keys, then
|
||||
each image must be verified against those keys. This means that every image
|
||||
that might be used by the target needs to be signed with 'required' keys.
|
||||
|
||||
This happens automatically as part of a bootm command when FITs are used.
|
||||
|
||||
For Signed Configurations, the default verification behavior can be changed by
|
||||
the following optional property in /signature node in U-Boot's control FDT.
|
||||
|
||||
- required-mode: Valid values are "any" to allow verified boot to succeed if
|
||||
the selected configuration is signed by any of the 'required' keys, and "all"
|
||||
to allow verified boot to succeed if the selected configuration is signed by
|
||||
all of the 'required' keys.
|
||||
|
||||
This property can be added to a binary device tree using fdtput as shown in
|
||||
below examples::
|
||||
|
||||
fdtput -t s control.dtb /signature required-mode any
|
||||
fdtput -t s control.dtb /signature required-mode all
|
||||
|
||||
|
||||
Enabling FIT Verification
|
||||
-------------------------
|
||||
In addition to the options to enable FIT itself, the following CONFIGs must
|
||||
be enabled:
|
||||
|
||||
CONFIG_FIT_SIGNATURE - enable signing and verification in FITs
|
||||
CONFIG_RSA - enable RSA algorithm for signing
|
||||
CONFIG_ECDSA - enable ECDSA algorithm for signing
|
||||
|
||||
WARNING: When relying on signed FIT images with required signature check
|
||||
the legacy image format is default disabled by not defining
|
||||
CONFIG_LEGACY_IMAGE_FORMAT
|
||||
|
||||
|
||||
Testing
|
||||
-------
|
||||
An easy way to test signing and verification is to use the test script
|
||||
provided in test/vboot/vboot_test.sh. This uses sandbox (a special version
|
||||
of U-Boot which runs under Linux) to show the operation of a 'bootm'
|
||||
command loading and verifying images.
|
||||
|
||||
A sample run is show below:
|
||||
|
||||
$ make O=sandbox sandbox_config
|
||||
$ make O=sandbox
|
||||
$ O=sandbox ./test/vboot/vboot_test.sh
|
||||
|
||||
|
||||
Simple Verified Boot Test
|
||||
=========================
|
||||
|
||||
Please see doc/uImage.FIT/verified-boot.txt for more information
|
||||
|
||||
/home/hs/ids/u-boot/sandbox/tools/mkimage -D -I dts -O dtb -p 2000
|
||||
Build keys
|
||||
do sha1 test
|
||||
Build FIT with signed images
|
||||
Test Verified Boot Run: unsigned signatures:: OK
|
||||
Sign images
|
||||
Test Verified Boot Run: signed images: OK
|
||||
Build FIT with signed configuration
|
||||
Test Verified Boot Run: unsigned config: OK
|
||||
Sign images
|
||||
Test Verified Boot Run: signed config: OK
|
||||
check signed config on the host
|
||||
Signature check OK
|
||||
OK
|
||||
Test Verified Boot Run: signed config: OK
|
||||
Test Verified Boot Run: signed config with bad hash: OK
|
||||
do sha256 test
|
||||
Build FIT with signed images
|
||||
Test Verified Boot Run: unsigned signatures:: OK
|
||||
Sign images
|
||||
Test Verified Boot Run: signed images: OK
|
||||
Build FIT with signed configuration
|
||||
Test Verified Boot Run: unsigned config: OK
|
||||
Sign images
|
||||
Test Verified Boot Run: signed config: OK
|
||||
check signed config on the host
|
||||
Signature check OK
|
||||
OK
|
||||
Test Verified Boot Run: signed config: OK
|
||||
Test Verified Boot Run: signed config with bad hash: OK
|
||||
|
||||
Test passed
|
||||
|
||||
|
||||
Software signing: keydir vs keyfile
|
||||
-----------------------------------
|
||||
|
||||
In the simplest case, signing is done by giving mkimage the 'keyfile'. This is
|
||||
the path to a file containing the signing key.
|
||||
|
||||
The alternative is to pass the 'keydir' argument. In this case the filename of
|
||||
the key is derived from the 'keydir' and the "key-name-hint" property in the
|
||||
FIT. In this case the "key-name-hint" property is mandatory, and the key must
|
||||
exist in "<keydir>/<key-name-hint>.<ext>" Here the extension "ext" is
|
||||
specific to the signing algorithm.
|
||||
|
||||
|
||||
Hardware Signing with PKCS#11 or with HSM
|
||||
-----------------------------------------
|
||||
|
||||
Securely managing private signing keys can challenging, especially when the
|
||||
keys are stored on the file system of a computer that is connected to the
|
||||
Internet. If an attacker is able to steal the key, they can sign malicious FIT
|
||||
images which will appear genuine to your devices.
|
||||
|
||||
An alternative solution is to keep your signing key securely stored on hardware
|
||||
device like a smartcard, USB token or Hardware Security Module (HSM) and have
|
||||
them perform the signing. PKCS#11 is standard for interfacing with these crypto
|
||||
device.
|
||||
|
||||
Requirements:
|
||||
Smartcard/USB token/HSM which can work with some openssl engine
|
||||
openssl
|
||||
|
||||
For pkcs11 engine usage:
|
||||
libp11 (provides pkcs11 engine)
|
||||
p11-kit (recommended to simplify setup)
|
||||
opensc (for smartcards and smartcard like USB devices)
|
||||
gnutls (recommended for key generation, p11tool)
|
||||
|
||||
For generic HSMs respective openssl engine must be installed and locateable by
|
||||
openssl. This may require setting up LD_LIBRARY_PATH if engine is not installed
|
||||
to openssl's default search paths.
|
||||
|
||||
PKCS11 engine support forms "key id" based on "keydir" and with
|
||||
"key-name-hint". "key-name-hint" is used as "object" name (if not defined in
|
||||
keydir). "keydir" (if defined) is used to define (prefix for) which PKCS11 source
|
||||
is being used for lookup up for the key.
|
||||
|
||||
PKCS11 engine key ids:
|
||||
"pkcs11:<keydir>;object=<key-name-hint>;type=<public|private>"
|
||||
or, if keydir contains "object="
|
||||
"pkcs11:<keydir>;type=<public|private>"
|
||||
or
|
||||
"pkcs11:object=<key-name-hint>;type=<public|private>",
|
||||
|
||||
Generic HSM engine support forms "key id" based on "keydir" and with
|
||||
"key-name-hint". If "keydir" is specified for mkimage it is used as a prefix in
|
||||
"key id" and is appended with "key-name-hint".
|
||||
|
||||
Generic engine key ids:
|
||||
"<keydir><key-name-hint>"
|
||||
or
|
||||
"<key-name-hint>"
|
||||
|
||||
In order to set the pin in the HSM, an environment variable "MKIMAGE_SIGN_PIN"
|
||||
can be specified.
|
||||
|
||||
The following examples use the Nitrokey Pro using pkcs11 engine. Instructions
|
||||
for other devices may vary.
|
||||
|
||||
Notes on pkcs11 engine setup:
|
||||
|
||||
Make sure p11-kit, opensc are installed and that p11-kit is setup to use opensc.
|
||||
/usr/share/p11-kit/modules/opensc.module should be present on your system.
|
||||
|
||||
|
||||
Generating Keys On the Nitrokey:
|
||||
|
||||
$ gpg --card-edit
|
||||
|
||||
Reader ...........: Nitrokey Nitrokey Pro (xxxxxxxx0000000000000000) 00 00
|
||||
Application ID ...: xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
|
||||
Version ..........: 2.1
|
||||
Manufacturer .....: ZeitControl
|
||||
Serial number ....: xxxxxxxx
|
||||
Name of cardholder: [not set]
|
||||
Language prefs ...: de
|
||||
Sex ..............: unspecified
|
||||
URL of public key : [not set]
|
||||
Login data .......: [not set]
|
||||
Signature PIN ....: forced
|
||||
Key attributes ...: rsa2048 rsa2048 rsa2048
|
||||
Max. PIN lengths .: 32 32 32
|
||||
PIN retry counter : 3 0 3
|
||||
Signature counter : 0
|
||||
Signature key ....: [none]
|
||||
Encryption key....: [none]
|
||||
Authentication key: [none]
|
||||
General key info..: [none]
|
||||
|
||||
gpg/card> generate
|
||||
Make off-card backup of encryption key? (Y/n) n
|
||||
|
||||
Please note that the factory settings of the PINs are
|
||||
PIN = '123456' Admin PIN = '12345678'
|
||||
You should change them using the command --change-pin
|
||||
|
||||
What keysize do you want for the Signature key? (2048) 4096
|
||||
The card will now be re-configured to generate a key of 4096 bits
|
||||
Note: There is no guarantee that the card supports the requested size.
|
||||
If the key generation does not succeed, please check the
|
||||
documentation of your card to see what sizes are allowed.
|
||||
What keysize do you want for the Encryption key? (2048) 4096
|
||||
The card will now be re-configured to generate a key of 4096 bits
|
||||
What keysize do you want for the Authentication key? (2048) 4096
|
||||
The card will now be re-configured to generate a key of 4096 bits
|
||||
Please specify how long the key should be valid.
|
||||
0 = key does not expire
|
||||
<n> = key expires in n days
|
||||
<n>w = key expires in n weeks
|
||||
<n>m = key expires in n months
|
||||
<n>y = key expires in n years
|
||||
Key is valid for? (0)
|
||||
Key does not expire at all
|
||||
Is this correct? (y/N) y
|
||||
|
||||
GnuPG needs to construct a user ID to identify your key.
|
||||
|
||||
Real name: John Doe
|
||||
Email address: john.doe@email.com
|
||||
Comment:
|
||||
You selected this USER-ID:
|
||||
"John Doe <john.doe@email.com>"
|
||||
|
||||
Change (N)ame, (C)omment, (E)mail or (O)kay/(Q)uit? o
|
||||
|
||||
|
||||
Using p11tool to get the token URL:
|
||||
|
||||
Depending on system configuration, gpg-agent may need to be killed first.
|
||||
|
||||
$ p11tool --provider /usr/lib/opensc-pkcs11.so --list-tokens
|
||||
Token 0:
|
||||
URL: pkcs11:model=PKCS%2315%20emulated;manufacturer=ZeitControl;serial=000xxxxxxxxx;token=OpenPGP%20card%20%28User%20PIN%20%28sig%29%29
|
||||
Label: OpenPGP card (User PIN (sig))
|
||||
Type: Hardware token
|
||||
Manufacturer: ZeitControl
|
||||
Model: PKCS#15 emulated
|
||||
Serial: 000xxxxxxxxx
|
||||
Module: (null)
|
||||
|
||||
|
||||
Token 1:
|
||||
URL: pkcs11:model=PKCS%2315%20emulated;manufacturer=ZeitControl;serial=000xxxxxxxxx;token=OpenPGP%20card%20%28User%20PIN%29
|
||||
Label: OpenPGP card (User PIN)
|
||||
Type: Hardware token
|
||||
Manufacturer: ZeitControl
|
||||
Model: PKCS#15 emulated
|
||||
Serial: 000xxxxxxxxx
|
||||
Module: (null)
|
||||
|
||||
Use the portion of the signature token URL after "pkcs11:" as the keydir argument (-k) to mkimage below.
|
||||
|
||||
|
||||
Use the URL of the token to list the private keys:
|
||||
|
||||
$ p11tool --login --provider /usr/lib/opensc-pkcs11.so --list-privkeys \
|
||||
"pkcs11:model=PKCS%2315%20emulated;manufacturer=ZeitControl;serial=000xxxxxxxxx;token=OpenPGP%20card%20%28User%20PIN%20%28sig%29%29"
|
||||
Token 'OpenPGP card (User PIN (sig))' with URL 'pkcs11:model=PKCS%2315%20emulated;manufacturer=ZeitControl;serial=000xxxxxxxxx;token=OpenPGP%20card%20%28User%20PIN%20%28sig%29%29' requires user PIN
|
||||
Enter PIN:
|
||||
Object 0:
|
||||
URL: pkcs11:model=PKCS%2315%20emulated;manufacturer=ZeitControl;serial=000xxxxxxxxx;token=OpenPGP%20card%20%28User%20PIN%20%28sig%29%29;id=%01;object=Signature%20key;type=private
|
||||
Type: Private key
|
||||
Label: Signature key
|
||||
Flags: CKA_PRIVATE; CKA_NEVER_EXTRACTABLE; CKA_SENSITIVE;
|
||||
ID: 01
|
||||
|
||||
Use the label, in this case "Signature key" as the key-name-hint in your FIT.
|
||||
|
||||
Create the fitImage:
|
||||
$ ./tools/mkimage -f fit-image.its fitImage
|
||||
|
||||
|
||||
Sign the fitImage with the hardware key:
|
||||
|
||||
$ ./tools/mkimage -F -k \
|
||||
"model=PKCS%2315%20emulated;manufacturer=ZeitControl;serial=000xxxxxxxxx;token=OpenPGP%20card%20%28User%20PIN%20%28sig%29%29" \
|
||||
-K u-boot.dtb -N pkcs11 -r fitImage
|
||||
|
||||
|
||||
Future Work
|
||||
-----------
|
||||
- Roll-back protection using a TPM is done using the tpm command. This can
|
||||
be scripted, but we might consider a default way of doing this, built into
|
||||
bootm.
|
||||
|
||||
|
||||
Possible Future Work
|
||||
--------------------
|
||||
- More sandbox tests for failure modes
|
||||
- Passwords for keys/certificates
|
||||
- Perhaps implement OAEP
|
||||
- Enhance bootm to permit scripted signature verification (so that a script
|
||||
can verify an image but not actually boot it)
|
||||
|
||||
|
||||
Simon Glass
|
||||
sjg@chromium.org
|
||||
1-1-13
|
|
@ -1,322 +0,0 @@
|
|||
U-Boot new uImage source file format (bindings definition)
|
||||
==========================================================
|
||||
|
||||
Author: Marian Balakowicz <m8@semihalf.com>
|
||||
External data additions, 25/1/16 Simon Glass <sjg@chromium.org>
|
||||
|
||||
1) Introduction
|
||||
---------------
|
||||
|
||||
Evolution of the 2.6 Linux kernel for embedded PowerPC systems introduced new
|
||||
booting method which requires that hardware description is available to the
|
||||
kernel in the form of Flattened Device Tree.
|
||||
|
||||
Booting with a Flattened Device Tree is much more flexible and is intended to
|
||||
replace direct passing of 'struct bd_info' which was used to boot pre-FDT
|
||||
kernels.
|
||||
|
||||
However, U-Boot needs to support both techniques to provide backward
|
||||
compatibility for platforms which are not FDT ready. Number of elements
|
||||
playing role in the booting process has increased and now includes the FDT
|
||||
blob. Kernel image, FDT blob and possibly ramdisk image - all must be placed
|
||||
in the system memory and passed to bootm as a arguments. Some of them may be
|
||||
missing: FDT is not present for legacy platforms, ramdisk is always optional.
|
||||
Additionally, old uImage format has been extended to support multi sub-images
|
||||
but the support is limited by simple format of the legacy uImage structure.
|
||||
Single binary header 'struct legacy_img_hdr' is not flexible enough to cover all
|
||||
possible scenarios.
|
||||
|
||||
All those factors combined clearly show that there is a need for new, more
|
||||
flexible, multi component uImage format.
|
||||
|
||||
|
||||
2) New uImage format assumptions
|
||||
--------------------------------
|
||||
|
||||
a) Implementation
|
||||
|
||||
Libfdt has been selected for the new uImage format implementation as (1) it
|
||||
provides needed functionality, (2) is actively maintained and developed and
|
||||
(3) increases code reuse as it is already part of the U-Boot source tree.
|
||||
|
||||
b) Terminology
|
||||
|
||||
This document defines new uImage structure by providing FDT bindings for new
|
||||
uImage internals. Bindings are defined from U-Boot perspective, i.e. describe
|
||||
final form of the uImage at the moment when it reaches U-Boot. User
|
||||
perspective may be simpler, as some of the properties (like timestamps and
|
||||
hashes) will need to be filled in automatically by the U-Boot mkimage tool.
|
||||
|
||||
To avoid confusion with the kernel FDT the following naming convention is
|
||||
proposed for the new uImage format related terms:
|
||||
|
||||
FIT - Flattened uImage Tree
|
||||
|
||||
FIT is formally a flattened device tree (in the libfdt meaning), which
|
||||
conforms to bindings defined in this document.
|
||||
|
||||
.its - image tree source
|
||||
.itb - flattened image tree blob
|
||||
|
||||
c) Image building procedure
|
||||
|
||||
The following picture shows how the new uImage is prepared. Input consists of
|
||||
image source file (.its) and a set of data files. Image is created with the
|
||||
help of standard U-Boot mkimage tool which in turn uses dtc (device tree
|
||||
compiler) to produce image tree blob (.itb). Resulting .itb file is the
|
||||
actual binary of a new uImage.
|
||||
|
||||
|
||||
tqm5200.its
|
||||
+
|
||||
vmlinux.bin.gz mkimage + dtc xfer to target
|
||||
eldk-4.2-ramdisk --------------> tqm5200.itb --------------> bootm
|
||||
tqm5200.dtb /|\
|
||||
... |
|
||||
'new uImage'
|
||||
|
||||
- create .its file, automatically filled-in properties are omitted
|
||||
- call mkimage tool on a .its file
|
||||
- mkimage calls dtc to create .itb image and assures that
|
||||
missing properties are added
|
||||
- .itb (new uImage) is uploaded onto the target and used therein
|
||||
|
||||
|
||||
d) Unique identifiers
|
||||
|
||||
To identify FIT sub-nodes representing images, hashes, configurations (which
|
||||
are defined in the following sections), the "unit name" of the given sub-node
|
||||
is used as it's identifier as it assures uniqueness without additional
|
||||
checking required.
|
||||
|
||||
|
||||
3) Root node properties
|
||||
-----------------------
|
||||
|
||||
Root node of the uImage Tree should have the following layout:
|
||||
|
||||
/ o image-tree
|
||||
|- description = "image description"
|
||||
|- timestamp = <12399321>
|
||||
|- #address-cells = <1>
|
||||
|
|
||||
o images
|
||||
| |
|
||||
| o image-1 {...}
|
||||
| o image-2 {...}
|
||||
| ...
|
||||
|
|
||||
o configurations
|
||||
|- default = "conf-1"
|
||||
|
|
||||
o conf-1 {...}
|
||||
o conf-2 {...}
|
||||
...
|
||||
|
||||
|
||||
Optional property:
|
||||
- description : Textual description of the uImage
|
||||
|
||||
Mandatory property:
|
||||
- timestamp : Last image modification time being counted in seconds since
|
||||
1970-01-01 00:00:00 - to be automatically calculated by mkimage tool.
|
||||
|
||||
Conditionally mandatory property:
|
||||
- #address-cells : Number of 32bit cells required to represent entry and
|
||||
load addresses supplied within sub-image nodes. May be omitted when no
|
||||
entry or load addresses are used.
|
||||
|
||||
Mandatory nodes:
|
||||
- images : This node contains a set of sub-nodes, each of them representing
|
||||
single component sub-image (like kernel, ramdisk, etc.). At least one
|
||||
sub-image is required.
|
||||
- configurations : Contains a set of available configuration nodes and
|
||||
defines a default configuration.
|
||||
|
||||
|
||||
4) '/images' node
|
||||
-----------------
|
||||
|
||||
This node is a container node for component sub-image nodes. Each sub-node of
|
||||
the '/images' node should have the following layout:
|
||||
|
||||
o image-1
|
||||
|- description = "component sub-image description"
|
||||
|- data = /incbin/("path/to/data/file.bin")
|
||||
|- type = "sub-image type name"
|
||||
|- arch = "ARCH name"
|
||||
|- os = "OS name"
|
||||
|- compression = "compression name"
|
||||
|- load = <00000000>
|
||||
|- entry = <00000000>
|
||||
|
|
||||
o hash-1 {...}
|
||||
o hash-2 {...}
|
||||
...
|
||||
|
||||
Mandatory properties:
|
||||
- description : Textual description of the component sub-image
|
||||
- type : Name of component sub-image type, supported types are:
|
||||
"standalone", "kernel", "kernel_noload", "ramdisk", "firmware", "script",
|
||||
"filesystem", "flat_dt" and others (see uimage_type in common/image.c).
|
||||
- data : Path to the external file which contains this node's binary data.
|
||||
- compression : Compression used by included data. Supported compressions
|
||||
are "gzip" and "bzip2". If no compression is used compression property
|
||||
should be set to "none". If the data is compressed but it should not be
|
||||
uncompressed by U-Boot (e.g. compressed ramdisk), this should also be set
|
||||
to "none".
|
||||
|
||||
Conditionally mandatory property:
|
||||
- os : OS name, mandatory for types "kernel". Valid OS names are:
|
||||
"openbsd", "netbsd", "freebsd", "4_4bsd", "linux", "svr4", "esix",
|
||||
"solaris", "irix", "sco", "dell", "ncr", "lynxos", "vxworks", "psos", "qnx",
|
||||
"u-boot", "rtems", "unity", "integrity".
|
||||
- arch : Architecture name, mandatory for types: "standalone", "kernel",
|
||||
"firmware", "ramdisk" and "fdt". Valid architecture names are: "alpha",
|
||||
"arm", "i386", "ia64", "mips", "mips64", "ppc", "s390", "sh", "sparc",
|
||||
"sparc64", "m68k", "microblaze", "nios2", "blackfin", "avr32", "st200",
|
||||
"sandbox".
|
||||
- entry : entry point address, address size is determined by
|
||||
'#address-cells' property of the root node.
|
||||
Mandatory for types: "firmware", and "kernel".
|
||||
- load : load address, address size is determined by '#address-cells'
|
||||
property of the root node.
|
||||
Mandatory for types: "firmware", and "kernel".
|
||||
- compatible : compatible method for loading image.
|
||||
Mandatory for types: "fpga", and images that do not specify a load address.
|
||||
Supported compatible methods:
|
||||
"u-boot,fpga-legacy" - the generic fpga loading routine.
|
||||
"u-boot,zynqmp-fpga-ddrauth" - signed non-encrypted FPGA bitstream for
|
||||
Xilinx Zynq UltraScale+ (ZymqMP) device.
|
||||
"u-boot,zynqmp-fpga-enc" - encrypted FPGA bitstream for Xilinx Zynq
|
||||
UltraScale+ (ZynqMP) device.
|
||||
- phase : U-Boot phase for which the image is intended.
|
||||
"spl" - image is an SPL image
|
||||
"u-boot" - image is a U-Boot image
|
||||
|
||||
Optional nodes:
|
||||
- hash-1 : Each hash sub-node represents separate hash or checksum
|
||||
calculated for node's data according to specified algorithm.
|
||||
|
||||
|
||||
5) Hash nodes
|
||||
-------------
|
||||
|
||||
o hash-1
|
||||
|- algo = "hash or checksum algorithm name"
|
||||
|- value = [hash or checksum value]
|
||||
|
||||
Mandatory properties:
|
||||
- algo : Algorithm name, supported are "crc32", "md5" and "sha1".
|
||||
- value : Actual checksum or hash value, correspondingly 4, 16 or 20 bytes
|
||||
long.
|
||||
|
||||
|
||||
6) '/configurations' node
|
||||
-------------------------
|
||||
|
||||
The 'configurations' node creates convenient, labeled boot configurations,
|
||||
which combine together kernel images with their ramdisks and fdt blobs.
|
||||
|
||||
The 'configurations' node has has the following structure:
|
||||
|
||||
o configurations
|
||||
|- default = "default configuration sub-node unit name"
|
||||
|
|
||||
o config-1 {...}
|
||||
o config-2 {...}
|
||||
...
|
||||
|
||||
|
||||
Optional property:
|
||||
- default : Selects one of the configuration sub-nodes as a default
|
||||
configuration.
|
||||
|
||||
Mandatory nodes:
|
||||
- configuration-sub-node-unit-name : At least one of the configuration
|
||||
sub-nodes is required.
|
||||
|
||||
|
||||
7) Configuration nodes
|
||||
----------------------
|
||||
|
||||
Each configuration has the following structure:
|
||||
|
||||
o config-1
|
||||
|- description = "configuration description"
|
||||
|- kernel = "kernel sub-node unit name"
|
||||
|- fdt = "fdt sub-node unit-name" [, "fdt overlay sub-node unit-name", ...]
|
||||
|- loadables = "loadables sub-node unit-name"
|
||||
|- script = "
|
||||
|- compatible = "vendor,board-style device tree compatible string"
|
||||
|
||||
|
||||
Mandatory properties:
|
||||
- description : Textual configuration description.
|
||||
- kernel or firmware: Unit name of the corresponding kernel or firmware
|
||||
(u-boot, op-tee, etc) image. If both "kernel" and "firmware" are specified,
|
||||
control is passed to the firmware image.
|
||||
|
||||
Optional properties:
|
||||
- fdt : Unit name of the corresponding fdt blob (component image node of a
|
||||
"fdt type"). Additional fdt overlay nodes can be supplied which signify
|
||||
that the resulting device tree blob is generated by the first base fdt
|
||||
blob with all subsequent overlays applied.
|
||||
- fpga : Unit name of the corresponding fpga bitstream blob
|
||||
(component image node of a "fpga type").
|
||||
- loadables : Unit name containing a list of additional binaries to be
|
||||
loaded at their given locations. "loadables" is a comma-separated list
|
||||
of strings. U-Boot will load each binary at its given start-address and
|
||||
may optionally invoke additional post-processing steps on this binary based
|
||||
on its component image node type.
|
||||
- script : The image to use when loading a U-Boot script (for use with the
|
||||
source command).
|
||||
- compatible : The root compatible string of the U-Boot device tree that
|
||||
this configuration shall automatically match when CONFIG_FIT_BEST_MATCH is
|
||||
enabled. If this property is not provided, the compatible string will be
|
||||
extracted from the fdt blob instead. This is only possible if the fdt is
|
||||
not compressed, so images with compressed fdts that want to use compatible
|
||||
string matching must always provide this property.
|
||||
|
||||
The FDT blob is required to properly boot FDT based kernel, so the minimal
|
||||
configuration for 2.6 FDT kernel is (kernel, fdt) pair.
|
||||
|
||||
Older, 2.4 kernel and 2.6 non-FDT kernel do not use FDT blob, in such cases
|
||||
'struct bd_info' must be passed instead of FDT blob, thus fdt property *must
|
||||
not* be specified in a configuration node.
|
||||
|
||||
|
||||
8) External data
|
||||
----------------
|
||||
|
||||
The above format shows a 'data' property which holds the data for each image.
|
||||
It is also possible for this data to reside outside the FIT itself. This
|
||||
allows the FIT to be quite small, so that it can be loaded and scanned
|
||||
without loading a large amount of data. Then when an image is needed it can
|
||||
be loaded from an external source.
|
||||
|
||||
In this case the 'data' property is omitted. Instead you can use:
|
||||
|
||||
- data-offset : offset of the data in a separate image store. The image
|
||||
store is placed immediately after the last byte of the device tree binary,
|
||||
aligned to a 4-byte boundary.
|
||||
- data-size : size of the data in bytes
|
||||
|
||||
The 'data-offset' property can be substituted with 'data-position', which
|
||||
defines an absolute position or address as the offset. This is helpful when
|
||||
booting U-Boot proper before performing relocation. Pass '-p [offset]' to
|
||||
mkimage to enable 'data-position'.
|
||||
|
||||
Normal kernel FIT image has data embedded within FIT structure. U-Boot image
|
||||
for SPL boot has external data. Existence of 'data-offset' can be used to
|
||||
identify which format is used.
|
||||
|
||||
For FIT image with external data, it would be better to align each blob of data
|
||||
to block(512 byte) for block device, so that we don't need to do the copy when
|
||||
read the image data in SPL. Pass '-B 0x200' to mkimage to align the FIT
|
||||
structure and data to 512 byte, other values available for other align size.
|
||||
|
||||
9) Examples
|
||||
-----------
|
||||
|
||||
Please see doc/uImage.FIT/*.its for actual image source files.
|
|
@ -1,67 +0,0 @@
|
|||
/*
|
||||
* Example FIT image description file demonstrating the usage of the
|
||||
* bootm command to launch UEFI binaries.
|
||||
*
|
||||
* Two boot configurations are available to enable booting GRUB2 on QEMU,
|
||||
* the former uses a FDT blob contained in the FIT image, while the later
|
||||
* relies on the FDT provided by the board emulator.
|
||||
*/
|
||||
|
||||
/dts-v1/;
|
||||
|
||||
/ {
|
||||
description = "GRUB2 EFI and QEMU FDT blob";
|
||||
#address-cells = <1>;
|
||||
|
||||
images {
|
||||
efi-grub {
|
||||
description = "GRUB EFI Firmware";
|
||||
data = /incbin/("bootarm.efi");
|
||||
type = "kernel_noload";
|
||||
arch = "arm";
|
||||
os = "efi";
|
||||
compression = "none";
|
||||
load = <0x0>;
|
||||
entry = <0x0>;
|
||||
hash-1 {
|
||||
algo = "sha256";
|
||||
};
|
||||
};
|
||||
|
||||
fdt-qemu {
|
||||
description = "QEMU DTB";
|
||||
data = /incbin/("qemu-arm.dtb");
|
||||
type = "flat_dt";
|
||||
arch = "arm";
|
||||
compression = "none";
|
||||
hash-1 {
|
||||
algo = "sha256";
|
||||
};
|
||||
};
|
||||
};
|
||||
|
||||
configurations {
|
||||
default = "config-grub-fdt";
|
||||
|
||||
config-grub-fdt {
|
||||
description = "GRUB EFI Boot w/ FDT";
|
||||
kernel = "efi-grub";
|
||||
fdt = "fdt-qemu";
|
||||
signature-1 {
|
||||
algo = "sha256,rsa2048";
|
||||
key-name-hint = "dev";
|
||||
sign-images = "kernel", "fdt";
|
||||
};
|
||||
};
|
||||
|
||||
config-grub-nofdt {
|
||||
description = "GRUB EFI Boot w/o FDT";
|
||||
kernel = "efi-grub";
|
||||
signature-1 {
|
||||
algo = "sha256,rsa2048";
|
||||
key-name-hint = "dev";
|
||||
sign-images = "kernel";
|
||||
};
|
||||
};
|
||||
};
|
||||
};
|
|
@ -1,44 +0,0 @@
|
|||
/*
|
||||
* Example Automatic software update file.
|
||||
*/
|
||||
|
||||
/dts-v1/;
|
||||
|
||||
/ {
|
||||
description = "Automatic software updates: kernel, ramdisk, FDT";
|
||||
#address-cells = <1>;
|
||||
|
||||
images {
|
||||
update-1 {
|
||||
description = "Linux kernel binary";
|
||||
data = /incbin/("./vmlinux.bin.gz");
|
||||
compression = "none";
|
||||
type = "firmware";
|
||||
load = <FF700000>;
|
||||
hash-1 {
|
||||
algo = "sha1";
|
||||
};
|
||||
};
|
||||
update-2 {
|
||||
description = "Ramdisk image";
|
||||
data = /incbin/("./ramdisk_image.gz");
|
||||
compression = "none";
|
||||
type = "firmware";
|
||||
load = <FF8E0000>;
|
||||
hash-1 {
|
||||
algo = "sha1";
|
||||
};
|
||||
};
|
||||
|
||||
update-3 {
|
||||
description = "FDT blob";
|
||||
data = /incbin/("./blob.fdt");
|
||||
compression = "none";
|
||||
type = "firmware";
|
||||
load = <FFAC0000>;
|
||||
hash-1 {
|
||||
algo = "sha1";
|
||||
};
|
||||
};
|
||||
};
|
||||
};
|
|
@ -1,24 +0,0 @@
|
|||
/*
|
||||
* Automatic software update for U-Boot
|
||||
* Make sure the flashing addresses ('load' prop) is correct for your board!
|
||||
*/
|
||||
|
||||
/dts-v1/;
|
||||
|
||||
/ {
|
||||
description = "Automatic U-Boot update";
|
||||
#address-cells = <1>;
|
||||
|
||||
images {
|
||||
update-1 {
|
||||
description = "U-Boot binary";
|
||||
data = /incbin/("./u-boot.bin");
|
||||
compression = "none";
|
||||
type = "firmware";
|
||||
load = <0xFFFC0000>;
|
||||
hash-1 {
|
||||
algo = "sha1";
|
||||
};
|
||||
};
|
||||
};
|
||||
};
|
|
@ -1,272 +0,0 @@
|
|||
Booting Linux on x86 with FIT
|
||||
=============================
|
||||
|
||||
Background
|
||||
----------
|
||||
|
||||
(corrections to the text below are welcome)
|
||||
|
||||
Generally Linux x86 uses its own very complex booting method. There is a setup
|
||||
binary which contains all sorts of parameters and a compressed self-extracting
|
||||
binary for the kernel itself, often with a small built-in serial driver to
|
||||
display decompression progress.
|
||||
|
||||
The x86 CPU has various processor modes. I am no expert on these, but my
|
||||
understanding is that an x86 CPU (even a really new one) starts up in a 16-bit
|
||||
'real' mode where only 1MB of memory is visible, moves to 32-bit 'protected'
|
||||
mode where 4GB is visible (or more with special memory access techniques) and
|
||||
then to 64-bit 'long' mode if 64-bit execution is required.
|
||||
|
||||
Partly the self-extracting nature of Linux was introduced to cope with boot
|
||||
loaders that were barely capable of loading anything. Even changing to 32-bit
|
||||
mode was something of a challenge, so putting this logic in the kernel seemed
|
||||
to make sense.
|
||||
|
||||
Bit by bit more and more logic has been added to this post-boot pre-Linux
|
||||
wrapper:
|
||||
|
||||
- Changing to 32-bit mode
|
||||
- Decompression
|
||||
- Serial output (with drivers for various chips)
|
||||
- Load address randomisation
|
||||
- Elf loader complete with relocation (for the above)
|
||||
- Random number generator via 3 methods (again for the above)
|
||||
- Some sort of EFI mini-loader (1000+ glorious lines of code)
|
||||
- Locating and tacking on a device tree and ramdisk
|
||||
|
||||
To my mind, if you sit back and look at things from first principles, this
|
||||
doesn't make a huge amount of sense. Any boot loader worth its salts already
|
||||
has most of the above features and more besides. The boot loader already knows
|
||||
the layout of memory, has a serial driver, can decompress things, includes an
|
||||
ELF loader and supports device tree and ramdisks. The decision to duplicate
|
||||
all these features in a Linux wrapper caters for the lowest common
|
||||
denominator: a boot loader which consists of a BIOS call to load something off
|
||||
disk, followed by a jmp instruction.
|
||||
|
||||
(Aside: On ARM systems, we worry that the boot loader won't know where to load
|
||||
the kernel. It might be easier to just provide that information in the image,
|
||||
or in the boot loader rather than adding a self-relocator to put it in the
|
||||
right place. Or just use ELF?
|
||||
|
||||
As a result, the x86 kernel boot process is needlessly complex. The file
|
||||
format is also complex, and obfuscates the contents to a degree that it is
|
||||
quite a challenge to extract anything from it. This bzImage format has become
|
||||
so prevalent that is actually isn't possible to produce the 'raw' kernel build
|
||||
outputs with the standard Makefile (as it is on ARM for example, at least at
|
||||
the time of writing).
|
||||
|
||||
This document describes an alternative boot process which uses simple raw
|
||||
images which are loaded into the right place by the boot loader and then
|
||||
executed.
|
||||
|
||||
|
||||
Build the kernel
|
||||
----------------
|
||||
|
||||
Note: these instructions assume a 32-bit kernel. U-Boot also supports directly
|
||||
booting a 64-bit kernel by jumping into 64-bit mode first (see below).
|
||||
|
||||
You can build the kernel as normal with 'make'. This will create a file called
|
||||
'vmlinux'. This is a standard ELF file and you can look at it if you like:
|
||||
|
||||
$ objdump -h vmlinux
|
||||
|
||||
vmlinux: file format elf32-i386
|
||||
|
||||
Sections:
|
||||
Idx Name Size VMA LMA File off Algn
|
||||
0 .text 00416850 81000000 01000000 00001000 2**5
|
||||
CONTENTS, ALLOC, LOAD, RELOC, READONLY, CODE
|
||||
1 .notes 00000024 81416850 01416850 00417850 2**2
|
||||
CONTENTS, ALLOC, LOAD, READONLY, CODE
|
||||
2 __ex_table 00000c50 81416880 01416880 00417880 2**3
|
||||
CONTENTS, ALLOC, LOAD, RELOC, READONLY, DATA
|
||||
3 .rodata 00154b9e 81418000 01418000 00419000 2**5
|
||||
CONTENTS, ALLOC, LOAD, RELOC, READONLY, DATA
|
||||
4 __bug_table 0000597c 8156cba0 0156cba0 0056dba0 2**0
|
||||
CONTENTS, ALLOC, LOAD, RELOC, READONLY, DATA
|
||||
5 .pci_fixup 00001b80 8157251c 0157251c 0057351c 2**2
|
||||
CONTENTS, ALLOC, LOAD, RELOC, READONLY, DATA
|
||||
6 .tracedata 00000024 8157409c 0157409c 0057509c 2**0
|
||||
CONTENTS, ALLOC, LOAD, RELOC, READONLY, DATA
|
||||
7 __ksymtab 00007ec0 815740c0 015740c0 005750c0 2**2
|
||||
CONTENTS, ALLOC, LOAD, RELOC, READONLY, DATA
|
||||
8 __ksymtab_gpl 00004a28 8157bf80 0157bf80 0057cf80 2**2
|
||||
CONTENTS, ALLOC, LOAD, RELOC, READONLY, DATA
|
||||
9 __ksymtab_strings 0001d6fc 815809a8 015809a8 005819a8 2**0
|
||||
CONTENTS, ALLOC, LOAD, READONLY, DATA
|
||||
10 __init_rodata 00001c3c 8159e0a4 0159e0a4 0059f0a4 2**2
|
||||
CONTENTS, ALLOC, LOAD, RELOC, READONLY, DATA
|
||||
11 __param 00000ff0 8159fce0 0159fce0 005a0ce0 2**2
|
||||
CONTENTS, ALLOC, LOAD, RELOC, READONLY, DATA
|
||||
12 __modver 00000330 815a0cd0 015a0cd0 005a1cd0 2**2
|
||||
CONTENTS, ALLOC, LOAD, RELOC, READONLY, DATA
|
||||
13 .data 00063000 815a1000 015a1000 005a2000 2**12
|
||||
CONTENTS, ALLOC, LOAD, RELOC, DATA
|
||||
14 .init.text 0002f104 81604000 01604000 00605000 2**2
|
||||
CONTENTS, ALLOC, LOAD, RELOC, READONLY, CODE
|
||||
15 .init.data 00040cdc 81634000 01634000 00635000 2**12
|
||||
CONTENTS, ALLOC, LOAD, RELOC, DATA
|
||||
16 .x86_cpu_dev.init 0000001c 81674cdc 01674cdc 00675cdc 2**2
|
||||
CONTENTS, ALLOC, LOAD, RELOC, READONLY, DATA
|
||||
17 .altinstructions 0000267c 81674cf8 01674cf8 00675cf8 2**0
|
||||
CONTENTS, ALLOC, LOAD, RELOC, READONLY, DATA
|
||||
18 .altinstr_replacement 00000942 81677374 01677374 00678374 2**0
|
||||
CONTENTS, ALLOC, LOAD, READONLY, CODE
|
||||
19 .iommu_table 00000014 81677cb8 01677cb8 00678cb8 2**2
|
||||
CONTENTS, ALLOC, LOAD, RELOC, READONLY, DATA
|
||||
20 .apicdrivers 00000004 81677cd0 01677cd0 00678cd0 2**2
|
||||
CONTENTS, ALLOC, LOAD, RELOC, DATA
|
||||
21 .exit.text 00001a80 81677cd8 01677cd8 00678cd8 2**0
|
||||
CONTENTS, ALLOC, LOAD, RELOC, READONLY, CODE
|
||||
22 .data..percpu 00007880 8167a000 0167a000 0067b000 2**12
|
||||
CONTENTS, ALLOC, LOAD, RELOC, DATA
|
||||
23 .smp_locks 00003000 81682000 01682000 00683000 2**2
|
||||
CONTENTS, ALLOC, LOAD, RELOC, READONLY, DATA
|
||||
24 .bss 000a1000 81685000 01685000 00686000 2**12
|
||||
ALLOC
|
||||
25 .brk 00424000 81726000 01726000 00686000 2**0
|
||||
ALLOC
|
||||
26 .comment 00000049 00000000 00000000 00686000 2**0
|
||||
CONTENTS, READONLY
|
||||
27 .GCC.command.line 0003e055 00000000 00000000 00686049 2**0
|
||||
CONTENTS, READONLY
|
||||
28 .debug_aranges 0000f4c8 00000000 00000000 006c40a0 2**3
|
||||
CONTENTS, RELOC, READONLY, DEBUGGING
|
||||
29 .debug_info 0440b0df 00000000 00000000 006d3568 2**0
|
||||
CONTENTS, RELOC, READONLY, DEBUGGING
|
||||
30 .debug_abbrev 0022a83b 00000000 00000000 04ade647 2**0
|
||||
CONTENTS, READONLY, DEBUGGING
|
||||
31 .debug_line 004ead0d 00000000 00000000 04d08e82 2**0
|
||||
CONTENTS, RELOC, READONLY, DEBUGGING
|
||||
32 .debug_frame 0010a960 00000000 00000000 051f3b90 2**2
|
||||
CONTENTS, RELOC, READONLY, DEBUGGING
|
||||
33 .debug_str 001b442d 00000000 00000000 052fe4f0 2**0
|
||||
CONTENTS, READONLY, DEBUGGING
|
||||
34 .debug_loc 007c7fa9 00000000 00000000 054b291d 2**0
|
||||
CONTENTS, RELOC, READONLY, DEBUGGING
|
||||
35 .debug_ranges 00098828 00000000 00000000 05c7a8c8 2**3
|
||||
CONTENTS, RELOC, READONLY, DEBUGGING
|
||||
|
||||
There is also the setup binary mentioned earlier. This is at
|
||||
arch/x86/boot/setup.bin and is about 12KB in size. It includes the command
|
||||
line and various settings need by the kernel. Arguably the boot loader should
|
||||
provide all of this also, but setting it up is some complex that the kernel
|
||||
helps by providing a head start.
|
||||
|
||||
As you can see the code loads to address 0x01000000 and everything else
|
||||
follows after that. We could load this image using the 'bootelf' command but
|
||||
we would still need to provide the setup binary. This is not supported by
|
||||
U-Boot although I suppose you could mostly script it. This would permit the
|
||||
use of a relocatable kernel.
|
||||
|
||||
All we need to boot is the vmlinux file and the setup.bin file.
|
||||
|
||||
|
||||
Create a FIT
|
||||
------------
|
||||
|
||||
To create a FIT you will need a source file describing what should go in the
|
||||
FIT. See kernel.its for an example for x86 and also instructions on setting
|
||||
the 'arch' value for booting 64-bit kernels if desired. Put this into a file
|
||||
called image.its.
|
||||
|
||||
Note that setup is loaded to the special address of 0x90000 (a special address
|
||||
you just have to know) and the kernel is loaded to 0x01000000 (the address you
|
||||
saw above). This means that you will need to load your FIT to a different
|
||||
address so that U-Boot doesn't overwrite it when decompressing. Something like
|
||||
0x02000000 will do so you can set CONFIG_SYS_LOAD_ADDR to that.
|
||||
|
||||
In that example the kernel is compressed with lzo. Also we need to provide a
|
||||
flat binary, not an ELF. So the steps needed to set things are are:
|
||||
|
||||
# Create a flat binary
|
||||
objcopy -O binary vmlinux vmlinux.bin
|
||||
|
||||
# Compress it into LZO format
|
||||
lzop vmlinux.bin
|
||||
|
||||
# Build a FIT image
|
||||
mkimage -f image.its image.fit
|
||||
|
||||
(be careful to run the mkimage from your U-Boot tools directory since it
|
||||
will have x86_setup support.)
|
||||
|
||||
You can take a look at the resulting fit file if you like:
|
||||
|
||||
$ dumpimage -l image.fit
|
||||
FIT description: Simple image with single Linux kernel on x86
|
||||
Created: Tue Oct 7 10:57:24 2014
|
||||
Image 0 (kernel)
|
||||
Description: Vanilla Linux kernel
|
||||
Created: Tue Oct 7 10:57:24 2014
|
||||
Type: Kernel Image
|
||||
Compression: lzo compressed
|
||||
Data Size: 4591767 Bytes = 4484.15 kB = 4.38 MB
|
||||
Architecture: Intel x86
|
||||
OS: Linux
|
||||
Load Address: 0x01000000
|
||||
Entry Point: 0x00000000
|
||||
Hash algo: sha1
|
||||
Hash value: 446b5163ebfe0fb6ee20cbb7a8501b263cd92392
|
||||
Image 1 (setup)
|
||||
Description: Linux setup.bin
|
||||
Created: Tue Oct 7 10:57:24 2014
|
||||
Type: x86 setup.bin
|
||||
Compression: uncompressed
|
||||
Data Size: 12912 Bytes = 12.61 kB = 0.01 MB
|
||||
Hash algo: sha1
|
||||
Hash value: a1f2099cf47ff9816236cd534c77af86e713faad
|
||||
Default Configuration: 'config-1'
|
||||
Configuration 0 (config-1)
|
||||
Description: Boot Linux kernel
|
||||
Kernel: kernel
|
||||
|
||||
|
||||
Booting the FIT
|
||||
---------------
|
||||
|
||||
To make it boot you need to load it and then use 'bootm' to boot it. A
|
||||
suitable script to do this from a network server is:
|
||||
|
||||
bootp
|
||||
tftp image.fit
|
||||
bootm
|
||||
|
||||
This will load the image from the network and boot it. The command line (from
|
||||
the 'bootargs' environment variable) will be passed to the kernel.
|
||||
|
||||
If you want a ramdisk you can add it as normal with FIT. If you want a device
|
||||
tree then x86 doesn't normally use those - it has ACPI instead.
|
||||
|
||||
|
||||
Why Bother?
|
||||
-----------
|
||||
|
||||
1. It demystifies the process of booting an x86 kernel
|
||||
2. It allows use of the standard U-Boot boot file format
|
||||
3. It allows U-Boot to perform decompression - problems will provide an error
|
||||
message and you are still in the boot loader. It is possible to investigate.
|
||||
4. It avoids all the pre-loader code in the kernel which is quite complex to
|
||||
follow
|
||||
5. You can use verified/secure boot and other features which haven't yet been
|
||||
added to the pre-Linux
|
||||
6. It makes x86 more like other architectures in the way it boots a kernel.
|
||||
You can potentially use the same file format for the kernel, and the same
|
||||
procedure for building and packaging it.
|
||||
|
||||
|
||||
References
|
||||
----------
|
||||
|
||||
In the Linux kernel, Documentation/x86/boot.txt defines the boot protocol for
|
||||
the kernel including the setup.bin format. This is handled in U-Boot in
|
||||
arch/x86/lib/zimage.c and arch/x86/lib/bootm.c.
|
||||
|
||||
Various files in the same directory as this file describe the FIT format.
|
||||
|
||||
|
||||
--
|
||||
Simon Glass
|
||||
sjg@chromium.org
|
||||
7-Oct-2014
|
103
doc/usage/cmd/bind.rst
Normal file
103
doc/usage/cmd/bind.rst
Normal file
|
@ -0,0 +1,103 @@
|
|||
.. SPDX-License-Identifier: GPL-2.0+:
|
||||
|
||||
bind command
|
||||
============
|
||||
|
||||
Synopsis
|
||||
--------
|
||||
|
||||
::
|
||||
|
||||
bind <node path> <driver>
|
||||
bind <class> <index> <driver>
|
||||
|
||||
Description
|
||||
-----------
|
||||
|
||||
The bind command is used to bind a device to a driver. This makes the
|
||||
device available in U-Boot.
|
||||
|
||||
While binding to a *node path* typically provides a working device
|
||||
binding by parent node and driver may lead to a device that is only
|
||||
partially initialized.
|
||||
|
||||
node path
|
||||
path of the device's device-tree node
|
||||
|
||||
class
|
||||
device class name
|
||||
|
||||
index
|
||||
index of the parent device in the device class
|
||||
|
||||
driver
|
||||
device driver name
|
||||
|
||||
Example
|
||||
-------
|
||||
|
||||
Given a system with a real time clock device with device path */pl031@9010000*
|
||||
and using driver rtc-pl031 unbinding and binding of the device is demonstrated
|
||||
using the two alternative bind syntaxes.
|
||||
|
||||
.. code-block::
|
||||
|
||||
=> dm tree
|
||||
Class Index Probed Driver Name
|
||||
-----------------------------------------------------------
|
||||
root 0 [ + ] root_driver root_driver
|
||||
...
|
||||
rtc 0 [ ] rtc-pl031 |-- pl031@9010000
|
||||
...
|
||||
=> fdt addr $fdtcontroladdr
|
||||
Working FDT set to 7ed7fdb0
|
||||
=> fdt print
|
||||
/ {
|
||||
interrupt-parent = <0x00008003>;
|
||||
model = "linux,dummy-virt";
|
||||
#size-cells = <0x00000002>;
|
||||
#address-cells = <0x00000002>;
|
||||
compatible = "linux,dummy-virt";
|
||||
...
|
||||
pl031@9010000 {
|
||||
clock-names = "apb_pclk";
|
||||
clocks = <0x00008000>;
|
||||
interrupts = <0x00000000 0x00000002 0x00000004>;
|
||||
reg = <0x00000000 0x09010000 0x00000000 0x00001000>;
|
||||
compatible = "arm,pl031", "arm,primecell";
|
||||
};
|
||||
...
|
||||
}
|
||||
=> unbind /pl031@9010000
|
||||
=> date
|
||||
Cannot find RTC: err=-19
|
||||
=> dm tree
|
||||
Class Index Probed Driver Name
|
||||
-----------------------------------------------------------
|
||||
root 0 [ + ] root_driver root_driver
|
||||
...
|
||||
=> bind /pl031@9010000 rtc-pl031
|
||||
=> dm tree
|
||||
Class Index Probed Driver Name
|
||||
-----------------------------------------------------------
|
||||
root 0 [ + ] root_driver root_driver
|
||||
...
|
||||
rtc 0 [ ] rtc-pl031 |-- pl031@9010000
|
||||
=> date
|
||||
Date: 2023-06-22 (Thursday) Time: 15:14:51
|
||||
=> unbind rtc 0 rtc-pl031
|
||||
=> bind root 0 rtc-pl031
|
||||
=> date
|
||||
Date: 1980-08-19 (Tuesday) Time: 14:45:30
|
||||
|
||||
Obviously the device is not initialized correctly by the last bind command.
|
||||
|
||||
Configuration
|
||||
-------------
|
||||
|
||||
The bind command is only available if CONFIG_CMD_BIND=y.
|
||||
|
||||
Return code
|
||||
-----------
|
||||
|
||||
The return code $? is 0 (true) on success and 1 (false) on failure.
|
300
doc/usage/cmd/bootm.rst
Normal file
300
doc/usage/cmd/bootm.rst
Normal file
|
@ -0,0 +1,300 @@
|
|||
.. SPDX-License-Identifier: GPL-2.0+
|
||||
|
||||
bootm command
|
||||
=============
|
||||
|
||||
Synopsis
|
||||
--------
|
||||
|
||||
::
|
||||
|
||||
bootm [fit_addr]#<conf>[#extra-conf]
|
||||
bootm [[fit_addr]:<os_subimg>] [[<fit_addr2>]:<rd_subimg2>] [[<fit_addr3>]:<fdt_subimg>]
|
||||
|
||||
bootm <addr1> [[<addr2> [<addr3>]] # Legacy boot
|
||||
|
||||
Description
|
||||
-----------
|
||||
|
||||
The *bootm* command is used to boot an Operating System. It has a large number
|
||||
of options depending on what needs to be booted.
|
||||
|
||||
Note that the second form supports the first and/or second arguments to be
|
||||
omitted by using a hyphen '-' instead.
|
||||
|
||||
fit_addr / fit_addr2 / fit_addr3
|
||||
address of FIT to boot, defaults to CONFIG_SYS_LOAD_ADDR. See notes below.
|
||||
|
||||
conf
|
||||
configuration unit to boot (must be preceded by hash '#')
|
||||
|
||||
extra-conf
|
||||
extra configuration to boot. This is supported only for additional
|
||||
devicetree overlays to apply on the base device tree supplied by the first
|
||||
configuration unit.
|
||||
|
||||
os_subimg
|
||||
OS sub-image to boot (must be preceded by colon ':')
|
||||
|
||||
rd_subimg
|
||||
ramdisk sub-image to boot. Use a hyphen '-' if there is no ramdisk but an
|
||||
FDT is needed.
|
||||
|
||||
fdt_subimg
|
||||
FDT sub-image to boot
|
||||
|
||||
See below for legacy boot. Booting using :doc:`../fit/index` is recommended.
|
||||
|
||||
Note on current image address
|
||||
-----------------------------
|
||||
|
||||
When bootm is called without arguments, the image at current image address is
|
||||
booted. The current image address is the address set most recently by a load
|
||||
command, etc, and is by default equal to CONFIG_SYS_LOAD_ADDR. For example,
|
||||
consider the following commands::
|
||||
|
||||
tftp 200000 /tftpboot/kernel
|
||||
bootm
|
||||
# Last command is equivalent to:
|
||||
# bootm 200000
|
||||
|
||||
As shown above, with FIT the address portion of any argument
|
||||
can be omitted. If <addr3> is omitted, then it is assumed that image at
|
||||
<addr2> should be used. Similarly, when <addr2> is omitted, it is assumed that
|
||||
image at <addr1> should be used. If <addr1> is omitted, it is assumed that the
|
||||
current image address is to be used. For example, consider the following
|
||||
commands::
|
||||
|
||||
tftp 200000 /tftpboot/uImage
|
||||
bootm :kernel-1
|
||||
# Last command is equivalent to:
|
||||
# bootm 200000:kernel-1
|
||||
|
||||
tftp 200000 /tftpboot/uImage
|
||||
bootm 400000:kernel-1 :ramdisk-1
|
||||
# Last command is equivalent to:
|
||||
# bootm 400000:kernel-1 400000:ramdisk-1
|
||||
|
||||
tftp 200000 /tftpboot/uImage
|
||||
bootm :kernel-1 400000:ramdisk-1 :fdt-1
|
||||
# Last command is equivalent to:
|
||||
# bootm 200000:kernel-1 400000:ramdisk-1 400000:fdt-1
|
||||
|
||||
|
||||
Legacy boot
|
||||
-----------
|
||||
|
||||
U-Boot supports a legacy image format, enabled by `CONFIG_LEGACY_IMAGE_FORMAT`.
|
||||
This is not recommended as it is quite limited and insecure. Use
|
||||
:doc:`../fit/index` instead. It is documented here for old boards which still
|
||||
use it.
|
||||
|
||||
Arguments are:
|
||||
|
||||
addr1
|
||||
address of legacy image to boot. If the image includes a second component
|
||||
(ramdisk) it is used as well, unless the second parameter is hyphen '-'.
|
||||
|
||||
addr2
|
||||
address of legacy image to use as ramdisk
|
||||
|
||||
addr3
|
||||
address of legacy image to use as FDT
|
||||
|
||||
|
||||
Example syntax
|
||||
--------------
|
||||
|
||||
This section provides various examples of possible usage::
|
||||
|
||||
1. bootm /* boot image at the current address, equivalent to 2,3,8 */
|
||||
|
||||
This is equivalent to cases 2, 3 or 8, depending on the type of image at
|
||||
the current image address.
|
||||
|
||||
Boot method: see cases 2,3,8
|
||||
|
||||
Legacy uImage syntax
|
||||
~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
::
|
||||
|
||||
2. bootm <addr1> /* single image at <addr1> */
|
||||
|
||||
Boot kernel image located at <addr1>.
|
||||
|
||||
Boot method: non-FDT
|
||||
|
||||
::
|
||||
|
||||
3. bootm <addr1> /* multi-image at <addr1> */
|
||||
|
||||
First and second components of the image at <addr1> are assumed to be a
|
||||
kernel and a ramdisk, respectively. The kernel is booted with initrd loaded
|
||||
with the ramdisk from the image.
|
||||
|
||||
Boot method: depends on the number of components at <addr1>, and on whether
|
||||
U-Boot is compiled with OF support, which it should be.
|
||||
|
||||
==================== ======================== ========================
|
||||
Configuration 2 components 3 components
|
||||
(kernel, initrd) (kernel, initrd, fdt)
|
||||
==================== ======================== ========================
|
||||
#ifdef CONFIG_OF_* non-FDT FDT
|
||||
#ifndef CONFIG_OF_* non-FDT non-FDT
|
||||
==================== ======================== ========================
|
||||
|
||||
::
|
||||
|
||||
4. bootm <addr1> - /* multi-image at <addr1> */
|
||||
|
||||
Similar to case 3, but the kernel is booted without initrd. Second
|
||||
component of the multi-image is irrelevant (it can be a dummy, 1-byte file).
|
||||
|
||||
Boot method: see case 3
|
||||
|
||||
::
|
||||
|
||||
5. bootm <addr1> <addr2> /* single image at <addr1> */
|
||||
|
||||
Boot kernel image located at <addr1> with initrd loaded with ramdisk
|
||||
from the image at <addr2>.
|
||||
|
||||
Boot method: non-FDT
|
||||
|
||||
::
|
||||
|
||||
6. bootm <addr1> <addr2> <addr3> /* single image at <addr1> */
|
||||
|
||||
<addr1> is the address of a kernel image, <addr2> is the address of a
|
||||
ramdisk image, and <addr3> is the address of a FDT binary blob. Kernel is
|
||||
booted with initrd loaded with ramdisk from the image at <addr2>.
|
||||
|
||||
Boot method: FDT
|
||||
|
||||
::
|
||||
|
||||
7. bootm <addr1> - <addr3> /* single image at <addr1> */
|
||||
|
||||
<addr1> is the address of a kernel image and <addr3> is the address of
|
||||
a FDT binary blob. Kernel is booted without initrd.
|
||||
|
||||
Boot method: FDT
|
||||
|
||||
FIT syntax
|
||||
~~~~~~~~~~
|
||||
|
||||
::
|
||||
|
||||
8. bootm <addr1>
|
||||
|
||||
Image at <addr1> is assumed to contain a default configuration, which
|
||||
is booted.
|
||||
|
||||
Boot method: FDT or non-FDT, depending on whether the default configuration
|
||||
defines FDT
|
||||
|
||||
::
|
||||
|
||||
9. bootm [<addr1>]:<subimg1>
|
||||
|
||||
Similar to case 2: boot kernel stored in <subimg1> from the image at
|
||||
address <addr1>.
|
||||
|
||||
Boot method: non-FDT
|
||||
|
||||
::
|
||||
|
||||
10. bootm [<addr1>]#<conf>[#<extra-conf[#...]]
|
||||
|
||||
Boot configuration <conf> from the image at <addr1>.
|
||||
|
||||
Boot method: FDT or non-FDT, depending on whether the configuration given
|
||||
defines FDT
|
||||
|
||||
::
|
||||
|
||||
11. bootm [<addr1>]:<subimg1> [<addr2>]:<subimg2>
|
||||
|
||||
Equivalent to case 5: boot kernel stored in <subimg1> from the image
|
||||
at <addr1> with initrd loaded with ramdisk <subimg2> from the image at
|
||||
<addr2>.
|
||||
|
||||
Boot method: non-FDT
|
||||
|
||||
::
|
||||
|
||||
12. bootm [<addr1>]:<subimg1> [<addr2>]:<subimg2> [<addr3>]:<subimg3>
|
||||
|
||||
Equivalent to case 6: boot kernel stored in <subimg1> from the image
|
||||
at <addr1> with initrd loaded with ramdisk <subimg2> from the image at
|
||||
<addr2>, and pass FDT blob <subimg3> from the image at <addr3>.
|
||||
|
||||
Boot method: FDT
|
||||
|
||||
::
|
||||
|
||||
13. bootm [<addr1>]:<subimg1> [<addr2>]:<subimg2> <addr3>
|
||||
|
||||
Similar to case 12, the difference being that <addr3> is the address
|
||||
of FDT binary blob that is to be passed to the kernel.
|
||||
|
||||
Boot method: FDT
|
||||
|
||||
::
|
||||
|
||||
14. bootm [<addr1>]:<subimg1> - [<addr3>]:<subimg3>
|
||||
|
||||
Equivalent to case 7: boot kernel stored in <subimg1> from the image
|
||||
at <addr1>, without initrd, and pass FDT blob <subimg3> from the image at
|
||||
<addr3>.
|
||||
|
||||
Boot method: FDT
|
||||
|
||||
15. bootm [<addr1>]:<subimg1> - <addr3>
|
||||
|
||||
Similar to case 14, the difference being that <addr3> is the address
|
||||
of the FDT binary blob that is to be passed to the kernel.
|
||||
|
||||
Boot method: FDT
|
||||
|
||||
|
||||
|
||||
Example
|
||||
-------
|
||||
|
||||
boot kernel "kernel-1" stored in a new uImage located at 200000::
|
||||
|
||||
bootm 200000:kernel-1
|
||||
|
||||
boot configuration "cfg-1" from a new uImage located at 200000::
|
||||
|
||||
bootm 200000#cfg-1
|
||||
|
||||
boot configuration "cfg-1" with extra "cfg-2" from a new uImage located
|
||||
at 200000::
|
||||
|
||||
bootm 200000#cfg-1#cfg-2
|
||||
|
||||
boot "kernel-1" from a new uImage at 200000 with initrd "ramdisk-2" found in
|
||||
some other new uImage stored at address 800000::
|
||||
|
||||
bootm 200000:kernel-1 800000:ramdisk-2
|
||||
|
||||
boot "kernel-2" from a new uImage at 200000, with initrd "ramdisk-1" and FDT
|
||||
"fdt-1", both stored in some other new uImage located at 800000::
|
||||
|
||||
bootm 200000:kernel-1 800000:ramdisk-1 800000:fdt-1
|
||||
|
||||
boot kernel "kernel-2" with initrd "ramdisk-2", both stored in a new uImage
|
||||
at address 200000, with a raw FDT blob stored at address 600000::
|
||||
|
||||
bootm 200000:kernel-2 200000:ramdisk-2 600000
|
||||
|
||||
boot kernel "kernel-2" from new uImage at 200000 with FDT "fdt-1" from the
|
||||
same new uImage::
|
||||
|
||||
bootm 200000:kernel-2 - 200000:fdt-1
|
||||
|
||||
.. sectionauthor:: Bartlomiej Sieka <tur@semihalf.com>
|
||||
.. sectionauthor:: Simon Glass <sjg@chromium.org>
|
81
doc/usage/cmd/imxtract.rst
Normal file
81
doc/usage/cmd/imxtract.rst
Normal file
|
@ -0,0 +1,81 @@
|
|||
.. SPDX-License-Identifier: GPL-2.0+:
|
||||
|
||||
imxtract command
|
||||
================
|
||||
|
||||
Synopsis
|
||||
--------
|
||||
|
||||
::
|
||||
|
||||
imxtract addr part [dest]
|
||||
imxtract addr uname [dest]
|
||||
|
||||
Description
|
||||
-----------
|
||||
|
||||
The imxtract command is used to extract a part of a multi-image file.
|
||||
|
||||
Two different file formats are supported:
|
||||
|
||||
* FIT images
|
||||
* legacy U-Boot images
|
||||
|
||||
addr
|
||||
Address of the multi-image file from which a part shall be extracted
|
||||
|
||||
part
|
||||
Index (hexadecimal) of the part of a legacy U-Boot image to be extracted
|
||||
|
||||
uname
|
||||
Name of the part of a FIT image to be extracted
|
||||
|
||||
dest
|
||||
Destination address (defaults to 0x0)
|
||||
|
||||
The value of environment variable *verify* controls if the hashes and
|
||||
signatures of FIT images or the check sums of legacy U-Boot images are checked.
|
||||
To enable checking set *verify* to one of the values *1*, *yes*, *true*.
|
||||
(Actually only the first letter is checked disregarding the case.)
|
||||
|
||||
To list the parts of an image the *iminfo* command can be used.
|
||||
|
||||
Examples
|
||||
--------
|
||||
|
||||
With verify=no incorrect hashes, signatures, or check sums don't stop the
|
||||
extraction. But correct hashes are still indicated in the output
|
||||
(here: md5, sha1).
|
||||
|
||||
.. code-block:: console
|
||||
|
||||
=> setenv verify no
|
||||
=> imxtract $loadaddr kernel-1 $kernel_addr_r
|
||||
## Copying 'kernel-1' subimage from FIT image at 40200000 ...
|
||||
md5+ sha1+ Loading part 0 ... OK
|
||||
=>
|
||||
|
||||
With verify=yes incorrect hashes, signatures, or check sums stop the extraction.
|
||||
|
||||
.. code-block:: console
|
||||
|
||||
=> setenv verify yes
|
||||
=> imxtract $loadaddr kernel-1 $kernel_addr_r
|
||||
## Copying 'kernel-1' subimage from FIT image at 40200000 ...
|
||||
md5 error!
|
||||
Bad hash value for 'hash-1' hash node in 'kernel-1' image node
|
||||
Bad Data Hash
|
||||
=>
|
||||
|
||||
Configuration
|
||||
-------------
|
||||
|
||||
The imxtract command is only available if CONFIG_CMD_XIMG=y. Support for FIT
|
||||
images requires CONFIG_FIT=y. Support for legacy U-Boot images requires
|
||||
CONFIG_LEGACY_IMAGE_FORMAT=y.
|
||||
|
||||
Return value
|
||||
------------
|
||||
|
||||
On success the return value $? of the command is 0 (true). On failure the
|
||||
return value is 1 (false).
|
|
@ -13,7 +13,7 @@ Synopsis
|
|||
Description
|
||||
-----------
|
||||
|
||||
The loady command is used to transfer a file to the device via the serial line
|
||||
The loadb command is used to transfer a file to the device via the serial line
|
||||
using the Kermit protocol.
|
||||
|
||||
The number of transferred bytes is saved in environment variable filesize.
|
||||
|
|
96
doc/usage/cmd/loads.rst
Normal file
96
doc/usage/cmd/loads.rst
Normal file
|
@ -0,0 +1,96 @@
|
|||
.. SPDX-License-Identifier: GPL-2.0+:
|
||||
|
||||
loads command
|
||||
=============
|
||||
|
||||
Synopsis
|
||||
--------
|
||||
|
||||
::
|
||||
|
||||
loads [offset [baud]]
|
||||
|
||||
Description
|
||||
-----------
|
||||
|
||||
The loads command is used to transfer a file to the device via the serial line
|
||||
using the Motorola S-record file format.
|
||||
|
||||
offset
|
||||
offset added to the addresses in the S-record file
|
||||
|
||||
baud
|
||||
baud rate to use for download. This parameter is only available if
|
||||
CONFIG_SYS_LOADS_BAUD_CHANGE=y
|
||||
|
||||
Example
|
||||
-------
|
||||
|
||||
As example file to be transferred we use a script printing 'hello s-record'.
|
||||
Here are the commands to create the S-record file:
|
||||
|
||||
.. code-block:: bash
|
||||
|
||||
$ echo 'echo hello s-record' > script.txt
|
||||
$ mkimage -T script -d script.txt script.scr
|
||||
Image Name:
|
||||
Created: Sun Jun 25 10:35:02 2023
|
||||
Image Type: PowerPC Linux Script (gzip compressed)
|
||||
Data Size: 28 Bytes = 0.03 KiB = 0.00 MiB
|
||||
Load Address: 00000000
|
||||
Entry Point: 00000000
|
||||
Contents:
|
||||
Image 0: 20 Bytes = 0.02 KiB = 0.00 MiB
|
||||
$ srec_cat script.scr -binary -CRLF -Output script.srec
|
||||
$ echo -e "S9030000FC\r" >> script.srec
|
||||
$ cat script.srec
|
||||
S0220000687474703A2F2F737265636F72642E736F75726365666F7267652E6E65742F1D
|
||||
S1230000270519566D773EB6649815E30000001700000000000000003DE3D97005070601E2
|
||||
S12300200000000000000000000000000000000000000000000000000000000000000000BC
|
||||
S11A00400000000F0000000068656C6C6F20732D7265636F72640A39
|
||||
S5030003F9
|
||||
S9030000FC
|
||||
$
|
||||
|
||||
The load address in the first S1 record is 0x0000.
|
||||
|
||||
The terminal emulation program picocom is invoked with *cat* as the send
|
||||
command to transfer the file.
|
||||
|
||||
.. code-block::
|
||||
|
||||
picocom --send-cmd 'cat' --baud 115200 /dev/ttyUSB0
|
||||
|
||||
After entering the *loads* command the key sequence <CTRL-A><CTRL-S> is used to
|
||||
let picocom prompt for the file name. Picocom invokes the program *cat* for the
|
||||
file transfer. The loaded script is executed using the *source* command.
|
||||
|
||||
.. code-block::
|
||||
|
||||
=> loads $scriptaddr
|
||||
## Ready for S-Record download ...
|
||||
|
||||
*** file: script.srec
|
||||
$ cat script.srec
|
||||
|
||||
*** exit status: 0 ***
|
||||
|
||||
## First Load Addr = 0x4FC00000
|
||||
## Last Load Addr = 0x4FC0005B
|
||||
## Total Size = 0x0000005C = 92 Bytes
|
||||
## Start Addr = 0x00000000
|
||||
=> source $scriptaddr
|
||||
## Executing script at 4fc00000
|
||||
hello s-record
|
||||
=>
|
||||
|
||||
Configuration
|
||||
-------------
|
||||
|
||||
The command is only available if CONFIG_CMD_LOADS=y. The parameter to set the
|
||||
baud rate is only available if CONFIG_SYS_LOADS_BAUD_CHANGE=y
|
||||
|
||||
Return value
|
||||
------------
|
||||
|
||||
The return value $? is 0 (true) on success, 1 (false) otherwise.
|
88
doc/usage/cmd/saves.rst
Normal file
88
doc/usage/cmd/saves.rst
Normal file
|
@ -0,0 +1,88 @@
|
|||
.. SPDX-License-Identifier: GPL-2.0+:
|
||||
|
||||
saves command
|
||||
=============
|
||||
|
||||
Synopsis
|
||||
--------
|
||||
|
||||
::
|
||||
|
||||
saves [offset [size [baud]]]
|
||||
|
||||
Description
|
||||
-----------
|
||||
|
||||
The *saves* command is used to transfer a file from the device via the serial
|
||||
line using the Motorola S-record file format.
|
||||
|
||||
offset
|
||||
start address of memory area to save, defaults to 0x0
|
||||
|
||||
size
|
||||
size of memory area to save, defaults to 0x0
|
||||
|
||||
baud
|
||||
baud rate to use for upload. This parameter is only available if
|
||||
CONFIG_SYS_LOADS_BAUD_CHANGE=y
|
||||
|
||||
Example
|
||||
-------
|
||||
|
||||
In the example the *screen* command is used to connect to the U-Boot serial
|
||||
console.
|
||||
|
||||
In a first screen session a file is loaded from the SD-card and the *saves*
|
||||
command is invoked. <CTRL+A><k> is used to kill the screen session.
|
||||
|
||||
A new screen session is started which logs the output to a file and the
|
||||
<ENTER> key is hit to start the file output. <CTRL+A><k> is issued to kill the
|
||||
screen session.
|
||||
|
||||
The log file is converted to a binary file using the *srec_cat* command.
|
||||
A negative offset of -1337982976 (= -0x4c000000) is applied to compensate for
|
||||
the offset used in the *saves* command.
|
||||
|
||||
.. code-block::
|
||||
|
||||
$ screen /dev/ttyUSB0 115200
|
||||
=> echo $scriptaddr
|
||||
0x4FC00000
|
||||
=> load mmc 0:1 $scriptaddr boot.txt
|
||||
124 bytes read in 1 ms (121.1 KiB/s)
|
||||
=> saves $scriptaddr $filesize
|
||||
## Ready for S-Record upload, press ENTER to proceed ...
|
||||
Really kill this window [y/n]
|
||||
$ screen -Logfile out.srec -L /dev/ttyUSB0 115200
|
||||
S0030000FC
|
||||
S3154FC00000736574656E76206175746F6C6F616420AD
|
||||
S3154FC000106E6F0A646863700A6C6F6164206D6D633E
|
||||
S3154FC0002020303A3120246664745F616464725F72B3
|
||||
S3154FC00030206474620A6C6F6164206D6D6320303AC0
|
||||
S3154FC000403120246B65726E656C5F616464725F72DA
|
||||
S3154FC0005020736E702E6566690A626F6F74656669C6
|
||||
S3154FC0006020246B65726E656C5F616464725F7220CB
|
||||
S3114FC00070246664745F616464725F720A38
|
||||
S70500000000FA
|
||||
## S-Record upload complete
|
||||
=>
|
||||
Really kill this window [y/n]
|
||||
$ srec_cat out.srec -offset -1337982976 -Output out.txt -binary 2>/dev/null
|
||||
$ cat out.txt
|
||||
setenv autoload no
|
||||
dhcp
|
||||
load mmc 0:1 $fdt_addr_r dtb
|
||||
load mmc 0:1 $kernel_addr_r snp.efi
|
||||
bootefi $kernel_addr_r $fdt_addr_r
|
||||
$
|
||||
|
||||
Configuration
|
||||
-------------
|
||||
|
||||
The command is only available if CONFIG_CMD_SAVES=y. The parameter to set the
|
||||
baud rate is only available if CONFIG_SYS_LOADS_BAUD_CHANGE=y
|
||||
|
||||
Return value
|
||||
------------
|
||||
|
||||
The return value $? is 0 (true) on success, 1 (false) otherwise.
|
|
@ -22,7 +22,7 @@ Two formats for script files exist:
|
|||
* Flat Image Tree (FIT)
|
||||
|
||||
The benefit of the FIT images is that they can be signed and verifed as
|
||||
decribed in :download:`signature.txt <../../uImage.FIT/signature.txt>`.
|
||||
described in :doc:`../fit/signature`.
|
||||
|
||||
Both formats can be created with the mkimage tool.
|
||||
|
||||
|
|
95
doc/usage/cmd/unbind.rst
Normal file
95
doc/usage/cmd/unbind.rst
Normal file
|
@ -0,0 +1,95 @@
|
|||
.. SPDX-License-Identifier: GPL-2.0+:
|
||||
|
||||
unbind command
|
||||
==============
|
||||
|
||||
Synopsis
|
||||
--------
|
||||
|
||||
::
|
||||
|
||||
unbind <node path>
|
||||
unbind <class> <index>
|
||||
unbind <class> <index> <driver>
|
||||
|
||||
Description
|
||||
-----------
|
||||
|
||||
The unbind command is used to unbind a device from a driver. This makes the
|
||||
device unavailable in U-Boot.
|
||||
|
||||
node path
|
||||
path of the device's device-tree node
|
||||
|
||||
class
|
||||
device class name
|
||||
|
||||
index
|
||||
index of the device in the device class
|
||||
|
||||
driver
|
||||
device driver name
|
||||
|
||||
Example
|
||||
-------
|
||||
|
||||
Given a system with a real time clock device with device path */pl031@9010000*
|
||||
and using driver rtc-pl031 unbinding and binding of the device is demonstrated
|
||||
using the three alternative unbind syntaxes.
|
||||
|
||||
.. code-block::
|
||||
|
||||
=> dm tree
|
||||
Class Index Probed Driver Name
|
||||
-----------------------------------------------------------
|
||||
root 0 [ + ] root_driver root_driver
|
||||
...
|
||||
rtc 0 [ ] rtc-pl031 |-- pl031@9010000
|
||||
...
|
||||
=> fdt addr $fdtcontroladdr
|
||||
Working FDT set to 7ed7fdb0
|
||||
=> fdt print
|
||||
/ {
|
||||
interrupt-parent = <0x00008003>;
|
||||
model = "linux,dummy-virt";
|
||||
#size-cells = <0x00000002>;
|
||||
#address-cells = <0x00000002>;
|
||||
compatible = "linux,dummy-virt";
|
||||
...
|
||||
pl031@9010000 {
|
||||
clock-names = "apb_pclk";
|
||||
clocks = <0x00008000>;
|
||||
interrupts = <0x00000000 0x00000002 0x00000004>;
|
||||
reg = <0x00000000 0x09010000 0x00000000 0x00001000>;
|
||||
compatible = "arm,pl031", "arm,primecell";
|
||||
};
|
||||
...
|
||||
}
|
||||
=> unbind /pl031@9010000
|
||||
=> dm tree
|
||||
Class Index Probed Driver Name
|
||||
-----------------------------------------------------------
|
||||
root 0 [ + ] root_driver root_driver
|
||||
...
|
||||
=> unbind /pl031@9010000
|
||||
Cannot find a device with path /pl031@9010000
|
||||
=> bind /pl031@9010000 rtc-pl031
|
||||
=> dm tree
|
||||
Class Index Probed Driver Name
|
||||
-----------------------------------------------------------
|
||||
root 0 [ + ] root_driver root_driver
|
||||
...
|
||||
rtc 0 [ ] rtc-pl031 |-- pl031@9010000
|
||||
=> unbind rtc 0
|
||||
=> bind /pl031@9010000 rtc-pl031
|
||||
=> unbind rtc 0 rtc-pl031
|
||||
|
||||
Configuration
|
||||
-------------
|
||||
|
||||
The unbind command is only available if CONFIG_CMD_BIND=y.
|
||||
|
||||
Return code
|
||||
-----------
|
||||
|
||||
The return code $? is 0 (true) on success and 1 (false) on failure.
|
612
doc/usage/fit/beaglebone_vboot.rst
Normal file
612
doc/usage/fit/beaglebone_vboot.rst
Normal file
|
@ -0,0 +1,612 @@
|
|||
.. SPDX-License-Identifier: GPL-2.0+
|
||||
|
||||
Verified Boot on the Beaglebone Black
|
||||
=====================================
|
||||
|
||||
Introduction
|
||||
------------
|
||||
|
||||
Before reading this, please read :doc:`verified-boot` and :doc:`signature`.
|
||||
These instructions are for mainline U-Boot from v2014.07 onwards.
|
||||
|
||||
There is quite a bit of documentation in this directory describing how
|
||||
verified boot works in U-Boot. There is also a test which runs through the
|
||||
entire process of signing an image and running U-Boot (sandbox) to check it.
|
||||
However, it might be useful to also have an example on a real board.
|
||||
|
||||
Beaglebone Black is a fairly common board so seems to be a reasonable choice
|
||||
for an example of how to enable verified boot using U-Boot.
|
||||
|
||||
First a note that may to help avoid confusion. U-Boot and Linux both use
|
||||
device tree. They may use the same device tree source, but it is seldom useful
|
||||
for them to use the exact same binary from the same place. More typically,
|
||||
U-Boot has its device tree packaged with it, and the kernel's device tree is
|
||||
packaged with the kernel. In particular this is important with verified boot,
|
||||
since U-Boot's device tree must be immutable. If it can be changed then the
|
||||
public keys can be changed and verified boot is useless. An attacker can
|
||||
simply generate a new key and put his public key into U-Boot so that
|
||||
everything verifies. On the other hand the kernel's device tree typically
|
||||
changes when the kernel changes, so it is useful to package an updated device
|
||||
tree with the kernel binary. U-Boot supports the latter with its flexible FIT
|
||||
format (Flat Image Tree).
|
||||
|
||||
|
||||
Overview
|
||||
--------
|
||||
|
||||
The steps are roughly as follows:
|
||||
|
||||
#. Build U-Boot for the board, with the verified boot options enabled.
|
||||
|
||||
#. Obtain a suitable Linux kernel
|
||||
|
||||
#. Create a Image Tree Source file (ITS) file describing how you want the
|
||||
kernel to be packaged, compressed and signed.
|
||||
|
||||
#. Create a key pair
|
||||
|
||||
#. Sign the kernel
|
||||
|
||||
#. Put the public key into U-Boot's image
|
||||
|
||||
#. Put U-Boot and the kernel onto the board
|
||||
|
||||
#. Try it
|
||||
|
||||
|
||||
Step 1: Build U-Boot
|
||||
--------------------
|
||||
|
||||
a. Set up the environment variable to point to your toolchain. You will need
|
||||
this for U-Boot and also for the kernel if you build it. For example if you
|
||||
installed a Linaro version manually it might be something like::
|
||||
|
||||
export CROSS_COMPILE=/opt/linaro/gcc-linaro-arm-linux-gnueabihf-4.8-2013.08_linux/bin/arm-linux-gnueabihf-
|
||||
|
||||
or if you just installed gcc-arm-linux-gnueabi then it might be::
|
||||
|
||||
export CROSS_COMPILE=arm-linux-gnueabi-
|
||||
|
||||
b. Configure and build U-Boot with verified boot enabled::
|
||||
|
||||
export UBOOT=/path/to/u-boot
|
||||
cd $UBOOT
|
||||
# You can add -j10 if you have 10 CPUs to make it faster
|
||||
make O=b/am335x_boneblack_vboot am335x_boneblack_vboot_config all
|
||||
export UOUT=$UBOOT/b/am335x_boneblack_vboot
|
||||
|
||||
c. You will now have a U-Boot image::
|
||||
|
||||
file b/am335x_boneblack_vboot/u-boot-dtb.img
|
||||
b/am335x_boneblack_vboot/u-boot-dtb.img: u-boot legacy uImage,
|
||||
U-Boot 2014.07-rc2-00065-g2f69f8, Firmware/ARM, Firmware Image
|
||||
(Not compressed), 395375 bytes, Sat May 31 16:19:04 2014,
|
||||
Load Address: 0x80800000, Entry Point: 0x00000000,
|
||||
Header CRC: 0x0ABD6ACA, Data CRC: 0x36DEF7E4
|
||||
|
||||
|
||||
Step 2: Build Linux
|
||||
--------------------
|
||||
|
||||
a. Find the kernel image ('Image') and device tree (.dtb) file you plan to
|
||||
use. In our case it is am335x-boneblack.dtb and it is built with the kernel.
|
||||
At the time of writing an SD Boot image can be obtained from here::
|
||||
|
||||
http://www.elinux.org/Beagleboard:Updating_The_Software#Image_For_Booting_From_microSD
|
||||
|
||||
You can write this to an SD card and then mount it to extract the kernel and
|
||||
device tree files.
|
||||
|
||||
You can also build a kernel. Instructions for this are are here::
|
||||
|
||||
http://elinux.org/Building_BBB_Kernel
|
||||
|
||||
or you can use your favourite search engine. Following these instructions
|
||||
produces a kernel Image and device tree files. For the record the steps
|
||||
were::
|
||||
|
||||
export KERNEL=/path/to/kernel
|
||||
cd $KERNEL
|
||||
git clone git://github.com/beagleboard/kernel.git .
|
||||
git checkout v3.14
|
||||
./patch.sh
|
||||
cp configs/beaglebone kernel/arch/arm/configs/beaglebone_defconfig
|
||||
cd kernel
|
||||
make beaglebone_defconfig
|
||||
make uImage dtbs # -j10 if you have 10 CPUs
|
||||
export OKERNEL=$KERNEL/kernel/arch/arm/boot
|
||||
|
||||
b. You now have the 'Image' and 'am335x-boneblack.dtb' files needed to boot.
|
||||
|
||||
|
||||
Step 3: Create the ITS
|
||||
----------------------
|
||||
|
||||
Set up a directory for your work::
|
||||
|
||||
export WORK=/path/to/dir
|
||||
cd $WORK
|
||||
|
||||
Put this into a file in that directory called sign.its::
|
||||
|
||||
/dts-v1/;
|
||||
|
||||
/ {
|
||||
description = "Beaglebone black";
|
||||
#address-cells = <1>;
|
||||
|
||||
images {
|
||||
kernel {
|
||||
data = /incbin/("Image.lzo");
|
||||
type = "kernel";
|
||||
arch = "arm";
|
||||
os = "linux";
|
||||
compression = "lzo";
|
||||
load = <0x80008000>;
|
||||
entry = <0x80008000>;
|
||||
hash-1 {
|
||||
algo = "sha1";
|
||||
};
|
||||
};
|
||||
fdt-1 {
|
||||
description = "beaglebone-black";
|
||||
data = /incbin/("am335x-boneblack.dtb");
|
||||
type = "flat_dt";
|
||||
arch = "arm";
|
||||
compression = "none";
|
||||
hash-1 {
|
||||
algo = "sha1";
|
||||
};
|
||||
};
|
||||
};
|
||||
configurations {
|
||||
default = "conf-1";
|
||||
conf-1 {
|
||||
kernel = "kernel";
|
||||
fdt = "fdt-1";
|
||||
signature-1 {
|
||||
algo = "sha1,rsa2048";
|
||||
key-name-hint = "dev";
|
||||
sign-images = "fdt", "kernel";
|
||||
};
|
||||
};
|
||||
};
|
||||
};
|
||||
|
||||
|
||||
The explanation for this is all in the documentation you have already read.
|
||||
But briefly it packages a kernel and device tree, and provides a single
|
||||
configuration to be signed with a key named 'dev'. The kernel is compressed
|
||||
with LZO to make it smaller.
|
||||
|
||||
|
||||
Step 4: Create a key pair
|
||||
-------------------------
|
||||
|
||||
See :doc:`signature` for details on this step::
|
||||
|
||||
cd $WORK
|
||||
mkdir keys
|
||||
openssl genrsa -F4 -out keys/dev.key 2048
|
||||
openssl req -batch -new -x509 -key keys/dev.key -out keys/dev.crt
|
||||
|
||||
Note: keys/dev.key contains your private key and is very secret. If anyone
|
||||
gets access to that file they can sign kernels with it. Keep it secure.
|
||||
|
||||
|
||||
Step 5: Sign the kernel
|
||||
-----------------------
|
||||
|
||||
We need to use mkimage (which was built when you built U-Boot) to package the
|
||||
Linux kernel into a FIT (Flat Image Tree, a flexible file format that U-Boot
|
||||
can load) using the ITS file you just created.
|
||||
|
||||
At the same time we must put the public key into U-Boot device tree, with the
|
||||
'required' property, which tells U-Boot that this key must be verified for the
|
||||
image to be valid. You will make this key available to U-Boot for booting in
|
||||
step 6::
|
||||
|
||||
ln -s $OKERNEL/dts/am335x-boneblack.dtb
|
||||
ln -s $OKERNEL/Image
|
||||
ln -s $UOUT/u-boot-dtb.img
|
||||
cp $UOUT/arch/arm/dts/am335x-boneblack.dtb am335x-boneblack-pubkey.dtb
|
||||
lzop Image
|
||||
$UOUT/tools/mkimage -f sign.its -K am335x-boneblack-pubkey.dtb -k keys -r image.fit
|
||||
|
||||
You should see something like this::
|
||||
|
||||
FIT description: Beaglebone black
|
||||
Created: Sun Jun 1 12:50:30 2014
|
||||
Image 0 (kernel)
|
||||
Description: unavailable
|
||||
Created: Sun Jun 1 12:50:30 2014
|
||||
Type: Kernel Image
|
||||
Compression: lzo compressed
|
||||
Data Size: 7790938 Bytes = 7608.34 kB = 7.43 MB
|
||||
Architecture: ARM
|
||||
OS: Linux
|
||||
Load Address: 0x80008000
|
||||
Entry Point: 0x80008000
|
||||
Hash algo: sha1
|
||||
Hash value: c94364646427e10f423837e559898ef02c97b988
|
||||
Image 1 (fdt-1)
|
||||
Description: beaglebone-black
|
||||
Created: Sun Jun 1 12:50:30 2014
|
||||
Type: Flat Device Tree
|
||||
Compression: uncompressed
|
||||
Data Size: 31547 Bytes = 30.81 kB = 0.03 MB
|
||||
Architecture: ARM
|
||||
Hash algo: sha1
|
||||
Hash value: cb09202f889d824f23b8e4404b781be5ad38a68d
|
||||
Default Configuration: 'conf-1'
|
||||
Configuration 0 (conf-1)
|
||||
Description: unavailable
|
||||
Kernel: kernel
|
||||
FDT: fdt-1
|
||||
|
||||
|
||||
Now am335x-boneblack-pubkey.dtb contains the public key and image.fit contains
|
||||
the signed kernel. Jump to step 6 if you like, or continue reading to increase
|
||||
your understanding.
|
||||
|
||||
You can also run fit_check_sign to check it::
|
||||
|
||||
$UOUT/tools/fit_check_sign -f image.fit -k am335x-boneblack-pubkey.dtb
|
||||
|
||||
which results in::
|
||||
|
||||
Verifying Hash Integrity ... sha1,rsa2048:dev+
|
||||
## Loading kernel from FIT Image at 7fc6ee469000 ...
|
||||
Using 'conf-1' configuration
|
||||
Verifying Hash Integrity ...
|
||||
sha1,rsa2048:dev+
|
||||
OK
|
||||
|
||||
Trying 'kernel' kernel subimage
|
||||
Description: unavailable
|
||||
Created: Sun Jun 1 12:50:30 2014
|
||||
Type: Kernel Image
|
||||
Compression: lzo compressed
|
||||
Data Size: 7790938 Bytes = 7608.34 kB = 7.43 MB
|
||||
Architecture: ARM
|
||||
OS: Linux
|
||||
Load Address: 0x80008000
|
||||
Entry Point: 0x80008000
|
||||
Hash algo: sha1
|
||||
Hash value: c94364646427e10f423837e559898ef02c97b988
|
||||
Verifying Hash Integrity ...
|
||||
sha1+
|
||||
OK
|
||||
|
||||
Unimplemented compression type 4
|
||||
## Loading fdt from FIT Image at 7fc6ee469000 ...
|
||||
Using 'conf-1' configuration
|
||||
Trying 'fdt-1' fdt subimage
|
||||
Description: beaglebone-black
|
||||
Created: Sun Jun 1 12:50:30 2014
|
||||
Type: Flat Device Tree
|
||||
Compression: uncompressed
|
||||
Data Size: 31547 Bytes = 30.81 kB = 0.03 MB
|
||||
Architecture: ARM
|
||||
Hash algo: sha1
|
||||
Hash value: cb09202f889d824f23b8e4404b781be5ad38a68d
|
||||
Verifying Hash Integrity ...
|
||||
sha1+
|
||||
OK
|
||||
|
||||
Loading Flat Device Tree ... OK
|
||||
|
||||
## Loading ramdisk from FIT Image at 7fc6ee469000 ...
|
||||
Using 'conf-1' configuration
|
||||
Could not find subimage node
|
||||
|
||||
Signature check OK
|
||||
|
||||
|
||||
At the top, you see "sha1,rsa2048:dev+". This means that it checked an RSA key
|
||||
of size 2048 bits using SHA1 as the hash algorithm. The key name checked was
|
||||
'dev' and the '+' means that it verified. If it showed '-' that would be bad.
|
||||
|
||||
Once the configuration is verified it is then possible to rely on the hashes
|
||||
in each image referenced by that configuration. So fit_check_sign goes on to
|
||||
load each of the images. We have a kernel and an FDT but no ramkdisk. In each
|
||||
case fit_check_sign checks the hash and prints sha1+ meaning that the SHA1
|
||||
hash verified. This means that none of the images has been tampered with.
|
||||
|
||||
There is a test in test/vboot which uses U-Boot's sandbox build to verify that
|
||||
the above flow works.
|
||||
|
||||
But it is fun to do this by hand, so you can load image.fit into a hex editor
|
||||
like ghex, and change a byte in the kernel::
|
||||
|
||||
$UOUT/tools/fit_info -f image.fit -n /images/kernel -p data
|
||||
NAME: kernel
|
||||
LEN: 7790938
|
||||
OFF: 168
|
||||
|
||||
This tells us that the kernel starts at byte offset 168 (decimal) in image.fit
|
||||
and extends for about 7MB. Try changing a byte at 0x2000 (say) and run
|
||||
fit_check_sign again. You should see something like::
|
||||
|
||||
Verifying Hash Integrity ... sha1,rsa2048:dev+
|
||||
## Loading kernel from FIT Image at 7f5a39571000 ...
|
||||
Using 'conf-1' configuration
|
||||
Verifying Hash Integrity ...
|
||||
sha1,rsa2048:dev+
|
||||
OK
|
||||
|
||||
Trying 'kernel' kernel subimage
|
||||
Description: unavailable
|
||||
Created: Sun Jun 1 13:09:21 2014
|
||||
Type: Kernel Image
|
||||
Compression: lzo compressed
|
||||
Data Size: 7790938 Bytes = 7608.34 kB = 7.43 MB
|
||||
Architecture: ARM
|
||||
OS: Linux
|
||||
Load Address: 0x80008000
|
||||
Entry Point: 0x80008000
|
||||
Hash algo: sha1
|
||||
Hash value: c94364646427e10f423837e559898ef02c97b988
|
||||
Verifying Hash Integrity ...
|
||||
sha1 error
|
||||
Bad hash value for 'hash-1' hash node in 'kernel' image node
|
||||
Bad Data Hash
|
||||
|
||||
## Loading fdt from FIT Image at 7f5a39571000 ...
|
||||
Using 'conf-1' configuration
|
||||
Trying 'fdt-1' fdt subimage
|
||||
Description: beaglebone-black
|
||||
Created: Sun Jun 1 13:09:21 2014
|
||||
Type: Flat Device Tree
|
||||
Compression: uncompressed
|
||||
Data Size: 31547 Bytes = 30.81 kB = 0.03 MB
|
||||
Architecture: ARM
|
||||
Hash algo: sha1
|
||||
Hash value: cb09202f889d824f23b8e4404b781be5ad38a68d
|
||||
Verifying Hash Integrity ...
|
||||
sha1+
|
||||
OK
|
||||
|
||||
Loading Flat Device Tree ... OK
|
||||
|
||||
## Loading ramdisk from FIT Image at 7f5a39571000 ...
|
||||
Using 'conf-1' configuration
|
||||
Could not find subimage node
|
||||
|
||||
Signature check Bad (error 1)
|
||||
|
||||
|
||||
It has detected the change in the kernel.
|
||||
|
||||
You can also be sneaky and try to switch images, using the libfdt utilities
|
||||
that come with dtc (package name is device-tree-compiler but you will need a
|
||||
recent version like 1.4::
|
||||
|
||||
dtc -v
|
||||
Version: DTC 1.4.0
|
||||
|
||||
First we can check which nodes are actually hashed by the configuration::
|
||||
|
||||
$ fdtget -l image.fit /
|
||||
images
|
||||
configurations
|
||||
|
||||
$ fdtget -l image.fit /configurations
|
||||
conf-1
|
||||
fdtget -l image.fit /configurations/conf-1
|
||||
signature-1
|
||||
|
||||
$ fdtget -p image.fit /configurations/conf-1/signature-1
|
||||
hashed-strings
|
||||
hashed-nodes
|
||||
timestamp
|
||||
signer-version
|
||||
signer-name
|
||||
value
|
||||
algo
|
||||
key-name-hint
|
||||
sign-images
|
||||
|
||||
$ fdtget image.fit /configurations/conf-1/signature-1 hashed-nodes
|
||||
/ /configurations/conf-1 /images/fdt-1 /images/fdt-1/hash /images/kernel /images/kernel/hash-1
|
||||
|
||||
This gives us a bit of a look into the signature that mkimage added. Note you
|
||||
can also use fdtdump to list the entire device tree.
|
||||
|
||||
Say we want to change the kernel that this configuration uses
|
||||
(/images/kernel). We could just put a new kernel in the image, but we will
|
||||
need to change the hash to match. Let's simulate that by changing a byte of
|
||||
the hash::
|
||||
|
||||
fdtget -tx image.fit /images/kernel/hash-1 value
|
||||
c9436464 6427e10f 423837e5 59898ef0 2c97b988
|
||||
fdtput -tx image.fit /images/kernel/hash-1 value c9436464 6427e10f 423837e5 59898ef0 2c97b981
|
||||
|
||||
Now check it again::
|
||||
|
||||
$UOUT/tools/fit_check_sign -f image.fit -k am335x-boneblack-pubkey.dtb
|
||||
Verifying Hash Integrity ... sha1,rsa2048:devrsa_verify_with_keynode: RSA failed to verify: -13
|
||||
rsa_verify_with_keynode: RSA failed to verify: -13
|
||||
-
|
||||
Failed to verify required signature 'key-dev'
|
||||
Signature check Bad (error 1)
|
||||
|
||||
This time we don't even get as far as checking the images, since the
|
||||
configuration signature doesn't match. We can't change any hashes without the
|
||||
signature check noticing. The configuration is essentially locked. U-Boot has
|
||||
a public key for which it requires a match, and will not permit the use of any
|
||||
configuration that does not match that public key. The only way the
|
||||
configuration will match is if it was signed by the matching private key.
|
||||
|
||||
It would also be possible to add a new signature node that does match your new
|
||||
configuration. But that won't work since you are not allowed to change the
|
||||
configuration in any way. Try it with a fresh (valid) image if you like by
|
||||
running the mkimage link again. Then::
|
||||
|
||||
fdtput -p image.fit /configurations/conf-1/signature-1 value fred
|
||||
$UOUT/tools/fit_check_sign -f image.fit -k am335x-boneblack-pubkey.dtb
|
||||
Verifying Hash Integrity ... -
|
||||
sha1,rsa2048:devrsa_verify_with_keynode: RSA failed to verify: -13
|
||||
rsa_verify_with_keynode: RSA failed to verify: -13
|
||||
-
|
||||
Failed to verify required signature 'key-dev'
|
||||
Signature check Bad (error 1)
|
||||
|
||||
|
||||
Of course it would be possible to add an entirely new configuration and boot
|
||||
with that, but it still needs to be signed, so it won't help.
|
||||
|
||||
|
||||
6. Put the public key into U-Boot's image
|
||||
-----------------------------------------
|
||||
|
||||
Having confirmed that the signature is doing its job, let's try it out in
|
||||
U-Boot on the board. U-Boot needs access to the public key corresponding to
|
||||
the private key that you signed with so that it can verify any kernels that
|
||||
you sign::
|
||||
|
||||
cd $UBOOT
|
||||
make O=b/am335x_boneblack_vboot EXT_DTB=${WORK}/am335x-boneblack-pubkey.dtb
|
||||
|
||||
Here we are overriding the normal device tree file with our one, which
|
||||
contains the public key.
|
||||
|
||||
Now you have a special U-Boot image with the public key. It can verify can
|
||||
kernel that you sign with the private key as in step 5.
|
||||
|
||||
If you like you can take a look at the public key information that mkimage
|
||||
added to U-Boot's device tree::
|
||||
|
||||
fdtget -p am335x-boneblack-pubkey.dtb /signature/key-dev
|
||||
required
|
||||
algo
|
||||
rsa,r-squared
|
||||
rsa,modulus
|
||||
rsa,n0-inverse
|
||||
rsa,num-bits
|
||||
key-name-hint
|
||||
|
||||
This has information about the key and some pre-processed values which U-Boot
|
||||
can use to verify against it. These values are obtained from the public key
|
||||
certificate by mkimage, but require quite a bit of code to generate. To save
|
||||
code space in U-Boot, the information is extracted and written in raw form for
|
||||
U-Boot to easily use. The same mechanism is used in Google's Chrome OS.
|
||||
|
||||
Notice the 'required' property. This marks the key as required - U-Boot will
|
||||
not boot any image that does not verify against this key.
|
||||
|
||||
|
||||
7. Put U-Boot and the kernel onto the board
|
||||
-------------------------------------------
|
||||
|
||||
The method here varies depending on how you are booting. For this example we
|
||||
are booting from an micro-SD card with two partitions, one for U-Boot and one
|
||||
for Linux. Put it into your machine and write U-Boot and the kernel to it.
|
||||
Here the card is /dev/sde::
|
||||
|
||||
cd $WORK
|
||||
export UDEV=/dev/sde1 # Change thes two lines to the correct device
|
||||
export KDEV=/dev/sde2
|
||||
sudo mount $UDEV /mnt/tmp && sudo cp $UOUT/u-boot-dtb.img /mnt/tmp/u-boot.img && sleep 1 && sudo umount $UDEV
|
||||
sudo mount $KDEV /mnt/tmp && sudo cp $WORK/image.fit /mnt/tmp/boot/image.fit && sleep 1 && sudo umount $KDEV
|
||||
|
||||
|
||||
8. Try it
|
||||
---------
|
||||
|
||||
Boot the board using the commands below::
|
||||
|
||||
setenv bootargs console=ttyO0,115200n8 quiet root=/dev/mmcblk0p2 ro rootfstype=ext4 rootwait
|
||||
ext2load mmc 0:2 82000000 /boot/image.fit
|
||||
bootm 82000000
|
||||
|
||||
You should then see something like this::
|
||||
|
||||
U-Boot# setenv bootargs console=ttyO0,115200n8 quiet root=/dev/mmcblk0p2 ro rootfstype=ext4 rootwait
|
||||
U-Boot# ext2load mmc 0:2 82000000 /boot/image.fit
|
||||
7824930 bytes read in 589 ms (12.7 MiB/s)
|
||||
U-Boot# bootm 82000000
|
||||
## Loading kernel from FIT Image at 82000000 ...
|
||||
Using 'conf-1' configuration
|
||||
Verifying Hash Integrity ... sha1,rsa2048:dev+ OK
|
||||
Trying 'kernel' kernel subimage
|
||||
Description: unavailable
|
||||
Created: 2014-06-01 19:32:54 UTC
|
||||
Type: Kernel Image
|
||||
Compression: lzo compressed
|
||||
Data Start: 0x820000a8
|
||||
Data Size: 7790938 Bytes = 7.4 MiB
|
||||
Architecture: ARM
|
||||
OS: Linux
|
||||
Load Address: 0x80008000
|
||||
Entry Point: 0x80008000
|
||||
Hash algo: sha1
|
||||
Hash value: c94364646427e10f423837e559898ef02c97b988
|
||||
Verifying Hash Integrity ... sha1+ OK
|
||||
## Loading fdt from FIT Image at 82000000 ...
|
||||
Using 'conf-1' configuration
|
||||
Trying 'fdt-1' fdt subimage
|
||||
Description: beaglebone-black
|
||||
Created: 2014-06-01 19:32:54 UTC
|
||||
Type: Flat Device Tree
|
||||
Compression: uncompressed
|
||||
Data Start: 0x8276e2ec
|
||||
Data Size: 31547 Bytes = 30.8 KiB
|
||||
Architecture: ARM
|
||||
Hash algo: sha1
|
||||
Hash value: cb09202f889d824f23b8e4404b781be5ad38a68d
|
||||
Verifying Hash Integrity ... sha1+ OK
|
||||
Booting using the fdt blob at 0x8276e2ec
|
||||
Uncompressing Kernel Image ... OK
|
||||
Loading Device Tree to 8fff5000, end 8ffffb3a ... OK
|
||||
|
||||
Starting kernel ...
|
||||
|
||||
[ 0.582377] omap_init_mbox: hwmod doesn't have valid attrs
|
||||
[ 2.589651] musb-hdrc musb-hdrc.0.auto: Failed to request rx1.
|
||||
[ 2.595830] musb-hdrc musb-hdrc.0.auto: musb_init_controller failed with status -517
|
||||
[ 2.606470] musb-hdrc musb-hdrc.1.auto: Failed to request rx1.
|
||||
[ 2.612723] musb-hdrc musb-hdrc.1.auto: musb_init_controller failed with status -517
|
||||
[ 2.940808] drivers/rtc/hctosys.c: unable to open rtc device (rtc0)
|
||||
[ 7.248889] libphy: PHY 4a101000.mdio:01 not found
|
||||
[ 7.253995] net eth0: phy 4a101000.mdio:01 not found on slave 1
|
||||
systemd-fsck[83]: Angstrom: clean, 50607/218160 files, 306348/872448 blocks
|
||||
|
||||
.---O---.
|
||||
| | .-. o o
|
||||
| | |-----.-----.-----.| | .----..-----.-----.
|
||||
| | | __ | ---'| '--.| .-'| | |
|
||||
| | | | | |--- || --'| | | ' | | | |
|
||||
'---'---'--'--'--. |-----''----''--' '-----'-'-'-'
|
||||
-' |
|
||||
'---'
|
||||
|
||||
The Angstrom Distribution beaglebone ttyO0
|
||||
|
||||
Angstrom v2012.12 - Kernel 3.14.1+
|
||||
|
||||
beaglebone login:
|
||||
|
||||
At this point your kernel has been verified and you can be sure that it is one
|
||||
that you signed. As an exercise, try changing image.fit as in step 5 and see
|
||||
what happens.
|
||||
|
||||
|
||||
Further Improvements
|
||||
--------------------
|
||||
|
||||
Several of the steps here can be easily automated. In particular it would be
|
||||
capital if signing and packaging a kernel were easy, perhaps a simple make
|
||||
target in the kernel.
|
||||
|
||||
Some mention of how to use multiple .dtb files in a FIT might be useful.
|
||||
|
||||
U-Boot's verified boot mechanism has not had a robust and independent security
|
||||
review. Such a review should look at the implementation and its resistance to
|
||||
attacks.
|
||||
|
||||
Perhaps the verified boot feature could be integrated into the Amstrom
|
||||
distribution.
|
||||
|
||||
|
||||
.. sectionauthor:: Simon Glass <sjg@chromium.org>, 2-June-14
|
419
doc/usage/fit/howto.rst
Normal file
419
doc/usage/fit/howto.rst
Normal file
|
@ -0,0 +1,419 @@
|
|||
.. SPDX-License-Identifier: GPL-2.0+
|
||||
|
||||
How to use images in the new image format
|
||||
=========================================
|
||||
|
||||
Overview
|
||||
--------
|
||||
|
||||
The new uImage format allows more flexibility in handling images of various
|
||||
types (kernel, ramdisk, etc.), it also enhances integrity protection of images
|
||||
with sha1 and md5 checksums.
|
||||
|
||||
Two auxiliary tools are needed on the development host system in order to
|
||||
create an uImage in the new format: mkimage and dtc, although only one
|
||||
(mkimage) is invoked directly. dtc is called from within mkimage and operates
|
||||
behind the scenes, but needs to be present in the $PATH nevertheless. It is
|
||||
important that the dtc used has support for binary includes -- refer to::
|
||||
|
||||
git://git.kernel.org/pub/scm/utils/dtc/dtc.git
|
||||
|
||||
for its latest version. mkimage (together with dtc) takes as input
|
||||
an image source file, which describes the contents of the image and defines
|
||||
its various properties used during booting. By convention, image source file
|
||||
has the ".its" extension, also, the details of its format are given in
|
||||
doc/uImage.FIT/source_file_format.txt. The actual data that is to be included in
|
||||
the uImage (kernel, ramdisk, etc.) is specified in the image source file in the
|
||||
form of paths to appropriate data files. The outcome of the image creation
|
||||
process is a binary file (by convention with the ".itb" extension) that
|
||||
contains all the referenced data (kernel, ramdisk, etc.) and other information
|
||||
needed by U-Boot to handle the uImage properly. The uImage file is then
|
||||
transferred to the target (e.g., via tftp) and booted using the bootm command.
|
||||
|
||||
To summarize the prerequisites needed for new uImage creation:
|
||||
|
||||
- mkimage
|
||||
- dtc (with support for binary includes)
|
||||
- image source file (`*.its`)
|
||||
- image data file(s)
|
||||
|
||||
|
||||
Here's a graphical overview of the image creation and booting process::
|
||||
|
||||
image source file mkimage + dtc transfer to target
|
||||
+ ---------------> image file --------------------> bootm
|
||||
image data file(s)
|
||||
|
||||
SPL usage
|
||||
---------
|
||||
|
||||
The SPL can make use of the new image format as well, this traditionally
|
||||
is used to ship multiple device tree files within one image. Code in the SPL
|
||||
will choose the one matching the current board and append this to the
|
||||
U-Boot proper binary to be automatically used up by it.
|
||||
Aside from U-Boot proper and one device tree blob the SPL can load multiple,
|
||||
arbitrary image files as well. These binaries should be specified in their
|
||||
own subnode under the /images node, which should then be referenced from one or
|
||||
multiple /configurations subnodes. The required images must be enumerated in
|
||||
the "loadables" property as a list of strings.
|
||||
|
||||
If a platform specific image source file (.its) is shipped with the U-Boot
|
||||
source, it can be specified using the CONFIG_SPL_FIT_SOURCE Kconfig symbol.
|
||||
In this case it will be automatically used by U-Boot's Makefile to generate
|
||||
the image.
|
||||
If a static source file is not flexible enough, CONFIG_SPL_FIT_GENERATOR
|
||||
can point to a script which generates this image source file during
|
||||
the build process. It gets passed a list of device tree files (taken from the
|
||||
CONFIG_OF_LIST symbol).
|
||||
|
||||
The SPL also records to a DT all additional images (called loadables) which are
|
||||
loaded. The information about loadables locations is passed via the DT node with
|
||||
fit-images name.
|
||||
|
||||
Finally, if there are multiple xPL phases (e.g. SPL, VPL), images can be marked
|
||||
as intended for a particular phase using the 'phase' property. For example, if
|
||||
fit_image_load() is called with image_ph(IH_PHASE_SPL, IH_TYPE_FIRMWARE), then
|
||||
only the image listed into the "firmware" property where phase is set to "spl"
|
||||
will be loaded.
|
||||
|
||||
Loadables Example
|
||||
-----------------
|
||||
Consider the following case for an ARM64 platform where U-Boot runs in EL2
|
||||
started by ATF where SPL is loading U-Boot (as loadables) and ATF (as firmware).
|
||||
|
||||
::
|
||||
|
||||
/dts-v1/;
|
||||
|
||||
/ {
|
||||
description = "Configuration to load ATF before U-Boot";
|
||||
|
||||
images {
|
||||
uboot {
|
||||
description = "U-Boot (64-bit)";
|
||||
data = /incbin/("u-boot-nodtb.bin");
|
||||
type = "firmware";
|
||||
os = "u-boot";
|
||||
arch = "arm64";
|
||||
compression = "none";
|
||||
load = <0x8 0x8000000>;
|
||||
entry = <0x8 0x8000000>;
|
||||
hash {
|
||||
algo = "md5";
|
||||
};
|
||||
};
|
||||
atf {
|
||||
description = "ARM Trusted Firmware";
|
||||
data = /incbin/("bl31.bin");
|
||||
type = "firmware";
|
||||
os = "arm-trusted-firmware";
|
||||
arch = "arm64";
|
||||
compression = "none";
|
||||
load = <0xfffea000>;
|
||||
entry = <0xfffea000>;
|
||||
hash {
|
||||
algo = "md5";
|
||||
};
|
||||
};
|
||||
fdt_1 {
|
||||
description = "zynqmp-zcu102-revA";
|
||||
data = /incbin/("arch/arm/dts/zynqmp-zcu102-revA.dtb");
|
||||
type = "flat_dt";
|
||||
arch = "arm64";
|
||||
compression = "none";
|
||||
load = <0x100000>;
|
||||
hash {
|
||||
algo = "md5";
|
||||
};
|
||||
};
|
||||
};
|
||||
configurations {
|
||||
default = "config_1";
|
||||
|
||||
config_1 {
|
||||
description = "zynqmp-zcu102-revA";
|
||||
firmware = "atf";
|
||||
loadables = "uboot";
|
||||
fdt = "fdt_1";
|
||||
};
|
||||
};
|
||||
};
|
||||
|
||||
In this case the SPL records via fit-images DT node the information about
|
||||
loadables U-Boot image::
|
||||
|
||||
ZynqMP> fdt addr $fdtcontroladdr
|
||||
ZynqMP> fdt print /fit-images
|
||||
fit-images {
|
||||
uboot {
|
||||
os = "u-boot";
|
||||
type = "firmware";
|
||||
size = <0x001017c8>;
|
||||
entry = <0x00000008 0x08000000>;
|
||||
load = <0x00000008 0x08000000>;
|
||||
};
|
||||
};
|
||||
|
||||
As you can see entry and load properties are 64bit wide to support loading
|
||||
images above 4GB (in past entry and load properties where just 32bit).
|
||||
|
||||
|
||||
Example 1 -- old-style (non-FDT) kernel booting
|
||||
-----------------------------------------------
|
||||
|
||||
Consider a simple scenario, where a PPC Linux kernel built from sources on the
|
||||
development host is to be booted old-style (non-FDT) by U-Boot on an embedded
|
||||
target. Assume that the outcome of the build is vmlinux.bin.gz, a file which
|
||||
contains a gzip-compressed PPC Linux kernel (the only data file in this case).
|
||||
The uImage can be produced using the image source file
|
||||
doc/uImage.FIT/kernel.its (note that kernel.its assumes that vmlinux.bin.gz is
|
||||
in the current working directory; if desired, an alternative path can be
|
||||
specified in the kernel.its file). Here's how to create the image and inspect
|
||||
its contents:
|
||||
|
||||
[on the host system]::
|
||||
|
||||
$ mkimage -f kernel.its kernel.itb
|
||||
DTC: dts->dtb on file "kernel.its"
|
||||
$
|
||||
$ mkimage -l kernel.itb
|
||||
FIT description: Simple image with single Linux kernel
|
||||
Created: Tue Mar 11 17:26:15 2008
|
||||
Image 0 (kernel)
|
||||
Description: Vanilla Linux kernel
|
||||
Type: Kernel Image
|
||||
Compression: gzip compressed
|
||||
Data Size: 943347 Bytes = 921.24 kB = 0.90 MB
|
||||
Architecture: PowerPC
|
||||
OS: Linux
|
||||
Load Address: 0x00000000
|
||||
Entry Point: 0x00000000
|
||||
Hash algo: crc32
|
||||
Hash value: 2ae2bb40
|
||||
Hash algo: sha1
|
||||
Hash value: 3c200f34e2c226ddc789240cca0c59fc54a67cf4
|
||||
Default Configuration: 'config-1'
|
||||
Configuration 0 (config-1)
|
||||
Description: Boot Linux kernel
|
||||
Kernel: kernel
|
||||
|
||||
|
||||
The resulting image file kernel.itb can be now transferred to the target,
|
||||
inspected and booted (note that first three U-Boot commands below are shown
|
||||
for completeness -- they are part of the standard booting procedure and not
|
||||
specific to the new image format).
|
||||
|
||||
[on the target system]::
|
||||
|
||||
=> print nfsargs
|
||||
nfsargs=setenv bootargs root=/dev/nfs rw nfsroot=${serverip}:${rootpath}
|
||||
=> print addip
|
||||
addip=setenv bootargs ${bootargs} ip=${ipaddr}:${serverip}:${gatewayip}:${netmask}:${hostname}:${netdev}:off panic=1
|
||||
=> run nfsargs addip
|
||||
=> tftp 900000 /path/to/tftp/location/kernel.itb
|
||||
Using FEC device
|
||||
TFTP from server 192.168.1.1; our IP address is 192.168.160.5
|
||||
Filename '/path/to/tftp/location/kernel.itb'.
|
||||
Load address: 0x900000
|
||||
Loading: #################################################################
|
||||
done
|
||||
Bytes transferred = 944464 (e6950 hex)
|
||||
=> iminfo
|
||||
|
||||
## Checking Image at 00900000 ...
|
||||
FIT image found
|
||||
FIT description: Simple image with single Linux kernel
|
||||
Created: 2008-03-11 16:26:15 UTC
|
||||
Image 0 (kernel)
|
||||
Description: Vanilla Linux kernel
|
||||
Type: Kernel Image
|
||||
Compression: gzip compressed
|
||||
Data Start: 0x009000e0
|
||||
Data Size: 943347 Bytes = 921.2 kB
|
||||
Architecture: PowerPC
|
||||
OS: Linux
|
||||
Load Address: 0x00000000
|
||||
Entry Point: 0x00000000
|
||||
Hash algo: crc32
|
||||
Hash value: 2ae2bb40
|
||||
Hash algo: sha1
|
||||
Hash value: 3c200f34e2c226ddc789240cca0c59fc54a67cf4
|
||||
Default Configuration: 'config-1'
|
||||
Configuration 0 (config-1)
|
||||
Description: Boot Linux kernel
|
||||
Kernel: kernel
|
||||
|
||||
=> bootm
|
||||
## Booting kernel from FIT Image at 00900000 ...
|
||||
Using 'config-1' configuration
|
||||
Trying 'kernel' kernel subimage
|
||||
Description: Vanilla Linux kernel
|
||||
Type: Kernel Image
|
||||
Compression: gzip compressed
|
||||
Data Start: 0x009000e0
|
||||
Data Size: 943347 Bytes = 921.2 kB
|
||||
Architecture: PowerPC
|
||||
OS: Linux
|
||||
Load Address: 0x00000000
|
||||
Entry Point: 0x00000000
|
||||
Hash algo: crc32
|
||||
Hash value: 2ae2bb40
|
||||
Hash algo: sha1
|
||||
Hash value: 3c200f34e2c226ddc789240cca0c59fc54a67cf4
|
||||
Verifying Hash Integrity ... crc32+ sha1+ OK
|
||||
Uncompressing Kernel Image ... OK
|
||||
Memory BAT mapping: BAT2=256Mb, BAT3=0Mb, residual: 0Mb
|
||||
Linux version 2.4.25 (m8@hekate) (gcc version 4.0.0 (DENX ELDK 4.0 4.0.0)) #2 czw lip 5 17:56:18 CEST 2007
|
||||
On node 0 totalpages: 65536
|
||||
zone(0): 65536 pages.
|
||||
zone(1): 0 pages.
|
||||
zone(2): 0 pages.
|
||||
Kernel command line: root=/dev/nfs rw nfsroot=192.168.1.1:/opt/eldk-4.1/ppc_6xx ip=192.168.160.5:192.168.1.1::255.255.0.0:lite5200b:eth0:off panic=1
|
||||
Calibrating delay loop... 307.20 BogoMIPS
|
||||
|
||||
|
||||
Example 2 -- new-style (FDT) kernel booting
|
||||
-------------------------------------------
|
||||
|
||||
Consider another simple scenario, where a PPC Linux kernel is to be booted
|
||||
new-style, i.e., with a FDT blob. In this case there are two prerequisite data
|
||||
files: vmlinux.bin.gz (Linux kernel) and target.dtb (FDT blob). The uImage can
|
||||
be produced using image source file doc/uImage.FIT/kernel_fdt.its like this
|
||||
(note again, that both prerequisite data files are assumed to be present in
|
||||
the current working directory -- image source file kernel_fdt.its can be
|
||||
modified to take the files from some other location if needed):
|
||||
|
||||
[on the host system]::
|
||||
|
||||
$ mkimage -f kernel_fdt.its kernel_fdt.itb
|
||||
DTC: dts->dtb on file "kernel_fdt.its"
|
||||
$
|
||||
$ mkimage -l kernel_fdt.itb
|
||||
FIT description: Simple image with single Linux kernel and FDT blob
|
||||
Created: Tue Mar 11 16:29:22 2008
|
||||
Image 0 (kernel)
|
||||
Description: Vanilla Linux kernel
|
||||
Type: Kernel Image
|
||||
Compression: gzip compressed
|
||||
Data Size: 1092037 Bytes = 1066.44 kB = 1.04 MB
|
||||
Architecture: PowerPC
|
||||
OS: Linux
|
||||
Load Address: 0x00000000
|
||||
Entry Point: 0x00000000
|
||||
Hash algo: crc32
|
||||
Hash value: 2c0cc807
|
||||
Hash algo: sha1
|
||||
Hash value: 264b59935470e42c418744f83935d44cdf59a3bb
|
||||
Image 1 (fdt-1)
|
||||
Description: Flattened Device Tree blob
|
||||
Type: Flat Device Tree
|
||||
Compression: uncompressed
|
||||
Data Size: 16384 Bytes = 16.00 kB = 0.02 MB
|
||||
Architecture: PowerPC
|
||||
Hash algo: crc32
|
||||
Hash value: 0d655d71
|
||||
Hash algo: sha1
|
||||
Hash value: 25ab4e15cd4b8a5144610394560d9c318ce52def
|
||||
Default Configuration: 'conf-1'
|
||||
Configuration 0 (conf-1)
|
||||
Description: Boot Linux kernel with FDT blob
|
||||
Kernel: kernel
|
||||
FDT: fdt-1
|
||||
|
||||
|
||||
The resulting image file kernel_fdt.itb can be now transferred to the target,
|
||||
inspected and booted:
|
||||
|
||||
[on the target system]::
|
||||
|
||||
=> tftp 900000 /path/to/tftp/location/kernel_fdt.itb
|
||||
Using FEC device
|
||||
TFTP from server 192.168.1.1; our IP address is 192.168.160.5
|
||||
Filename '/path/to/tftp/location/kernel_fdt.itb'.
|
||||
Load address: 0x900000
|
||||
Loading: #################################################################
|
||||
###########
|
||||
done
|
||||
Bytes transferred = 1109776 (10ef10 hex)
|
||||
=> iminfo
|
||||
|
||||
## Checking Image at 00900000 ...
|
||||
FIT image found
|
||||
FIT description: Simple image with single Linux kernel and FDT blob
|
||||
Created: 2008-03-11 15:29:22 UTC
|
||||
Image 0 (kernel)
|
||||
Description: Vanilla Linux kernel
|
||||
Type: Kernel Image
|
||||
Compression: gzip compressed
|
||||
Data Start: 0x009000ec
|
||||
Data Size: 1092037 Bytes = 1 MB
|
||||
Architecture: PowerPC
|
||||
OS: Linux
|
||||
Load Address: 0x00000000
|
||||
Entry Point: 0x00000000
|
||||
Hash algo: crc32
|
||||
Hash value: 2c0cc807
|
||||
Hash algo: sha1
|
||||
Hash value: 264b59935470e42c418744f83935d44cdf59a3bb
|
||||
Image 1 (fdt-1)
|
||||
Description: Flattened Device Tree blob
|
||||
Type: Flat Device Tree
|
||||
Compression: uncompressed
|
||||
Data Start: 0x00a0abdc
|
||||
Data Size: 16384 Bytes = 16 kB
|
||||
Architecture: PowerPC
|
||||
Hash algo: crc32
|
||||
Hash value: 0d655d71
|
||||
Hash algo: sha1
|
||||
Hash value: 25ab4e15cd4b8a5144610394560d9c318ce52def
|
||||
Default Configuration: 'conf-1'
|
||||
Configuration 0 (conf-1)
|
||||
Description: Boot Linux kernel with FDT blob
|
||||
Kernel: kernel
|
||||
FDT: fdt-1
|
||||
=> bootm
|
||||
## Booting kernel from FIT Image at 00900000 ...
|
||||
Using 'conf-1' configuration
|
||||
Trying 'kernel' kernel subimage
|
||||
Description: Vanilla Linux kernel
|
||||
Type: Kernel Image
|
||||
Compression: gzip compressed
|
||||
Data Start: 0x009000ec
|
||||
Data Size: 1092037 Bytes = 1 MB
|
||||
Architecture: PowerPC
|
||||
OS: Linux
|
||||
Load Address: 0x00000000
|
||||
Entry Point: 0x00000000
|
||||
Hash algo: crc32
|
||||
Hash value: 2c0cc807
|
||||
Hash algo: sha1
|
||||
Hash value: 264b59935470e42c418744f83935d44cdf59a3bb
|
||||
Verifying Hash Integrity ... crc32+ sha1+ OK
|
||||
Uncompressing Kernel Image ... OK
|
||||
## Flattened Device Tree from FIT Image at 00900000
|
||||
Using 'conf-1' configuration
|
||||
Trying 'fdt-1' FDT blob subimage
|
||||
Description: Flattened Device Tree blob
|
||||
Type: Flat Device Tree
|
||||
Compression: uncompressed
|
||||
Data Start: 0x00a0abdc
|
||||
Data Size: 16384 Bytes = 16 kB
|
||||
Architecture: PowerPC
|
||||
Hash algo: crc32
|
||||
Hash value: 0d655d71
|
||||
Hash algo: sha1
|
||||
Hash value: 25ab4e15cd4b8a5144610394560d9c318ce52def
|
||||
Verifying Hash Integrity ... crc32+ sha1+ OK
|
||||
Booting using the fdt blob at 0xa0abdc
|
||||
Loading Device Tree to 007fc000, end 007fffff ... OK
|
||||
[ 0.000000] Using lite5200 machine description
|
||||
[ 0.000000] Linux version 2.6.24-rc6-gaebecdfc (m8@hekate) (gcc version 4.0.0 (DENX ELDK 4.1 4.0.0)) #1 Sat Jan 12 15:38:48 CET 2008
|
||||
|
||||
|
||||
Example 3 -- advanced booting
|
||||
-----------------------------
|
||||
|
||||
Refer to :doc:`multi` for an image source file that allows more
|
||||
sophisticated booting scenarios (multiple kernels, ramdisks and fdt blobs).
|
||||
|
||||
.. sectionauthor:: Bartlomiej Sieka <tur@semihalf.com>
|
|
@ -6,3 +6,14 @@ Flat Image Tree (FIT)
|
|||
U-Boot uses Flat Image Tree (FIT) as a standard file format for packaging
|
||||
images that it it reads and boots. Documentation about FIT is available at
|
||||
doc/uImage.FIT
|
||||
|
||||
.. toctree::
|
||||
:maxdepth: 1
|
||||
|
||||
source_file_format
|
||||
howto
|
||||
x86-fit-boot
|
||||
signature
|
||||
verified-boot
|
||||
beaglebone_vboot
|
||||
overlay-fdt-boot
|
93
doc/usage/fit/kernel.rst
Normal file
93
doc/usage/fit/kernel.rst
Normal file
|
@ -0,0 +1,93 @@
|
|||
.. SPDX-License-Identifier: GPL-2.0+
|
||||
|
||||
Single kernel
|
||||
=============
|
||||
|
||||
::
|
||||
|
||||
/dts-v1/;
|
||||
|
||||
/ {
|
||||
description = "Simple image with single Linux kernel";
|
||||
#address-cells = <1>;
|
||||
|
||||
images {
|
||||
kernel {
|
||||
description = "Vanilla Linux kernel";
|
||||
data = /incbin/("./vmlinux.bin.gz");
|
||||
type = "kernel";
|
||||
arch = "ppc";
|
||||
os = "linux";
|
||||
compression = "gzip";
|
||||
load = <00000000>;
|
||||
entry = <00000000>;
|
||||
hash-1 {
|
||||
algo = "crc32";
|
||||
};
|
||||
hash-2 {
|
||||
algo = "sha1";
|
||||
};
|
||||
};
|
||||
};
|
||||
|
||||
configurations {
|
||||
default = "config-1";
|
||||
config-1 {
|
||||
description = "Boot Linux kernel";
|
||||
kernel = "kernel";
|
||||
};
|
||||
};
|
||||
};
|
||||
|
||||
|
||||
For x86 a setup node is also required: see x86-fit-boot::
|
||||
|
||||
/dts-v1/;
|
||||
|
||||
/ {
|
||||
description = "Simple image with single Linux kernel on x86";
|
||||
#address-cells = <1>;
|
||||
|
||||
images {
|
||||
kernel {
|
||||
description = "Vanilla Linux kernel";
|
||||
data = /incbin/("./image.bin.lzo");
|
||||
type = "kernel";
|
||||
arch = "x86";
|
||||
os = "linux";
|
||||
compression = "lzo";
|
||||
load = <0x01000000>;
|
||||
entry = <0x00000000>;
|
||||
hash-2 {
|
||||
algo = "sha1";
|
||||
};
|
||||
};
|
||||
|
||||
setup {
|
||||
description = "Linux setup.bin";
|
||||
data = /incbin/("./setup.bin");
|
||||
type = "x86_setup";
|
||||
arch = "x86";
|
||||
os = "linux";
|
||||
compression = "none";
|
||||
load = <0x00090000>;
|
||||
entry = <0x00090000>;
|
||||
hash-2 {
|
||||
algo = "sha1";
|
||||
};
|
||||
};
|
||||
};
|
||||
|
||||
configurations {
|
||||
default = "config-1";
|
||||
config-1 {
|
||||
description = "Boot Linux kernel";
|
||||
kernel = "kernel";
|
||||
setup = "setup";
|
||||
};
|
||||
};
|
||||
};
|
||||
|
||||
Note: the above assumes a 32-bit kernel. To directly boot a 64-bit kernel,
|
||||
change both arch values to "x86_64". U-Boot will then change to 64-bit mode
|
||||
before booting the kernel (see boot_linux_kernel()).
|
54
doc/usage/fit/kernel_fdt.rst
Normal file
54
doc/usage/fit/kernel_fdt.rst
Normal file
|
@ -0,0 +1,54 @@
|
|||
.. SPDX-License-Identifier: GPL-2.0+
|
||||
|
||||
Single kernel and FDT blob
|
||||
==========================
|
||||
|
||||
::
|
||||
|
||||
/dts-v1/;
|
||||
|
||||
/ {
|
||||
description = "Simple image with single Linux kernel and FDT blob";
|
||||
#address-cells = <1>;
|
||||
|
||||
images {
|
||||
kernel {
|
||||
description = "Vanilla Linux kernel";
|
||||
data = /incbin/("./vmlinux.bin.gz");
|
||||
type = "kernel";
|
||||
arch = "ppc";
|
||||
os = "linux";
|
||||
compression = "gzip";
|
||||
load = <00000000>;
|
||||
entry = <00000000>;
|
||||
hash-1 {
|
||||
algo = "crc32";
|
||||
};
|
||||
hash-2 {
|
||||
algo = "sha1";
|
||||
};
|
||||
};
|
||||
fdt-1 {
|
||||
description = "Flattened Device Tree blob";
|
||||
data = /incbin/("./target.dtb");
|
||||
type = "flat_dt";
|
||||
arch = "ppc";
|
||||
compression = "none";
|
||||
hash-1 {
|
||||
algo = "crc32";
|
||||
};
|
||||
hash-2 {
|
||||
algo = "sha1";
|
||||
};
|
||||
};
|
||||
};
|
||||
|
||||
configurations {
|
||||
default = "conf-1";
|
||||
conf-1 {
|
||||
description = "Boot Linux kernel with FDT blob";
|
||||
kernel = "kernel";
|
||||
fdt = "fdt-1";
|
||||
};
|
||||
};
|
||||
};
|
77
doc/usage/fit/kernel_fdts_compressed.rst
Normal file
77
doc/usage/fit/kernel_fdts_compressed.rst
Normal file
|
@ -0,0 +1,77 @@
|
|||
.. SPDX-License-Identifier: GPL-2.0+
|
||||
|
||||
Kernel and multiple compressed FDT blobs
|
||||
========================================
|
||||
|
||||
Since the FDTs are compressed, configurations must provide a compatible
|
||||
string to match directly.
|
||||
|
||||
::
|
||||
|
||||
/dts-v1/;
|
||||
|
||||
/ {
|
||||
description = "Image with single Linux kernel and compressed FDT blobs";
|
||||
#address-cells = <1>;
|
||||
|
||||
images {
|
||||
kernel {
|
||||
description = "Vanilla Linux kernel";
|
||||
data = /incbin/("./vmlinux.bin.gz");
|
||||
type = "kernel";
|
||||
arch = "ppc";
|
||||
os = "linux";
|
||||
compression = "gzip";
|
||||
load = <00000000>;
|
||||
entry = <00000000>;
|
||||
hash-1 {
|
||||
algo = "crc32";
|
||||
};
|
||||
hash-2 {
|
||||
algo = "sha1";
|
||||
};
|
||||
};
|
||||
fdt@1 {
|
||||
description = "Flattened Device Tree blob 1";
|
||||
data = /incbin/("./myboard-var1.dtb");
|
||||
type = "flat_dt";
|
||||
arch = "ppc";
|
||||
compression = "gzip";
|
||||
hash-1 {
|
||||
algo = "crc32";
|
||||
};
|
||||
hash-2 {
|
||||
algo = "sha1";
|
||||
};
|
||||
};
|
||||
fdt@2 {
|
||||
description = "Flattened Device Tree blob 2";
|
||||
data = /incbin/("./myboard-var2.dtb");
|
||||
type = "flat_dt";
|
||||
arch = "ppc";
|
||||
compression = "lzma";
|
||||
hash-1 {
|
||||
algo = "crc32";
|
||||
};
|
||||
hash-2 {
|
||||
algo = "sha1";
|
||||
};
|
||||
};
|
||||
};
|
||||
|
||||
configurations {
|
||||
default = "conf@1";
|
||||
conf@1 {
|
||||
description = "Boot Linux kernel with FDT blob 1";
|
||||
kernel = "kernel";
|
||||
fdt = "fdt@1";
|
||||
compatible = "myvendor,myboard-variant1";
|
||||
};
|
||||
conf@2 {
|
||||
description = "Boot Linux kernel with FDT blob 2";
|
||||
kernel = "kernel";
|
||||
fdt = "fdt@2";
|
||||
compatible = "myvendor,myboard-variant2";
|
||||
};
|
||||
};
|
||||
};
|
70
doc/usage/fit/multi-with-fpga.rst
Normal file
70
doc/usage/fit/multi-with-fpga.rst
Normal file
|
@ -0,0 +1,70 @@
|
|||
.. SPDX-License-Identifier: GPL-2.0+
|
||||
|
||||
Multiple kernels, ramdisks and FDT blobs with FPGA
|
||||
==================================================
|
||||
|
||||
This example makes use of the 'loadables' field::
|
||||
|
||||
/dts-v1/;
|
||||
|
||||
/ {
|
||||
description = "Configuration to load fpga before Kernel";
|
||||
#address-cells = <1>;
|
||||
|
||||
images {
|
||||
fdt-1 {
|
||||
description = "zc706";
|
||||
data = /incbin/("/tftpboot/devicetree.dtb");
|
||||
type = "flat_dt";
|
||||
arch = "arm";
|
||||
compression = "none";
|
||||
load = <0x10000000>;
|
||||
hash-1 {
|
||||
algo = "md5";
|
||||
};
|
||||
};
|
||||
|
||||
fpga {
|
||||
description = "FPGA";
|
||||
data = /incbin/("/tftpboot/download.bit");
|
||||
type = "fpga";
|
||||
arch = "arm";
|
||||
compression = "none";
|
||||
load = <0x30000000>;
|
||||
compatible = "u-boot,fpga-legacy"
|
||||
hash-1 {
|
||||
algo = "md5";
|
||||
};
|
||||
};
|
||||
|
||||
linux_kernel {
|
||||
description = "Linux";
|
||||
data = /incbin/("/tftpboot/zImage");
|
||||
type = "kernel";
|
||||
arch = "arm";
|
||||
os = "linux";
|
||||
compression = "none";
|
||||
load = <0x8000>;
|
||||
entry = <0x8000>;
|
||||
hash-1 {
|
||||
algo = "md5";
|
||||
};
|
||||
};
|
||||
};
|
||||
|
||||
configurations {
|
||||
default = "config-2";
|
||||
config-1 {
|
||||
description = "Linux";
|
||||
kernel = "linux_kernel";
|
||||
fdt = "fdt-1";
|
||||
};
|
||||
|
||||
config-2 {
|
||||
description = "Linux with fpga";
|
||||
kernel = "linux_kernel";
|
||||
fdt = "fdt-1";
|
||||
loadables = "fpga";
|
||||
};
|
||||
};
|
||||
};
|
91
doc/usage/fit/multi-with-loadables.rst
Normal file
91
doc/usage/fit/multi-with-loadables.rst
Normal file
|
@ -0,0 +1,91 @@
|
|||
.. SPDX-License-Identifier: GPL-2.0+
|
||||
|
||||
Multiple kernels, ramdisks and FDT blobs with Xen
|
||||
=================================================
|
||||
|
||||
This example makes use of the 'loadables' field::
|
||||
|
||||
/dts-v1/;
|
||||
|
||||
/ {
|
||||
description = "Configuration to load a Xen Kernel";
|
||||
#address-cells = <1>;
|
||||
|
||||
images {
|
||||
xen_kernel {
|
||||
description = "xen binary";
|
||||
data = /incbin/("./xen");
|
||||
type = "kernel";
|
||||
arch = "arm";
|
||||
os = "linux";
|
||||
compression = "none";
|
||||
load = <0xa0000000>;
|
||||
entry = <0xa0000000>;
|
||||
hash-1 {
|
||||
algo = "md5";
|
||||
};
|
||||
};
|
||||
|
||||
fdt-1 {
|
||||
description = "xexpress-ca15 tree blob";
|
||||
data = /incbin/("./vexpress-v2p-ca15-tc1.dtb");
|
||||
type = "flat_dt";
|
||||
arch = "arm";
|
||||
compression = "none";
|
||||
load = <0xb0000000>;
|
||||
hash-1 {
|
||||
algo = "md5";
|
||||
};
|
||||
};
|
||||
|
||||
fdt-2 {
|
||||
description = "xexpress-ca15 tree blob";
|
||||
data = /incbin/("./vexpress-v2p-ca15-tc1.dtb");
|
||||
type = "flat_dt";
|
||||
arch = "arm";
|
||||
compression = "none";
|
||||
load = <0xb0400000>;
|
||||
hash-1 {
|
||||
algo = "md5";
|
||||
};
|
||||
};
|
||||
|
||||
linux_kernel {
|
||||
description = "Linux Image";
|
||||
data = /incbin/("./Image");
|
||||
type = "kernel";
|
||||
arch = "arm";
|
||||
os = "linux";
|
||||
compression = "none";
|
||||
load = <0xa0000000>;
|
||||
entry = <0xa0000000>;
|
||||
hash-1 {
|
||||
algo = "md5";
|
||||
};
|
||||
};
|
||||
};
|
||||
|
||||
configurations {
|
||||
default = "config-2";
|
||||
|
||||
config-1 {
|
||||
description = "Just plain Linux";
|
||||
kernel = "linux_kernel";
|
||||
fdt = "fdt-1";
|
||||
};
|
||||
|
||||
config-2 {
|
||||
description = "Xen one loadable";
|
||||
kernel = "xen_kernel";
|
||||
fdt = "fdt-1";
|
||||
loadables = "linux_kernel";
|
||||
};
|
||||
|
||||
config-3 {
|
||||
description = "Xen two loadables";
|
||||
kernel = "xen_kernel";
|
||||
fdt = "fdt-1";
|
||||
loadables = "linux_kernel", "fdt-2";
|
||||
};
|
||||
};
|
||||
};
|
136
doc/usage/fit/multi.rst
Normal file
136
doc/usage/fit/multi.rst
Normal file
|
@ -0,0 +1,136 @@
|
|||
.. SPDX-License-Identifier: GPL-2.0+
|
||||
|
||||
Multiple kernels, ramdisks and FDT blobs
|
||||
========================================
|
||||
|
||||
::
|
||||
|
||||
/dts-v1/;
|
||||
|
||||
/ {
|
||||
description = "Various kernels, ramdisks and FDT blobs";
|
||||
#address-cells = <1>;
|
||||
|
||||
images {
|
||||
kernel-1 {
|
||||
description = "vanilla-2.6.23";
|
||||
data = /incbin/("./vmlinux.bin.gz");
|
||||
type = "kernel";
|
||||
arch = "ppc";
|
||||
os = "linux";
|
||||
compression = "gzip";
|
||||
load = <00000000>;
|
||||
entry = <00000000>;
|
||||
hash-1 {
|
||||
algo = "md5";
|
||||
};
|
||||
hash-2 {
|
||||
algo = "sha1";
|
||||
};
|
||||
};
|
||||
|
||||
kernel-2 {
|
||||
description = "2.6.23-denx";
|
||||
data = /incbin/("./2.6.23-denx.bin.gz");
|
||||
type = "kernel";
|
||||
arch = "ppc";
|
||||
os = "linux";
|
||||
compression = "gzip";
|
||||
load = <00000000>;
|
||||
entry = <00000000>;
|
||||
hash-1 {
|
||||
algo = "sha1";
|
||||
};
|
||||
};
|
||||
|
||||
kernel-3 {
|
||||
description = "2.4.25-denx";
|
||||
data = /incbin/("./2.4.25-denx.bin.gz");
|
||||
type = "kernel";
|
||||
arch = "ppc";
|
||||
os = "linux";
|
||||
compression = "gzip";
|
||||
load = <00000000>;
|
||||
entry = <00000000>;
|
||||
hash-1 {
|
||||
algo = "md5";
|
||||
};
|
||||
};
|
||||
|
||||
ramdisk-1 {
|
||||
description = "eldk-4.2-ramdisk";
|
||||
data = /incbin/("./eldk-4.2-ramdisk");
|
||||
type = "ramdisk";
|
||||
arch = "ppc";
|
||||
os = "linux";
|
||||
compression = "gzip";
|
||||
load = <00000000>;
|
||||
entry = <00000000>;
|
||||
hash-1 {
|
||||
algo = "sha1";
|
||||
};
|
||||
};
|
||||
|
||||
ramdisk-2 {
|
||||
description = "eldk-3.1-ramdisk";
|
||||
data = /incbin/("./eldk-3.1-ramdisk");
|
||||
type = "ramdisk";
|
||||
arch = "ppc";
|
||||
os = "linux";
|
||||
compression = "gzip";
|
||||
load = <00000000>;
|
||||
entry = <00000000>;
|
||||
hash-1 {
|
||||
algo = "crc32";
|
||||
};
|
||||
};
|
||||
|
||||
fdt-1 {
|
||||
description = "tqm5200-fdt";
|
||||
data = /incbin/("./tqm5200.dtb");
|
||||
type = "flat_dt";
|
||||
arch = "ppc";
|
||||
compression = "none";
|
||||
hash-1 {
|
||||
algo = "crc32";
|
||||
};
|
||||
};
|
||||
|
||||
fdt-2 {
|
||||
description = "tqm5200s-fdt";
|
||||
data = /incbin/("./tqm5200s.dtb");
|
||||
type = "flat_dt";
|
||||
arch = "ppc";
|
||||
compression = "none";
|
||||
load = <00700000>;
|
||||
hash-1 {
|
||||
algo = "sha1";
|
||||
};
|
||||
};
|
||||
|
||||
};
|
||||
|
||||
configurations {
|
||||
default = "config-1";
|
||||
|
||||
config-1 {
|
||||
description = "tqm5200 vanilla-2.6.23 configuration";
|
||||
kernel = "kernel-1";
|
||||
ramdisk = "ramdisk-1";
|
||||
fdt = "fdt-1";
|
||||
};
|
||||
|
||||
config-2 {
|
||||
description = "tqm5200s denx-2.6.23 configuration";
|
||||
kernel = "kernel-2";
|
||||
ramdisk = "ramdisk-1";
|
||||
fdt = "fdt-2";
|
||||
};
|
||||
|
||||
config-3 {
|
||||
description = "tqm5200s denx-2.4.25 configuration";
|
||||
kernel = "kernel-3";
|
||||
ramdisk = "ramdisk-2";
|
||||
};
|
||||
};
|
||||
};
|
101
doc/usage/fit/multi_spl.rst
Normal file
101
doc/usage/fit/multi_spl.rst
Normal file
|
@ -0,0 +1,101 @@
|
|||
.. SPDX-License-Identifier: GPL-2.0+
|
||||
|
||||
Multiple images for SPL
|
||||
=======================
|
||||
|
||||
(Bogus) example FIT image description file demonstrating the usage
|
||||
of multiple images loaded by the SPL.
|
||||
Several binaries will be loaded at their respective load addresses.
|
||||
|
||||
For booting U-Boot, "firmware" is searched first. If not found, "loadables"
|
||||
is used to identify images to be loaded into memory. If falcon boot is
|
||||
enabled, "kernel" is searched first. If not found, it falls back to the
|
||||
same flow as booting U-Boot. Changing image type will result skipping
|
||||
specific image.
|
||||
|
||||
Finally the one image specifying an entry point will be entered by the SPL.
|
||||
|
||||
::
|
||||
|
||||
/dts-v1/;
|
||||
|
||||
/ {
|
||||
description = "multiple firmware blobs and U-Boot, loaded by SPL";
|
||||
#address-cells = <0x1>;
|
||||
|
||||
images {
|
||||
|
||||
uboot {
|
||||
description = "U-Boot (64-bit)";
|
||||
type = "standalone";
|
||||
arch = "arm64";
|
||||
compression = "none";
|
||||
load = <0x4a000000>;
|
||||
};
|
||||
|
||||
atf {
|
||||
description = "ARM Trusted Firmware";
|
||||
type = "firmware";
|
||||
arch = "arm64";
|
||||
compression = "none";
|
||||
load = <0x18000>;
|
||||
entry = <0x18000>;
|
||||
};
|
||||
|
||||
mgmt-firmware {
|
||||
description = "arisc management processor firmware";
|
||||
type = "firmware";
|
||||
arch = "or1k";
|
||||
compression = "none";
|
||||
load = <0x40000>;
|
||||
};
|
||||
|
||||
fdt-1 {
|
||||
description = "Pine64+ DT";
|
||||
type = "flat_dt";
|
||||
compression = "none";
|
||||
load = <0x4fa00000>;
|
||||
arch = "arm64";
|
||||
};
|
||||
|
||||
fdt-2 {
|
||||
description = "Pine64 DT";
|
||||
type = "flat_dt";
|
||||
compression = "none";
|
||||
load = <0x4fa00000>;
|
||||
arch = "arm64";
|
||||
};
|
||||
|
||||
kernel {
|
||||
description = "4.7-rc5 kernel";
|
||||
type = "kernel";
|
||||
compression = "none";
|
||||
load = <0x40080000>;
|
||||
arch = "arm64";
|
||||
};
|
||||
|
||||
initrd {
|
||||
description = "Debian installer initrd";
|
||||
type = "ramdisk";
|
||||
compression = "none";
|
||||
load = <0x4fe00000>;
|
||||
arch = "arm64";
|
||||
};
|
||||
};
|
||||
|
||||
configurations {
|
||||
default = "config-1";
|
||||
|
||||
config-1 {
|
||||
description = "sun50i-a64-pine64-plus";
|
||||
loadables = "uboot", "atf", "kernel", "initrd";
|
||||
fdt = "fdt-1";
|
||||
};
|
||||
|
||||
config-2 {
|
||||
description = "sun50i-a64-pine64";
|
||||
loadables = "uboot", "atf", "mgmt-firmware";
|
||||
fdt = "fdt-2";
|
||||
};
|
||||
};
|
||||
};
|
227
doc/usage/fit/overlay-fdt-boot.rst
Normal file
227
doc/usage/fit/overlay-fdt-boot.rst
Normal file
|
@ -0,0 +1,227 @@
|
|||
.. SPDX-License-Identifier: GPL-2.0+
|
||||
|
||||
U-Boot FDT Overlay FIT usage
|
||||
============================
|
||||
|
||||
Introduction
|
||||
------------
|
||||
|
||||
In many cases it is desirable to have a single FIT image support a multitude
|
||||
of similar boards and their expansion options. The same kernel on DT enabled
|
||||
platforms can support this easily enough by providing a DT blob upon boot
|
||||
that matches the desired configuration.
|
||||
|
||||
This document focuses on specifically using overlays as part of a FIT image.
|
||||
General information regarding overlays including its syntax and building it
|
||||
can be found in doc/README.fdt-overlays
|
||||
|
||||
Configuration without overlays
|
||||
------------------------------
|
||||
|
||||
Take a hypothetical board named 'foo' where there are different supported
|
||||
revisions, reva and revb. Assume that both board revisions can use add a bar
|
||||
add-on board, while only the revb board can use a baz add-on board.
|
||||
|
||||
Without using overlays the configuration would be as follows for every case::
|
||||
|
||||
/dts-v1/;
|
||||
/ {
|
||||
images {
|
||||
kernel {
|
||||
data = /incbin/("./zImage");
|
||||
type = "kernel";
|
||||
arch = "arm";
|
||||
os = "linux";
|
||||
load = <0x82000000>;
|
||||
entry = <0x82000000>;
|
||||
};
|
||||
fdt-1 {
|
||||
data = /incbin/("./foo-reva.dtb");
|
||||
type = "flat_dt";
|
||||
arch = "arm";
|
||||
};
|
||||
fdt-2 {
|
||||
data = /incbin/("./foo-revb.dtb");
|
||||
type = "flat_dt";
|
||||
arch = "arm";
|
||||
};
|
||||
fdt-3 {
|
||||
data = /incbin/("./foo-reva-bar.dtb");
|
||||
type = "flat_dt";
|
||||
arch = "arm";
|
||||
};
|
||||
fdt-4 {
|
||||
data = /incbin/("./foo-revb-bar.dtb");
|
||||
type = "flat_dt";
|
||||
arch = "arm";
|
||||
};
|
||||
fdt-5 {
|
||||
data = /incbin/("./foo-revb-baz.dtb");
|
||||
type = "flat_dt";
|
||||
arch = "arm";
|
||||
};
|
||||
fdt-6 {
|
||||
data = /incbin/("./foo-revb-bar-baz.dtb");
|
||||
type = "flat_dt";
|
||||
arch = "arm";
|
||||
};
|
||||
};
|
||||
|
||||
configurations {
|
||||
default = "foo-reva.dtb;
|
||||
foo-reva.dtb {
|
||||
kernel = "kernel";
|
||||
fdt = "fdt-1";
|
||||
};
|
||||
foo-revb.dtb {
|
||||
kernel = "kernel";
|
||||
fdt = "fdt-2";
|
||||
};
|
||||
foo-reva-bar.dtb {
|
||||
kernel = "kernel";
|
||||
fdt = "fdt-3";
|
||||
};
|
||||
foo-revb-bar.dtb {
|
||||
kernel = "kernel";
|
||||
fdt = "fdt-4";
|
||||
};
|
||||
foo-revb-baz.dtb {
|
||||
kernel = "kernel";
|
||||
fdt = "fdt-5";
|
||||
};
|
||||
foo-revb-bar-baz.dtb {
|
||||
kernel = "kernel";
|
||||
fdt = "fdt-6";
|
||||
};
|
||||
};
|
||||
};
|
||||
|
||||
Note the blob needs to be compiled for each case and the combinatorial explosion of
|
||||
configurations. A typical device tree blob is in the low hunderds of kbytes so a
|
||||
multitude of configuration grows the image quite a bit.
|
||||
|
||||
Booting this image is done by using::
|
||||
|
||||
# bootm <addr>#<config>
|
||||
|
||||
Where config is one of::
|
||||
|
||||
foo-reva.dtb, foo-revb.dtb, foo-reva-bar.dtb, foo-revb-bar.dtb,
|
||||
foo-revb-baz.dtb, foo-revb-bar-baz.dtb
|
||||
|
||||
This selects the DTB to use when booting.
|
||||
|
||||
Configuration using overlays
|
||||
----------------------------
|
||||
|
||||
Device tree overlays can be applied to a base DT and result in the same blob
|
||||
being passed to the booting kernel. This saves on space and avoid the combinatorial
|
||||
explosion problem::
|
||||
|
||||
/dts-v1/;
|
||||
/ {
|
||||
images {
|
||||
kernel {
|
||||
data = /incbin/("./zImage");
|
||||
type = "kernel";
|
||||
arch = "arm";
|
||||
os = "linux";
|
||||
load = <0x82000000>;
|
||||
entry = <0x82000000>;
|
||||
};
|
||||
fdt-1 {
|
||||
data = /incbin/("./foo.dtb");
|
||||
type = "flat_dt";
|
||||
arch = "arm";
|
||||
load = <0x87f00000>;
|
||||
};
|
||||
fdt-2 {
|
||||
data = /incbin/("./reva.dtbo");
|
||||
type = "flat_dt";
|
||||
arch = "arm";
|
||||
load = <0x87fc0000>;
|
||||
};
|
||||
fdt-3 {
|
||||
data = /incbin/("./revb.dtbo");
|
||||
type = "flat_dt";
|
||||
arch = "arm";
|
||||
load = <0x87fc0000>;
|
||||
};
|
||||
fdt-4 {
|
||||
data = /incbin/("./bar.dtbo");
|
||||
type = "flat_dt";
|
||||
arch = "arm";
|
||||
load = <0x87fc0000>;
|
||||
};
|
||||
fdt-5 {
|
||||
data = /incbin/("./baz.dtbo");
|
||||
type = "flat_dt";
|
||||
arch = "arm";
|
||||
load = <0x87fc0000>;
|
||||
};
|
||||
};
|
||||
|
||||
configurations {
|
||||
default = "foo-reva.dtb;
|
||||
foo-reva.dtb {
|
||||
kernel = "kernel";
|
||||
fdt = "fdt-1", "fdt-2";
|
||||
};
|
||||
foo-revb.dtb {
|
||||
kernel = "kernel";
|
||||
fdt = "fdt-1", "fdt-3";
|
||||
};
|
||||
foo-reva-bar.dtb {
|
||||
kernel = "kernel";
|
||||
fdt = "fdt-1", "fdt-2", "fdt-4";
|
||||
};
|
||||
foo-revb-bar.dtb {
|
||||
kernel = "kernel";
|
||||
fdt = "fdt-1", "fdt-3", "fdt-4";
|
||||
};
|
||||
foo-revb-baz.dtb {
|
||||
kernel = "kernel";
|
||||
fdt = "fdt-1", "fdt-3", "fdt-5";
|
||||
};
|
||||
foo-revb-bar-baz.dtb {
|
||||
kernel = "kernel";
|
||||
fdt = "fdt-1", "fdt-3", "fdt-4", "fdt-5";
|
||||
};
|
||||
bar {
|
||||
fdt = "fdt-4";
|
||||
};
|
||||
baz {
|
||||
fdt = "fdt-5";
|
||||
};
|
||||
};
|
||||
};
|
||||
|
||||
Booting this image is exactly the same as the non-overlay example.
|
||||
u-boot will retrieve the base blob and apply the overlays in sequence as
|
||||
they are declared in the configuration.
|
||||
|
||||
Note the minimum amount of different DT blobs, as well as the requirement for
|
||||
the DT blobs to have a load address; the overlay application requires the blobs
|
||||
to be writeable.
|
||||
|
||||
Configuration using overlays and feature selection
|
||||
--------------------------------------------------
|
||||
|
||||
Although the configuration in the previous section works is a bit inflexible
|
||||
since it requires all possible configuration options to be laid out before
|
||||
hand in the FIT image. For the add-on boards the extra config selection method
|
||||
might make sense.
|
||||
|
||||
Note the two bar & baz configuration nodes. To boot a reva board with
|
||||
the bar add-on board enabled simply use::
|
||||
|
||||
=> bootm <addr>#foo-reva.dtb#bar
|
||||
|
||||
While booting a revb with bar and baz is as follows::
|
||||
|
||||
=> bootm <addr>#foo-revb.dtb#bar#baz
|
||||
|
||||
The limitation for a feature selection configuration node is that a single
|
||||
fdt option is currently supported.
|
||||
|
||||
.. sectionauthor:: Pantelis Antoniou <pantelis.antoniou@konsulko.com>, 12/6/2017
|
54
doc/usage/fit/sec_firmware_ppa.rst
Normal file
54
doc/usage/fit/sec_firmware_ppa.rst
Normal file
|
@ -0,0 +1,54 @@
|
|||
.. SPDX-License-Identifier: GPL-2.0+
|
||||
|
||||
SEC Firmware and multiple loadable images
|
||||
=========================================
|
||||
|
||||
Example FIT image description file demonstrating the usage
|
||||
of SEC Firmware and multiple loadable images loaded by U-Boot.
|
||||
For booting PPA (SEC Firmware), "firmware" is searched and loaded.
|
||||
|
||||
Multiple binaries will be loaded as "loadables" (if present) at their
|
||||
respective load offsets from firmware image address.
|
||||
|
||||
::
|
||||
|
||||
/dts-v1/;
|
||||
|
||||
/{
|
||||
description = "PPA Firmware";
|
||||
#address-cells = <1>;
|
||||
images {
|
||||
firmware@1 {
|
||||
description = "PPA Firmware: <version>";
|
||||
data = /incbin/("../obj/monitor.bin");
|
||||
type = "firmware";
|
||||
arch = "arm64";
|
||||
compression = "none";
|
||||
};
|
||||
trustedOS@1 {
|
||||
description = "Trusted OS";
|
||||
data = /incbin/("../../tee.bin");
|
||||
type = "OS";
|
||||
arch = "arm64";
|
||||
compression = "none";
|
||||
load = <0x00200000>;
|
||||
};
|
||||
fuse_scr {
|
||||
description = "Fuse Script";
|
||||
data = /incbin/("../../fuse_scr.bin");
|
||||
type = "firmware";
|
||||
arch = "arm64";
|
||||
compression = "none";
|
||||
load = <0x00180000>;
|
||||
};
|
||||
};
|
||||
|
||||
configurations {
|
||||
default = "config-1";
|
||||
config-1 {
|
||||
description = "PPA Secure firmware";
|
||||
firmware = "firmware@1";
|
||||
loadables = "trustedOS@1", "fuse_scr";
|
||||
};
|
||||
};
|
||||
};
|
Some files were not shown because too many files have changed in this diff Show more
Loading…
Reference in a new issue