pinctrl: renesas: add R906G032 driver

Pinctrl/pinconf driver for Renesas RZ/N1 (R906G032) SoC.

This is quite rudimentary right now, and only supports applying a
default pin configuration as specified by the device tree.

Signed-off-by: Ralph Siemsen <ralph.siemsen@linaro.org>
Reviewed-by: Marek Vasut <marek.vasut+renesas@mailbox.org>
This commit is contained in:
Ralph Siemsen 2023-05-12 21:36:52 -04:00 committed by Marek Vasut
parent f6c7122ce6
commit e4aea57fa7
5 changed files with 529 additions and 0 deletions

View file

@ -14,6 +14,7 @@ obj-$(CONFIG_PINCTRL_INTEL) += intel/
obj-$(CONFIG_ARCH_MTMIPS) += mtmips/
obj-$(CONFIG_ARCH_NPCM) += nuvoton/
obj-$(CONFIG_ARCH_RMOBILE) += renesas/
obj-$(CONFIG_ARCH_RZN1) += renesas/
obj-$(CONFIG_PINCTRL_SANDBOX) += pinctrl-sandbox.o
obj-$(CONFIG_PINCTRL_SUNXI) += sunxi/
obj-$(CONFIG_PINCTRL_UNIPHIER) += uniphier/

View file

@ -139,3 +139,10 @@ config PINCTRL_PFC_R7S72100
Support pin multiplexing control on Renesas RZ/A1 R7S72100 SoCs.
endif
config PINCTRL_RZN1
bool "Renesas RZ/N1 R906G032 pin control driver"
depends on RZN1
default y if RZN1
help
Support pin multiplexing control on Renesas RZ/N1 R906G032 SoCs.

View file

@ -20,3 +20,4 @@ obj-$(CONFIG_PINCTRL_PFC_R8A779A0) += pfc-r8a779a0.o
obj-$(CONFIG_PINCTRL_PFC_R8A779F0) += pfc-r8a779f0.o
obj-$(CONFIG_PINCTRL_PFC_R8A779G0) += pfc-r8a779g0.o
obj-$(CONFIG_PINCTRL_PFC_R7S72100) += pfc-r7s72100.o
obj-$(CONFIG_PINCTRL_RZN1) += pinctrl-rzn1.o

View file

@ -0,0 +1,379 @@
// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) 2014-2018 Renesas Electronics Europe Limited
*
* Phil Edworthy <phil.edworthy@renesas.com>
* Based on a driver originally written by Michel Pollet at Renesas.
*/
#include <dt-bindings/pinctrl/rzn1-pinctrl.h>
#include <dm/device.h>
#include <dm/device_compat.h>
#include <dm/pinctrl.h>
#include <dm/read.h>
#include <regmap.h>
/* Field positions and masks in the pinmux registers */
#define RZN1_L1_PIN_DRIVE_STRENGTH 10
#define RZN1_L1_PIN_DRIVE_STRENGTH_4MA 0
#define RZN1_L1_PIN_DRIVE_STRENGTH_6MA 1
#define RZN1_L1_PIN_DRIVE_STRENGTH_8MA 2
#define RZN1_L1_PIN_DRIVE_STRENGTH_12MA 3
#define RZN1_L1_PIN_PULL 8
#define RZN1_L1_PIN_PULL_NONE 0
#define RZN1_L1_PIN_PULL_UP 1
#define RZN1_L1_PIN_PULL_DOWN 3
#define RZN1_L1_FUNCTION 0
#define RZN1_L1_FUNC_MASK 0xf
#define RZN1_L1_FUNCTION_L2 0xf
/*
* The hardware manual describes two levels of multiplexing, but it's more
* logical to think of the hardware as three levels, with level 3 consisting of
* the multiplexing for Ethernet MDIO signals.
*
* Level 1 functions go from 0 to 9, with level 1 function '15' (0xf) specifying
* that level 2 functions are used instead. Level 2 has a lot more options,
* going from 0 to 61. Level 3 allows selection of MDIO functions which can be
* floating, or one of seven internal peripherals. Unfortunately, there are two
* level 2 functions that can select MDIO, and two MDIO channels so we have four
* sets of level 3 functions.
*
* For this driver, we've compounded the numbers together, so:
* 0 to 9 is level 1
* 10 to 71 is 10 + level 2 number
* 72 to 79 is 72 + MDIO0 source for level 2 MDIO function.
* 80 to 87 is 80 + MDIO0 source for level 2 MDIO_E1 function.
* 88 to 95 is 88 + MDIO1 source for level 2 MDIO function.
* 96 to 103 is 96 + MDIO1 source for level 2 MDIO_E1 function.
* Examples:
* Function 28 corresponds UART0
* Function 73 corresponds to MDIO0 to GMAC0
*
* There are 170 configurable pins (called PL_GPIO in the datasheet).
*/
/*
* Structure detailing the HW registers on the RZ/N1 devices.
* Both the Level 1 mux registers and Level 2 mux registers have the same
* structure. The only difference is that Level 2 has additional MDIO registers
* at the end.
*/
struct rzn1_pinctrl_regs {
u32 conf[170];
u32 pad0[86];
u32 status_protect; /* 0x400 */
/* MDIO mux registers, level2 only */
u32 l2_mdio[2];
};
#define NUM_CONF ARRAY_SIZE(((struct rzn1_pinctrl_regs *)0)->conf)
#define level1_write(map, member, val) \
regmap_range_set(map, 0, struct rzn1_pinctrl_regs, member, val)
#define level1_read(map, member, valp) \
regmap_range_get(map, 0, struct rzn1_pinctrl_regs, member, valp)
#define level2_write(map, member, val) \
regmap_range_set(map, 1, struct rzn1_pinctrl_regs, member, val)
#define level2_read(map, member, valp) \
regmap_range_get(map, 1, struct rzn1_pinctrl_regs, member, valp)
/**
* struct rzn1_pmx_func - describes rzn1 pinmux functions
* @name: the name of this specific function
* @groups: corresponding pin groups
* @num_groups: the number of groups
*/
struct rzn1_pmx_func {
const char *name;
const char **groups;
unsigned int num_groups;
};
/**
* struct rzn1_pin_group - describes an rzn1 pin group
* @name: the name of this specific pin group
* @func: the name of the function selected by this group
* @npins: the number of pins in this group array, i.e. the number of
* elements in .pins so we can iterate over that array
* @pins: array of pins. Needed due to pinctrl_ops.get_group_pins()
* @pin_ids: array of pin_ids, i.e. the value used to select the mux
*/
struct rzn1_pin_group {
const char *name;
const char *func;
unsigned int npins;
unsigned int *pins;
u8 *pin_ids;
};
struct rzn1_pinctrl {
struct device *dev;
struct clk *clk;
struct pinctrl_dev *pctl;
u32 lev1_protect_phys;
u32 lev2_protect_phys;
int mdio_func[2];
struct rzn1_pin_group *groups;
unsigned int ngroups;
struct rzn1_pmx_func *functions;
unsigned int nfunctions;
};
struct rzn1_pinctrl_priv {
struct regmap *regmap;
u32 lev1_protect_phys;
u32 lev2_protect_phys;
struct clk *clk;
};
enum {
LOCK_LEVEL1 = 0x1,
LOCK_LEVEL2 = 0x2,
LOCK_ALL = LOCK_LEVEL1 | LOCK_LEVEL2,
};
static void rzn1_hw_set_lock(struct rzn1_pinctrl_priv *priv, u8 lock, u8 value)
{
/*
* The pinmux configuration is locked by writing the physical address of
* the status_protect register to itself. It is unlocked by writing the
* address | 1.
*/
if (lock & LOCK_LEVEL1) {
u32 val = priv->lev1_protect_phys | !(value & LOCK_LEVEL1);
level1_write(priv->regmap, status_protect, val);
}
if (lock & LOCK_LEVEL2) {
u32 val = priv->lev2_protect_phys | !(value & LOCK_LEVEL2);
level2_write(priv->regmap, status_protect, val);
}
}
static void rzn1_pinctrl_mdio_select(struct rzn1_pinctrl_priv *priv, int mdio,
u32 func)
{
debug("setting mdio%d to %u\n", mdio, func);
level2_write(priv->regmap, l2_mdio[mdio], func);
}
/*
* Using a composite pin description, set the hardware pinmux registers
* with the corresponding values.
* Make sure to unlock write protection and reset it afterward.
*
* NOTE: There is no protection for potential concurrency, it is assumed these
* calls are serialized already.
*/
static int rzn1_set_hw_pin_func(struct rzn1_pinctrl_priv *priv,
unsigned int pin, unsigned int func)
{
u32 l1_cache;
u32 l2_cache;
u32 l1;
u32 l2;
/* Level 3 MDIO multiplexing */
if (func >= RZN1_FUNC_MDIO0_HIGHZ &&
func <= RZN1_FUNC_MDIO1_E1_SWITCH) {
int mdio_channel;
u32 mdio_func;
if (func <= RZN1_FUNC_MDIO1_HIGHZ)
mdio_channel = 0;
else
mdio_channel = 1;
/* Get MDIO func, and convert the func to the level 2 number */
if (func <= RZN1_FUNC_MDIO0_SWITCH) {
mdio_func = func - RZN1_FUNC_MDIO0_HIGHZ;
func = RZN1_FUNC_ETH_MDIO;
} else if (func <= RZN1_FUNC_MDIO0_E1_SWITCH) {
mdio_func = func - RZN1_FUNC_MDIO0_E1_HIGHZ;
func = RZN1_FUNC_ETH_MDIO_E1;
} else if (func <= RZN1_FUNC_MDIO1_SWITCH) {
mdio_func = func - RZN1_FUNC_MDIO1_HIGHZ;
func = RZN1_FUNC_ETH_MDIO;
} else {
mdio_func = func - RZN1_FUNC_MDIO1_E1_HIGHZ;
func = RZN1_FUNC_ETH_MDIO_E1;
}
rzn1_pinctrl_mdio_select(priv, mdio_channel, mdio_func);
}
/* Note here, we do not allow anything past the MDIO Mux values */
if (pin >= NUM_CONF || func >= RZN1_FUNC_MDIO0_HIGHZ)
return -EINVAL;
level1_read(priv->regmap, conf[pin], &l1);
l1_cache = l1;
level2_read(priv->regmap, conf[pin], &l2);
l2_cache = l2;
debug("setting func for pin %u to %u\n", pin, func);
l1 &= ~(RZN1_L1_FUNC_MASK << RZN1_L1_FUNCTION);
if (func < RZN1_FUNC_L2_OFFSET) {
l1 |= (func << RZN1_L1_FUNCTION);
} else {
l1 |= (RZN1_L1_FUNCTION_L2 << RZN1_L1_FUNCTION);
l2 = func - RZN1_FUNC_L2_OFFSET;
}
/* If either configuration changes, we update both anyway */
if (l1 != l1_cache || l2 != l2_cache) {
level1_write(priv->regmap, conf[pin], l1);
level2_write(priv->regmap, conf[pin], l2);
}
return 0;
}
static int rzn1_pinconf_set(struct rzn1_pinctrl_priv *priv, unsigned int pin,
unsigned int bias, unsigned int strength)
{
u32 l1, l1_cache;
u32 drv = RZN1_L1_PIN_DRIVE_STRENGTH_8MA;
level1_read(priv->regmap, conf[pin], &l1);
l1_cache = l1;
switch (bias) {
case PIN_CONFIG_BIAS_PULL_UP:
debug("set pin %d pull up\n", pin);
l1 &= ~(0x3 << RZN1_L1_PIN_PULL);
l1 |= (RZN1_L1_PIN_PULL_UP << RZN1_L1_PIN_PULL);
break;
case PIN_CONFIG_BIAS_PULL_DOWN:
debug("set pin %d pull down\n", pin);
l1 &= ~(0x3 << RZN1_L1_PIN_PULL);
l1 |= (RZN1_L1_PIN_PULL_DOWN << RZN1_L1_PIN_PULL);
break;
case PIN_CONFIG_BIAS_DISABLE:
debug("set pin %d bias off\n", pin);
l1 &= ~(0x3 << RZN1_L1_PIN_PULL);
l1 |= (RZN1_L1_PIN_PULL_NONE << RZN1_L1_PIN_PULL);
break;
}
switch (strength) {
case 4:
drv = RZN1_L1_PIN_DRIVE_STRENGTH_4MA;
break;
case 6:
drv = RZN1_L1_PIN_DRIVE_STRENGTH_6MA;
break;
case 8:
drv = RZN1_L1_PIN_DRIVE_STRENGTH_8MA;
break;
case 12:
drv = RZN1_L1_PIN_DRIVE_STRENGTH_12MA;
break;
}
debug("set pin %d drv %umA\n", pin, drv);
l1 &= ~(0x3 << RZN1_L1_PIN_DRIVE_STRENGTH);
l1 |= (drv << RZN1_L1_PIN_DRIVE_STRENGTH);
if (l1 != l1_cache)
level1_write(priv->regmap, conf[pin], l1);
return 0;
}
static int rzn1_pinctrl_set_state(struct udevice *dev, struct udevice *config)
{
struct rzn1_pinctrl_priv *priv = dev_get_priv(dev);
int size;
int ret;
u32 val;
u32 bias;
/* Pullup/down bias, common to all pins in group */
bias = PIN_CONFIG_BIAS_PULL_UP;
if (dev_read_bool(config, "bias-disable"))
bias = PIN_CONFIG_BIAS_DISABLE;
else if (dev_read_bool(config, "bias-pull-up"))
bias = PIN_CONFIG_BIAS_PULL_UP;
else if (dev_read_bool(config, "bias-pull-down"))
bias = PIN_CONFIG_BIAS_PULL_DOWN;
/* Drive strength, common to all pins in group */
u32 strength = dev_read_u32_default(config, "drive-strength", 8);
/* Number of pins */
ret = dev_read_size(config, "pinmux");
if (ret < 0)
return ret;
size = ret / sizeof(val);
for (int i = 0; i < size; i++) {
ret = dev_read_u32_index(config, "pinmux", i, &val);
if (ret)
return ret;
unsigned int pin = val & 0xff;
unsigned int func = val >> 8;
debug("%s pin %d func %d bias %d strength %d\n",
config->name, pin, func, bias, strength);
rzn1_hw_set_lock(priv, LOCK_ALL, LOCK_ALL);
rzn1_set_hw_pin_func(priv, pin, func);
rzn1_pinconf_set(priv, pin, bias, strength);
rzn1_hw_set_lock(priv, LOCK_ALL, 0);
}
return 0;
}
static struct pinctrl_ops rzn1_pinctrl_ops = {
.set_state = rzn1_pinctrl_set_state,
};
static int rzn1_pinctrl_probe(struct udevice *dev)
{
struct rzn1_pinctrl_priv *priv = dev_get_priv(dev);
ofnode node = dev_ofnode(dev);
int ret;
ret = regmap_init_mem(node, &priv->regmap);
if (ret)
return ret;
priv->lev1_protect_phys = (u32)regmap_get_range(priv->regmap, 0) +
offsetof(struct rzn1_pinctrl_regs, status_protect);
priv->lev2_protect_phys = (u32)regmap_get_range(priv->regmap, 1) +
offsetof(struct rzn1_pinctrl_regs, status_protect);
return 0;
}
static const struct udevice_id rzn1_pinctrl_ids[] = {
{ .compatible = "renesas,rzn1-pinctrl", },
{ },
};
U_BOOT_DRIVER(pinctrl_rzn1) = {
.name = "rzn1-pinctrl",
.id = UCLASS_PINCTRL,
.of_match = rzn1_pinctrl_ids,
.priv_auto = sizeof(struct rzn1_pinctrl_priv),
.ops = &rzn1_pinctrl_ops,
.probe = rzn1_pinctrl_probe,
.flags = DM_FLAG_PRE_RELOC,
};

View file

@ -0,0 +1,141 @@
/* SPDX-License-Identifier: GPL-2.0 */
/*
* Defines macros and constants for Renesas RZ/N1 pin controller pin
* muxing functions.
*/
#ifndef __DT_BINDINGS_RZN1_PINCTRL_H
#define __DT_BINDINGS_RZN1_PINCTRL_H
#define RZN1_PINMUX(_gpio, _func) \
(((_func) << 8) | (_gpio))
/*
* Given the different levels of muxing on the SoC, it was decided to
* 'linearize' them into one numerical space. So mux level 1, 2 and the MDIO
* muxes are all represented by one single value.
*
* You can derive the hardware value pretty easily too, as
* 0...9 are Level 1
* 10...71 are Level 2. The Level 2 mux will be set to this
* value - RZN1_FUNC_L2_OFFSET, and the Level 1 mux will be
* set accordingly.
* 72...103 are for the 2 MDIO muxes.
*/
#define RZN1_FUNC_HIGHZ 0
#define RZN1_FUNC_0L 1
#define RZN1_FUNC_CLK_ETH_MII_RGMII_RMII 2
#define RZN1_FUNC_CLK_ETH_NAND 3
#define RZN1_FUNC_QSPI 4
#define RZN1_FUNC_SDIO 5
#define RZN1_FUNC_LCD 6
#define RZN1_FUNC_LCD_E 7
#define RZN1_FUNC_MSEBIM 8
#define RZN1_FUNC_MSEBIS 9
#define RZN1_FUNC_L2_OFFSET 10 /* I'm Special */
#define RZN1_FUNC_HIGHZ1 (RZN1_FUNC_L2_OFFSET + 0)
#define RZN1_FUNC_ETHERCAT (RZN1_FUNC_L2_OFFSET + 1)
#define RZN1_FUNC_SERCOS3 (RZN1_FUNC_L2_OFFSET + 2)
#define RZN1_FUNC_SDIO_E (RZN1_FUNC_L2_OFFSET + 3)
#define RZN1_FUNC_ETH_MDIO (RZN1_FUNC_L2_OFFSET + 4)
#define RZN1_FUNC_ETH_MDIO_E1 (RZN1_FUNC_L2_OFFSET + 5)
#define RZN1_FUNC_USB (RZN1_FUNC_L2_OFFSET + 6)
#define RZN1_FUNC_MSEBIM_E (RZN1_FUNC_L2_OFFSET + 7)
#define RZN1_FUNC_MSEBIS_E (RZN1_FUNC_L2_OFFSET + 8)
#define RZN1_FUNC_RSV (RZN1_FUNC_L2_OFFSET + 9)
#define RZN1_FUNC_RSV_E (RZN1_FUNC_L2_OFFSET + 10)
#define RZN1_FUNC_RSV_E1 (RZN1_FUNC_L2_OFFSET + 11)
#define RZN1_FUNC_UART0_I (RZN1_FUNC_L2_OFFSET + 12)
#define RZN1_FUNC_UART0_I_E (RZN1_FUNC_L2_OFFSET + 13)
#define RZN1_FUNC_UART1_I (RZN1_FUNC_L2_OFFSET + 14)
#define RZN1_FUNC_UART1_I_E (RZN1_FUNC_L2_OFFSET + 15)
#define RZN1_FUNC_UART2_I (RZN1_FUNC_L2_OFFSET + 16)
#define RZN1_FUNC_UART2_I_E (RZN1_FUNC_L2_OFFSET + 17)
#define RZN1_FUNC_UART0 (RZN1_FUNC_L2_OFFSET + 18)
#define RZN1_FUNC_UART0_E (RZN1_FUNC_L2_OFFSET + 19)
#define RZN1_FUNC_UART1 (RZN1_FUNC_L2_OFFSET + 20)
#define RZN1_FUNC_UART1_E (RZN1_FUNC_L2_OFFSET + 21)
#define RZN1_FUNC_UART2 (RZN1_FUNC_L2_OFFSET + 22)
#define RZN1_FUNC_UART2_E (RZN1_FUNC_L2_OFFSET + 23)
#define RZN1_FUNC_UART3 (RZN1_FUNC_L2_OFFSET + 24)
#define RZN1_FUNC_UART3_E (RZN1_FUNC_L2_OFFSET + 25)
#define RZN1_FUNC_UART4 (RZN1_FUNC_L2_OFFSET + 26)
#define RZN1_FUNC_UART4_E (RZN1_FUNC_L2_OFFSET + 27)
#define RZN1_FUNC_UART5 (RZN1_FUNC_L2_OFFSET + 28)
#define RZN1_FUNC_UART5_E (RZN1_FUNC_L2_OFFSET + 29)
#define RZN1_FUNC_UART6 (RZN1_FUNC_L2_OFFSET + 30)
#define RZN1_FUNC_UART6_E (RZN1_FUNC_L2_OFFSET + 31)
#define RZN1_FUNC_UART7 (RZN1_FUNC_L2_OFFSET + 32)
#define RZN1_FUNC_UART7_E (RZN1_FUNC_L2_OFFSET + 33)
#define RZN1_FUNC_SPI0_M (RZN1_FUNC_L2_OFFSET + 34)
#define RZN1_FUNC_SPI0_M_E (RZN1_FUNC_L2_OFFSET + 35)
#define RZN1_FUNC_SPI1_M (RZN1_FUNC_L2_OFFSET + 36)
#define RZN1_FUNC_SPI1_M_E (RZN1_FUNC_L2_OFFSET + 37)
#define RZN1_FUNC_SPI2_M (RZN1_FUNC_L2_OFFSET + 38)
#define RZN1_FUNC_SPI2_M_E (RZN1_FUNC_L2_OFFSET + 39)
#define RZN1_FUNC_SPI3_M (RZN1_FUNC_L2_OFFSET + 40)
#define RZN1_FUNC_SPI3_M_E (RZN1_FUNC_L2_OFFSET + 41)
#define RZN1_FUNC_SPI4_S (RZN1_FUNC_L2_OFFSET + 42)
#define RZN1_FUNC_SPI4_S_E (RZN1_FUNC_L2_OFFSET + 43)
#define RZN1_FUNC_SPI5_S (RZN1_FUNC_L2_OFFSET + 44)
#define RZN1_FUNC_SPI5_S_E (RZN1_FUNC_L2_OFFSET + 45)
#define RZN1_FUNC_SGPIO0_M (RZN1_FUNC_L2_OFFSET + 46)
#define RZN1_FUNC_SGPIO1_M (RZN1_FUNC_L2_OFFSET + 47)
#define RZN1_FUNC_GPIO (RZN1_FUNC_L2_OFFSET + 48)
#define RZN1_FUNC_CAN (RZN1_FUNC_L2_OFFSET + 49)
#define RZN1_FUNC_I2C (RZN1_FUNC_L2_OFFSET + 50)
#define RZN1_FUNC_SAFE (RZN1_FUNC_L2_OFFSET + 51)
#define RZN1_FUNC_PTO_PWM (RZN1_FUNC_L2_OFFSET + 52)
#define RZN1_FUNC_PTO_PWM1 (RZN1_FUNC_L2_OFFSET + 53)
#define RZN1_FUNC_PTO_PWM2 (RZN1_FUNC_L2_OFFSET + 54)
#define RZN1_FUNC_PTO_PWM3 (RZN1_FUNC_L2_OFFSET + 55)
#define RZN1_FUNC_PTO_PWM4 (RZN1_FUNC_L2_OFFSET + 56)
#define RZN1_FUNC_DELTA_SIGMA (RZN1_FUNC_L2_OFFSET + 57)
#define RZN1_FUNC_SGPIO2_M (RZN1_FUNC_L2_OFFSET + 58)
#define RZN1_FUNC_SGPIO3_M (RZN1_FUNC_L2_OFFSET + 59)
#define RZN1_FUNC_SGPIO4_S (RZN1_FUNC_L2_OFFSET + 60)
#define RZN1_FUNC_MAC_MTIP_SWITCH (RZN1_FUNC_L2_OFFSET + 61)
#define RZN1_FUNC_MDIO_OFFSET (RZN1_FUNC_L2_OFFSET + 62)
/* These are MDIO0 peripherals for the RZN1_FUNC_ETH_MDIO function */
#define RZN1_FUNC_MDIO0_HIGHZ (RZN1_FUNC_MDIO_OFFSET + 0)
#define RZN1_FUNC_MDIO0_GMAC0 (RZN1_FUNC_MDIO_OFFSET + 1)
#define RZN1_FUNC_MDIO0_GMAC1 (RZN1_FUNC_MDIO_OFFSET + 2)
#define RZN1_FUNC_MDIO0_ECAT (RZN1_FUNC_MDIO_OFFSET + 3)
#define RZN1_FUNC_MDIO0_S3_MDIO0 (RZN1_FUNC_MDIO_OFFSET + 4)
#define RZN1_FUNC_MDIO0_S3_MDIO1 (RZN1_FUNC_MDIO_OFFSET + 5)
#define RZN1_FUNC_MDIO0_HWRTOS (RZN1_FUNC_MDIO_OFFSET + 6)
#define RZN1_FUNC_MDIO0_SWITCH (RZN1_FUNC_MDIO_OFFSET + 7)
/* These are MDIO0 peripherals for the RZN1_FUNC_ETH_MDIO_E1 function */
#define RZN1_FUNC_MDIO0_E1_HIGHZ (RZN1_FUNC_MDIO_OFFSET + 8)
#define RZN1_FUNC_MDIO0_E1_GMAC0 (RZN1_FUNC_MDIO_OFFSET + 9)
#define RZN1_FUNC_MDIO0_E1_GMAC1 (RZN1_FUNC_MDIO_OFFSET + 10)
#define RZN1_FUNC_MDIO0_E1_ECAT (RZN1_FUNC_MDIO_OFFSET + 11)
#define RZN1_FUNC_MDIO0_E1_S3_MDIO0 (RZN1_FUNC_MDIO_OFFSET + 12)
#define RZN1_FUNC_MDIO0_E1_S3_MDIO1 (RZN1_FUNC_MDIO_OFFSET + 13)
#define RZN1_FUNC_MDIO0_E1_HWRTOS (RZN1_FUNC_MDIO_OFFSET + 14)
#define RZN1_FUNC_MDIO0_E1_SWITCH (RZN1_FUNC_MDIO_OFFSET + 15)
/* These are MDIO1 peripherals for the RZN1_FUNC_ETH_MDIO function */
#define RZN1_FUNC_MDIO1_HIGHZ (RZN1_FUNC_MDIO_OFFSET + 16)
#define RZN1_FUNC_MDIO1_GMAC0 (RZN1_FUNC_MDIO_OFFSET + 17)
#define RZN1_FUNC_MDIO1_GMAC1 (RZN1_FUNC_MDIO_OFFSET + 18)
#define RZN1_FUNC_MDIO1_ECAT (RZN1_FUNC_MDIO_OFFSET + 19)
#define RZN1_FUNC_MDIO1_S3_MDIO0 (RZN1_FUNC_MDIO_OFFSET + 20)
#define RZN1_FUNC_MDIO1_S3_MDIO1 (RZN1_FUNC_MDIO_OFFSET + 21)
#define RZN1_FUNC_MDIO1_HWRTOS (RZN1_FUNC_MDIO_OFFSET + 22)
#define RZN1_FUNC_MDIO1_SWITCH (RZN1_FUNC_MDIO_OFFSET + 23)
/* These are MDIO1 peripherals for the RZN1_FUNC_ETH_MDIO_E1 function */
#define RZN1_FUNC_MDIO1_E1_HIGHZ (RZN1_FUNC_MDIO_OFFSET + 24)
#define RZN1_FUNC_MDIO1_E1_GMAC0 (RZN1_FUNC_MDIO_OFFSET + 25)
#define RZN1_FUNC_MDIO1_E1_GMAC1 (RZN1_FUNC_MDIO_OFFSET + 26)
#define RZN1_FUNC_MDIO1_E1_ECAT (RZN1_FUNC_MDIO_OFFSET + 27)
#define RZN1_FUNC_MDIO1_E1_S3_MDIO0 (RZN1_FUNC_MDIO_OFFSET + 28)
#define RZN1_FUNC_MDIO1_E1_S3_MDIO1 (RZN1_FUNC_MDIO_OFFSET + 29)
#define RZN1_FUNC_MDIO1_E1_HWRTOS (RZN1_FUNC_MDIO_OFFSET + 30)
#define RZN1_FUNC_MDIO1_E1_SWITCH (RZN1_FUNC_MDIO_OFFSET + 31)
#define RZN1_FUNC_MAX (RZN1_FUNC_MDIO_OFFSET + 32)
#endif /* __DT_BINDINGS_RZN1_PINCTRL_H */