Tom Rini 2022-02-10 15:09:55 -05:00
commit c4408291bf
6 changed files with 232 additions and 16 deletions

View file

@ -56,6 +56,7 @@ config BOARD_SPECIFIC_OPTIONS # dummy
imply DM_SCSI
imply SYS_NS16550
imply SIFIVE_SERIAL
imply HTIF_CONSOLE if 64BIT
imply SYSRESET
imply SYSRESET_CMD_POWEROFF
imply SYSRESET_SYSCON

View file

@ -5,6 +5,7 @@
#include <common.h>
#include <dm.h>
#include <dm/ofnode.h>
#include <env.h>
#include <fdtdec.h>
#include <image.h>
@ -16,6 +17,17 @@
DECLARE_GLOBAL_DATA_PTR;
#if IS_ENABLED(CONFIG_MTD_NOR_FLASH)
int is_flash_available(void)
{
if (!ofnode_equal(ofnode_by_compatible(ofnode_null(), "cfi-flash"),
ofnode_null()))
return 1;
return 0;
}
#endif
int board_init(void)
{
/*

View file

@ -4,19 +4,24 @@
QEMU RISC-V
===========
QEMU for RISC-V supports a special 'virt' machine designed for emulation and
virtualization purposes. This document describes how to run U-Boot under it.
Both 32-bit and 64-bit targets are supported, running in either machine or
supervisor mode.
QEMU for RISC-V supports a special 'virt' machine and 'spike' machine designed
for emulation and virtualization purposes. This document describes how to run
U-Boot under it. Both 32-bit and 64-bit targets are supported, running in
either machine or supervisor mode.
The QEMU virt machine models a generic RISC-V virtual machine with support for
the VirtIO standard networking and block storage devices. It has CLINT, PLIC,
16550A UART devices in addition to VirtIO and it also uses device-tree to pass
configuration information to guest software. It implements RISC-V privileged
configuration information to guest software. It implements the latest RISC-V
privileged architecture.
See :doc:`../../develop/devicetree/dt_qemu` for information on how to see
the devicetree actually generated by QEMU.
architecture spec v1.10.
The QEMU spike machine models a minimalistic RISC-V virtual machine with
only CLINT and HTIF devices. It also uses device-tree to pass configuration
information to guest software and implements the latest RISC-V privileged
architecture.
Building U-Boot
---------------
@ -41,13 +46,17 @@ Running U-Boot
--------------
The minimal QEMU command line to get U-Boot up and running is:
- For 32-bit RISC-V::
- For 32-bit RISC-V virt machine::
qemu-system-riscv32 -nographic -machine virt -bios u-boot
qemu-system-riscv32 -nographic -machine virt -bios u-boot.bin
- For 64-bit RISC-V::
- For 64-bit RISC-V virt machine::
qemu-system-riscv64 -nographic -machine virt -bios u-boot
qemu-system-riscv64 -nographic -machine virt -bios u-boot.bin
- For 64-bit RISC-V spike machine::
qemu-system-riscv64 -nographic -machine spike -bios u-boot.bin
The commands above create targets with 128MiB memory by default.
A freely configurable amount of RAM can be created via the '-m'
@ -58,6 +67,7 @@ the new setting.
For instructions on how to run U-Boot in supervisor mode on QEMU
with OpenSBI, see the documentation available with OpenSBI:
https://github.com/riscv/opensbi/blob/master/docs/platform/qemu_virt.md
https://github.com/riscv/opensbi/blob/master/docs/platform/spike.md
These have been tested in QEMU 5.0.0.
@ -80,8 +90,9 @@ supported by U-Boot. Clone the OpenSBI repository and run the following command.
See the OpenSBI documentation for full details:
https://github.com/riscv/opensbi/blob/master/docs/platform/qemu_virt.md
https://github.com/riscv/opensbi/blob/master/docs/platform/spike.md
To make the FW_DYNAMIC binary (build/platform/qemu/virt/firmware/fw_dynamic.bin)
To make the FW_DYNAMIC binary (build/platform/generic/firmware/fw_dynamic.bin)
available to U-Boot, either copy it into the U-Boot root directory or specify
its location with the OPENSBI environment variable. Afterwards, compile U-Boot
with the following commands.
@ -99,17 +110,22 @@ with the following commands.
The minimal QEMU commands to run U-Boot SPL in both 32-bit and 64-bit
configurations are:
- For 32-bit RISC-V::
- For 32-bit RISC-V virt machine::
qemu-system-riscv32 -nographic -machine virt -bios spl/u-boot-spl \
qemu-system-riscv32 -nographic -machine virt -bios spl/u-boot-spl.bin \
-device loader,file=u-boot.itb,addr=0x80200000
- For 64-bit RISC-V::
- For 64-bit RISC-V virt machine::
qemu-system-riscv64 -nographic -machine virt -bios spl/u-boot-spl \
qemu-system-riscv64 -nographic -machine virt -bios spl/u-boot-spl.bin \
-device loader,file=u-boot.itb,addr=0x80200000
An attached disk can be emulated by adding::
- For 64-bit RISC-V spike machine::
qemu-system-riscv64 -nographic -machine spike -bios spl/u-boot-spl.bin \
-device loader,file=u-boot.itb,addr=0x80200000
An attached disk can be emulated in RISC-V virt machine by adding::
-device ich9-ahci,id=ahci \
-drive if=none,file=riscv64.img,format=raw,id=mydisk \

View file

@ -866,6 +866,14 @@ config PXA_SERIAL
If you have a machine based on a Marvell XScale PXA2xx CPU you
can enable its onboard serial ports by enabling this option.
config HTIF_CONSOLE
bool "RISC-V HTIF console support"
depends on DM_SERIAL && 64BIT
help
Select this to enable host transfer interface (HTIF) based serial
console. The HTIF device is quite common in RISC-V emulators and
RISC-V ISS so this driver allows using U-Boot on such platforms.
config SIFIVE_SERIAL
bool "SiFive UART support"
depends on DM_SERIAL

View file

@ -73,6 +73,7 @@ obj-$(CONFIG_OWL_SERIAL) += serial_owl.o
obj-$(CONFIG_OMAP_SERIAL) += serial_omap.o
obj-$(CONFIG_MTK_SERIAL) += serial_mtk.o
obj-$(CONFIG_MT7620_SERIAL) += serial_mt7620.o
obj-$(CONFIG_HTIF_CONSOLE) += serial_htif.o
obj-$(CONFIG_SIFIVE_SERIAL) += serial_sifive.o
obj-$(CONFIG_XEN_SERIAL) += serial_xen.o

View file

@ -0,0 +1,178 @@
// SPDX-License-Identifier: GPL-2.0+
/*
* Copyright (C) 2022 Ventana Micro Systems Inc.
*/
#include <common.h>
#include <dm.h>
#include <errno.h>
#include <fdtdec.h>
#include <log.h>
#include <watchdog.h>
#include <asm/global_data.h>
#include <asm/io.h>
#include <linux/compiler.h>
#include <serial.h>
#include <linux/err.h>
DECLARE_GLOBAL_DATA_PTR;
#define HTIF_DATA_BITS 48
#define HTIF_DATA_MASK ((1ULL << HTIF_DATA_BITS) - 1)
#define HTIF_DATA_SHIFT 0
#define HTIF_CMD_BITS 8
#define HTIF_CMD_MASK ((1ULL << HTIF_CMD_BITS) - 1)
#define HTIF_CMD_SHIFT 48
#define HTIF_DEV_BITS 8
#define HTIF_DEV_MASK ((1ULL << HTIF_DEV_BITS) - 1)
#define HTIF_DEV_SHIFT 56
#define HTIF_DEV_SYSTEM 0
#define HTIF_DEV_CONSOLE 1
#define HTIF_CONSOLE_CMD_GETC 0
#define HTIF_CONSOLE_CMD_PUTC 1
#if __riscv_xlen == 64
# define TOHOST_CMD(dev, cmd, payload) \
(((u64)(dev) << HTIF_DEV_SHIFT) | \
((u64)(cmd) << HTIF_CMD_SHIFT) | \
(u64)(payload))
#else
# define TOHOST_CMD(dev, cmd, payload) ({ \
if ((dev) || (cmd)) \
__builtin_trap(); \
(payload); })
#endif
#define FROMHOST_DEV(fromhost_value) \
((u64)((fromhost_value) >> HTIF_DEV_SHIFT) & HTIF_DEV_MASK)
#define FROMHOST_CMD(fromhost_value) \
((u64)((fromhost_value) >> HTIF_CMD_SHIFT) & HTIF_CMD_MASK)
#define FROMHOST_DATA(fromhost_value) \
((u64)((fromhost_value) >> HTIF_DATA_SHIFT) & HTIF_DATA_MASK)
struct htif_plat {
void *fromhost;
void *tohost;
int console_char;
};
static void __check_fromhost(struct htif_plat *plat)
{
u64 fh = readq(plat->fromhost);
if (!fh)
return;
writeq(0, plat->fromhost);
/* this should be from the console */
if (FROMHOST_DEV(fh) != HTIF_DEV_CONSOLE)
__builtin_trap();
switch (FROMHOST_CMD(fh)) {
case HTIF_CONSOLE_CMD_GETC:
plat->console_char = 1 + (u8)FROMHOST_DATA(fh);
break;
case HTIF_CONSOLE_CMD_PUTC:
break;
default:
__builtin_trap();
}
}
static void __set_tohost(struct htif_plat *plat,
u64 dev, u64 cmd, u64 data)
{
while (readq(plat->tohost))
__check_fromhost(plat);
writeq(TOHOST_CMD(dev, cmd, data), plat->tohost);
}
static int htif_serial_putc(struct udevice *dev, const char ch)
{
struct htif_plat *plat = dev_get_plat(dev);
__set_tohost(plat, HTIF_DEV_CONSOLE, HTIF_CONSOLE_CMD_PUTC, ch);
return 0;
}
static int htif_serial_getc(struct udevice *dev)
{
int ch;
struct htif_plat *plat = dev_get_plat(dev);
if (plat->console_char < 0)
__check_fromhost(plat);
if (plat->console_char >= 0) {
ch = plat->console_char;
plat->console_char = -1;
__set_tohost(plat, HTIF_DEV_CONSOLE, HTIF_CONSOLE_CMD_GETC, 0);
return (ch) ? ch - 1 : -EAGAIN;
}
return -EAGAIN;
}
static int htif_serial_pending(struct udevice *dev, bool input)
{
struct htif_plat *plat = dev_get_plat(dev);
if (!input)
return 0;
if (plat->console_char < 0)
__check_fromhost(plat);
return (plat->console_char >= 0) ? 1 : 0;
}
static int htif_serial_probe(struct udevice *dev)
{
struct htif_plat *plat = dev_get_plat(dev);
/* Queue first getc request */
__set_tohost(plat, HTIF_DEV_CONSOLE, HTIF_CONSOLE_CMD_GETC, 0);
return 0;
}
static int htif_serial_of_to_plat(struct udevice *dev)
{
fdt_addr_t addr;
struct htif_plat *plat = dev_get_plat(dev);
addr = dev_read_addr_index(dev, 0);
if (addr == FDT_ADDR_T_NONE)
return -ENODEV;
plat->fromhost = (void *)(uintptr_t)addr;
plat->tohost = plat->fromhost + sizeof(u64);
addr = dev_read_addr_index(dev, 1);
if (addr != FDT_ADDR_T_NONE)
plat->tohost = (void *)(uintptr_t)addr;
plat->console_char = -1;
return 0;
}
static const struct dm_serial_ops htif_serial_ops = {
.putc = htif_serial_putc,
.getc = htif_serial_getc,
.pending = htif_serial_pending,
};
static const struct udevice_id htif_serial_ids[] = {
{ .compatible = "ucb,htif0" },
{ }
};
U_BOOT_DRIVER(serial_htif) = {
.name = "serial_htif",
.id = UCLASS_SERIAL,
.of_match = htif_serial_ids,
.of_to_plat = htif_serial_of_to_plat,
.plat_auto = sizeof(struct htif_plat),
.probe = htif_serial_probe,
.ops = &htif_serial_ops,
};