Merge branch 'master' of git://git.denx.de/u-boot-nand-flash

This commit is contained in:
Tom Rini 2012-09-18 07:55:07 -07:00
commit c413a004ea
12 changed files with 263 additions and 403 deletions

View file

@ -231,12 +231,18 @@ print:
#ifdef CONFIG_CMD_NAND_LOCK_UNLOCK
static void print_status(ulong start, ulong end, ulong erasesize, int status)
{
/*
* Micron NAND flash (e.g. MT29F4G08ABADAH4) BLOCK LOCK READ STATUS is
* not the same as others. Instead of bit 1 being lock, it is
* #lock_tight. To make the driver support either format, ignore bit 1
* and use only bit 0 and bit 2.
*/
printf("%08lx - %08lx: %08lx blocks %s%s%s\n",
start,
end - 1,
(end - start) / erasesize,
((status & NAND_LOCK_STATUS_TIGHT) ? "TIGHT " : ""),
((status & NAND_LOCK_STATUS_LOCK) ? "LOCK " : ""),
(!(status & NAND_LOCK_STATUS_UNLOCK) ? "LOCK " : ""),
((status & NAND_LOCK_STATUS_UNLOCK) ? "UNLOCK " : ""));
}
@ -749,11 +755,18 @@ int do_nand(cmd_tbl_t * cmdtp, int flag, int argc, char * const argv[])
return 0;
}
if (strcmp(cmd, "unlock") == 0) {
if (strncmp(cmd, "unlock", 5) == 0) {
int allexcept = 0;
s = strchr(cmd, '.');
if (s && !strcmp(s, ".allexcept"))
allexcept = 1;
if (arg_off_size(argc - 2, argv + 2, &dev, &off, &size) < 0)
return 1;
if (!nand_unlock(&nand_info[dev], off, size)) {
if (!nand_unlock(&nand_info[dev], off, size, allexcept)) {
puts("NAND flash successfully unlocked\n");
} else {
puts("Error unlocking NAND flash, "
@ -807,7 +820,7 @@ U_BOOT_CMD(
"\n"
"nand lock [tight] [status]\n"
" bring nand to lock state or display locked pages\n"
"nand unlock [offset] [size] - unlock section"
"nand unlock[.allexcept] [offset] [size] - unlock section"
#endif
#ifdef CONFIG_ENV_OFFSET_OOB
"\n"

View file

@ -228,6 +228,8 @@ NAND locking command (for chips with active LOCKPRE pin)
"nand unlock [offset] [size]"
unlock consecutive area (can be called multiple times for different areas)
"nand unlock.allexcept [offset] [size]"
unlock all except specified consecutive area
I have tested the code with board containing 128MiB NAND large page chips
and 32MiB small page chips.

View file

@ -25,168 +25,23 @@
#if defined(CONFIG_MX25) || defined(CONFIG_MX27) || defined(CONFIG_MX35)
#include <asm/arch/imx-regs.h>
#endif
#include <fsl_nfc.h>
#define DRIVER_NAME "mxc_nand"
/*
* TODO: Use same register defs here as nand_spl mxc nand driver.
*/
/*
* Register map and bit definitions for the Freescale NAND Flash Controller
* present in various i.MX devices.
*
* MX31 and MX27 have version 1 which has
* 4 512 byte main buffers and
* 4 16 byte spare buffers
* to support up to 2K byte pagesize nand.
* Reading or writing a 2K page requires 4 FDI/FDO cycles.
*
* MX25 has version 1.1 which has
* 8 512 byte main buffers and
* 8 64 byte spare buffers
* to support up to 4K byte pagesize nand.
* Reading or writing a 2K or 4K page requires only 1 FDI/FDO cycle.
* Also some of registers are moved and/or changed meaning as seen below.
*/
#if defined(CONFIG_MX31) || defined(CONFIG_MX27)
#define MXC_NFC_V1
#elif defined(CONFIG_MX25) || defined(CONFIG_MX35)
#define MXC_NFC_V1_1
#else
#warning "MXC NFC version not defined"
#endif
#if defined(MXC_NFC_V1)
#define NAND_MXC_NR_BUFS 4
#define NAND_MXC_SPARE_BUF_SIZE 16
#define NAND_MXC_REG_OFFSET 0xe00
#define is_mxc_nfc_11() 0
#elif defined(MXC_NFC_V1_1)
#define NAND_MXC_NR_BUFS 8
#define NAND_MXC_SPARE_BUF_SIZE 64
#define NAND_MXC_REG_OFFSET 0x1e00
#define is_mxc_nfc_11() 1
#else
#error "define CONFIG_NAND_MXC_VXXX to use mtd mxc nand driver"
#endif
struct nfc_regs {
uint8_t main_area[NAND_MXC_NR_BUFS][0x200];
uint8_t spare_area[NAND_MXC_NR_BUFS][NAND_MXC_SPARE_BUF_SIZE];
/*
* reserved size is offset of nfc registers
* minus total main and spare sizes
*/
uint8_t reserved1[NAND_MXC_REG_OFFSET
- NAND_MXC_NR_BUFS * (512 + NAND_MXC_SPARE_BUF_SIZE)];
#if defined(MXC_NFC_V1)
uint16_t nfc_buf_size;
uint16_t reserved2;
uint16_t nfc_buf_addr;
uint16_t nfc_flash_addr;
uint16_t nfc_flash_cmd;
uint16_t nfc_config;
uint16_t nfc_ecc_status_result;
uint16_t nfc_rsltmain_area;
uint16_t nfc_rsltspare_area;
uint16_t nfc_wrprot;
uint16_t nfc_unlockstart_blkaddr;
uint16_t nfc_unlockend_blkaddr;
uint16_t nfc_nf_wrprst;
uint16_t nfc_config1;
uint16_t nfc_config2;
#elif defined(MXC_NFC_V1_1)
uint16_t reserved2[2];
uint16_t nfc_buf_addr;
uint16_t nfc_flash_addr;
uint16_t nfc_flash_cmd;
uint16_t nfc_config;
uint16_t nfc_ecc_status_result;
uint16_t nfc_ecc_status_result2;
uint16_t nfc_spare_area_size;
uint16_t nfc_wrprot;
uint16_t reserved3[2];
uint16_t nfc_nf_wrprst;
uint16_t nfc_config1;
uint16_t nfc_config2;
uint16_t reserved4;
uint16_t nfc_unlockstart_blkaddr;
uint16_t nfc_unlockend_blkaddr;
uint16_t nfc_unlockstart_blkaddr1;
uint16_t nfc_unlockend_blkaddr1;
uint16_t nfc_unlockstart_blkaddr2;
uint16_t nfc_unlockend_blkaddr2;
uint16_t nfc_unlockstart_blkaddr3;
uint16_t nfc_unlockend_blkaddr3;
#endif
};
/*
* Set INT to 0, FCMD to 1, rest to 0 in NFC_CONFIG2 Register
* for Command operation
*/
#define NFC_CMD 0x1
/*
* Set INT to 0, FADD to 1, rest to 0 in NFC_CONFIG2 Register
* for Address operation
*/
#define NFC_ADDR 0x2
/*
* Set INT to 0, FDI to 1, rest to 0 in NFC_CONFIG2 Register
* for Input operation
*/
#define NFC_INPUT 0x4
/*
* Set INT to 0, FDO to 001, rest to 0 in NFC_CONFIG2 Register
* for Data Output operation
*/
#define NFC_OUTPUT 0x8
/*
* Set INT to 0, FD0 to 010, rest to 0 in NFC_CONFIG2 Register
* for Read ID operation
*/
#define NFC_ID 0x10
/*
* Set INT to 0, FDO to 100, rest to 0 in NFC_CONFIG2 Register
* for Read Status operation
*/
#define NFC_STATUS 0x20
/*
* Set INT to 1, rest to 0 in NFC_CONFIG2 Register for Read
* Status operation
*/
#define NFC_INT 0x8000
#ifdef MXC_NFC_V1_1
#define NFC_4_8N_ECC (1 << 0)
#else
#define NFC_4_8N_ECC 0
#endif
#define NFC_SP_EN (1 << 2)
#define NFC_ECC_EN (1 << 3)
#define NFC_BIG (1 << 5)
#define NFC_RST (1 << 6)
#define NFC_CE (1 << 7)
#define NFC_ONE_CYCLE (1 << 8)
typedef enum {false, true} bool;
struct mxc_nand_host {
struct mtd_info mtd;
struct nand_chip *nand;
struct mtd_info mtd;
struct nand_chip *nand;
struct nfc_regs __iomem *regs;
int spare_only;
int status_request;
int pagesize_2k;
int clk_act;
uint16_t col_addr;
unsigned int page_addr;
struct fsl_nfc_regs __iomem *regs;
int spare_only;
int status_request;
int pagesize_2k;
int clk_act;
uint16_t col_addr;
unsigned int page_addr;
};
static struct mxc_nand_host mxc_host;
@ -222,7 +77,7 @@ static struct nand_ecclayout nand_hw_eccoob2k = {
.oobfree = { {2, 4}, {11, 11}, {27, 11}, {43, 11}, {59, 5} },
};
#endif
#elif defined(MXC_NFC_V1_1)
#elif defined(MXC_NFC_V2_1)
#ifndef CONFIG_SYS_NAND_LARGEPAGE
static struct nand_ecclayout nand_hw_eccoob = {
.eccbytes = 9,
@ -268,8 +123,7 @@ static int is_16bit_nand(void)
#elif defined(CONFIG_MX25) || defined(CONFIG_MX35)
static int is_16bit_nand(void)
{
struct ccm_regs *ccm =
(struct ccm_regs *)IMX_CCM_BASE;
struct ccm_regs *ccm = (struct ccm_regs *)IMX_CCM_BASE;
if (readl(&ccm->rcsr) & CCM_RCSR_NF_16BIT_SEL)
return 1;
@ -304,10 +158,10 @@ static void wait_op_done(struct mxc_nand_host *host, int max_retries,
uint32_t tmp;
while (max_retries-- > 0) {
if (readw(&host->regs->nfc_config2) & NFC_INT) {
tmp = readw(&host->regs->nfc_config2);
if (readw(&host->regs->config2) & NFC_INT) {
tmp = readw(&host->regs->config2);
tmp &= ~NFC_INT;
writew(tmp, &host->regs->nfc_config2);
writew(tmp, &host->regs->config2);
break;
}
udelay(1);
@ -326,8 +180,8 @@ static void send_cmd(struct mxc_nand_host *host, uint16_t cmd)
{
MTDDEBUG(MTD_DEBUG_LEVEL3, "send_cmd(host, 0x%x)\n", cmd);
writew(cmd, &host->regs->nfc_flash_cmd);
writew(NFC_CMD, &host->regs->nfc_config2);
writew(cmd, &host->regs->flash_cmd);
writew(NFC_CMD, &host->regs->config2);
/* Wait for operation to complete */
wait_op_done(host, TROP_US_DELAY, cmd);
@ -342,8 +196,8 @@ static void send_addr(struct mxc_nand_host *host, uint16_t addr)
{
MTDDEBUG(MTD_DEBUG_LEVEL3, "send_addr(host, 0x%x)\n", addr);
writew(addr, &host->regs->nfc_flash_addr);
writew(NFC_ADDR, &host->regs->nfc_config2);
writew(addr, &host->regs->flash_addr);
writew(NFC_ADDR, &host->regs->config2);
/* Wait for operation to complete */
wait_op_done(host, TROP_US_DELAY, addr);
@ -359,7 +213,7 @@ static void send_prog_page(struct mxc_nand_host *host, uint8_t buf_id,
if (spare_only)
MTDDEBUG(MTD_DEBUG_LEVEL1, "send_prog_page (%d)\n", spare_only);
if (is_mxc_nfc_11()) {
if (is_mxc_nfc_21()) {
int i;
/*
* The controller copies the 64 bytes of spare data from
@ -375,19 +229,19 @@ static void send_prog_page(struct mxc_nand_host *host, uint8_t buf_id,
}
}
writew(buf_id, &host->regs->nfc_buf_addr);
writew(buf_id, &host->regs->buf_addr);
/* Configure spare or page+spare access */
if (!host->pagesize_2k) {
uint16_t config1 = readw(&host->regs->nfc_config1);
uint16_t config1 = readw(&host->regs->config1);
if (spare_only)
config1 |= NFC_SP_EN;
else
config1 &= ~(NFC_SP_EN);
writew(config1, &host->regs->nfc_config1);
config1 &= ~NFC_SP_EN;
writew(config1, &host->regs->config1);
}
writew(NFC_INPUT, &host->regs->nfc_config2);
writew(NFC_INPUT, &host->regs->config2);
/* Wait for operation to complete */
wait_op_done(host, TROP_US_DELAY, spare_only);
@ -402,24 +256,24 @@ static void send_read_page(struct mxc_nand_host *host, uint8_t buf_id,
{
MTDDEBUG(MTD_DEBUG_LEVEL3, "send_read_page (%d)\n", spare_only);
writew(buf_id, &host->regs->nfc_buf_addr);
writew(buf_id, &host->regs->buf_addr);
/* Configure spare or page+spare access */
if (!host->pagesize_2k) {
uint32_t config1 = readw(&host->regs->nfc_config1);
uint32_t config1 = readw(&host->regs->config1);
if (spare_only)
config1 |= NFC_SP_EN;
else
config1 &= ~NFC_SP_EN;
writew(config1, &host->regs->nfc_config1);
writew(config1, &host->regs->config1);
}
writew(NFC_OUTPUT, &host->regs->nfc_config2);
writew(NFC_OUTPUT, &host->regs->config2);
/* Wait for operation to complete */
wait_op_done(host, TROP_US_DELAY, spare_only);
if (is_mxc_nfc_11()) {
if (is_mxc_nfc_21()) {
int i;
/*
@ -442,14 +296,14 @@ static void send_read_id(struct mxc_nand_host *host)
uint16_t tmp;
/* NANDFC buffer 0 is used for device ID output */
writew(0x0, &host->regs->nfc_buf_addr);
writew(0x0, &host->regs->buf_addr);
/* Read ID into main buffer */
tmp = readw(&host->regs->nfc_config1);
tmp = readw(&host->regs->config1);
tmp &= ~NFC_SP_EN;
writew(tmp, &host->regs->nfc_config1);
writew(tmp, &host->regs->config1);
writew(NFC_ID, &host->regs->nfc_config2);
writew(NFC_ID, &host->regs->config2);
/* Wait for operation to complete */
wait_op_done(host, TROP_US_DELAY, 0);
@ -469,14 +323,14 @@ static uint16_t get_dev_status(struct mxc_nand_host *host)
/* store the main area1 first word, later do recovery */
store = readl(main_buf);
/* NANDFC buffer 1 is used for device status */
writew(1, &host->regs->nfc_buf_addr);
writew(1, &host->regs->buf_addr);
/* Read status into main buffer */
tmp = readw(&host->regs->nfc_config1);
tmp = readw(&host->regs->config1);
tmp &= ~NFC_SP_EN;
writew(tmp, &host->regs->nfc_config1);
writew(tmp, &host->regs->config1);
writew(NFC_STATUS, &host->regs->nfc_config2);
writew(NFC_STATUS, &host->regs->config2);
/* Wait for operation to complete */
wait_op_done(host, TROP_US_DELAY, 0);
@ -501,6 +355,19 @@ static int mxc_nand_dev_ready(struct mtd_info *mtd)
return 1;
}
static void _mxc_nand_enable_hwecc(struct mtd_info *mtd, int on)
{
struct nand_chip *nand_chip = mtd->priv;
struct mxc_nand_host *host = nand_chip->priv;
uint16_t tmp = readw(&host->regs->config1);
if (on)
tmp |= NFC_ECC_EN;
else
tmp &= ~NFC_ECC_EN;
writew(tmp, &host->regs->config1);
}
#ifdef CONFIG_MXC_NAND_HWECC
static void mxc_nand_enable_hwecc(struct mtd_info *mtd, int mode)
{
@ -510,20 +377,7 @@ static void mxc_nand_enable_hwecc(struct mtd_info *mtd, int mode)
*/
}
#ifdef MXC_NFC_V1_1
static void _mxc_nand_enable_hwecc(struct mtd_info *mtd, int on)
{
struct nand_chip *nand_chip = mtd->priv;
struct mxc_nand_host *host = nand_chip->priv;
uint16_t tmp = readw(&host->regs->nfc_config1);
if (on)
tmp |= NFC_ECC_EN;
else
tmp &= ~NFC_ECC_EN;
writew(tmp, &host->regs->nfc_config1);
}
#ifdef MXC_NFC_V2_1
static int mxc_nand_read_oob_syndrome(struct mtd_info *mtd,
struct nand_chip *chip,
int page, int sndcmd)
@ -616,7 +470,7 @@ static int mxc_nand_read_page_raw_syndrome(struct mtd_info *mtd,
size = mtd->oobsize - (oob - chip->oob_poi);
if (size)
chip->read_buf(mtd, oob, size);
_mxc_nand_enable_hwecc(mtd, 0);
_mxc_nand_enable_hwecc(mtd, 1);
return 0;
}
@ -799,7 +653,7 @@ static int mxc_nand_correct_data(struct mtd_info *mtd, u_char *dat,
{
struct nand_chip *nand_chip = mtd->priv;
struct mxc_nand_host *host = nand_chip->priv;
uint16_t ecc_status = readw(&host->regs->nfc_ecc_status_result);
uint32_t ecc_status = readl(&host->regs->ecc_status_result);
int subpages = mtd->writesize / nand_chip->subpagesize;
int pg2blk_shift = nand_chip->phys_erase_shift -
nand_chip->page_shift;
@ -832,7 +686,6 @@ static int mxc_nand_correct_data(struct mtd_info *mtd, u_char *dat,
#define mxc_nand_write_page_syndrome NULL
#define mxc_nand_write_page_raw_syndrome NULL
#define mxc_nand_write_oob_syndrome NULL
#define mxc_nfc_11_nand_correct_data NULL
static int mxc_nand_correct_data(struct mtd_info *mtd, u_char *dat,
u_char *read_ecc, u_char *calc_ecc)
@ -845,7 +698,7 @@ static int mxc_nand_correct_data(struct mtd_info *mtd, u_char *dat,
* additional correction. 2-Bit errors cannot be corrected by
* HW ECC, so we need to return failure
*/
uint16_t ecc_status = readw(&host->regs->nfc_ecc_status_result);
uint16_t ecc_status = readw(&host->regs->ecc_status_result);
if (((ecc_status & 0x3) == 2) || ((ecc_status >> 2) == 2)) {
MTDDEBUG(MTD_DEBUG_LEVEL0,
@ -1208,7 +1061,7 @@ void mxc_nand_command(struct mtd_info *mtd, unsigned command,
case NAND_CMD_PAGEPROG:
send_prog_page(host, 0, host->spare_only);
if (host->pagesize_2k && !is_mxc_nfc_11()) {
if (host->pagesize_2k && is_mxc_nfc_1()) {
/* data in 4 areas */
send_prog_page(host, 1, host->spare_only);
send_prog_page(host, 2, host->spare_only);
@ -1258,7 +1111,7 @@ void mxc_nand_command(struct mtd_info *mtd, unsigned command,
send_cmd(host, NAND_CMD_READSTART);
/* read for each AREA */
send_read_page(host, 0, host->spare_only);
if (!is_mxc_nfc_11()) {
if (is_mxc_nfc_1()) {
send_read_page(host, 1, host->spare_only);
send_read_page(host, 2, host->spare_only);
send_read_page(host, 3, host->spare_only);
@ -1284,24 +1137,6 @@ void mxc_nand_command(struct mtd_info *mtd, unsigned command,
}
}
#ifdef MXC_NFC_V1_1
static void mxc_setup_config1(void)
{
uint16_t tmp;
tmp = readw(&host->regs->nfc_config1);
tmp |= NFC_ONE_CYCLE;
tmp |= NFC_4_8N_ECC;
writew(tmp, &host->regs->nfc_config1);
if (host->pagesize_2k)
writew(64/2, &host->regs->nfc_spare_area_size);
else
writew(16/2, &host->regs->nfc_spare_area_size);
}
#else
#define mxc_setup_config1()
#endif
#ifdef CONFIG_SYS_NAND_USE_FLASH_BBT
static u8 bbt_pattern[] = {'B', 'b', 't', '0' };
@ -1333,7 +1168,6 @@ int board_nand_init(struct nand_chip *this)
{
struct mtd_info *mtd;
uint16_t tmp;
int err = 0;
#ifdef CONFIG_SYS_NAND_USE_FLASH_BBT
this->options |= NAND_USE_FLASH_BBT;
@ -1359,14 +1193,14 @@ int board_nand_init(struct nand_chip *this)
this->read_buf = mxc_nand_read_buf;
this->verify_buf = mxc_nand_verify_buf;
host->regs = (struct nfc_regs __iomem *)CONFIG_MXC_NAND_REGS_BASE;
host->regs = (struct fsl_nfc_regs __iomem *)CONFIG_MXC_NAND_REGS_BASE;
host->clk_act = 1;
#ifdef CONFIG_MXC_NAND_HWECC
this->ecc.calculate = mxc_nand_calculate_ecc;
this->ecc.hwctl = mxc_nand_enable_hwecc;
this->ecc.correct = mxc_nand_correct_data;
if (is_mxc_nfc_11()) {
if (is_mxc_nfc_21()) {
this->ecc.mode = NAND_ECC_HW_SYNDROME;
this->ecc.read_page = mxc_nand_read_page_syndrome;
this->ecc.read_page_raw = mxc_nand_read_page_raw_syndrome;
@ -1383,43 +1217,15 @@ int board_nand_init(struct nand_chip *this)
host->pagesize_2k = 0;
this->ecc.size = 512;
tmp = readw(&host->regs->nfc_config1);
tmp |= NFC_ECC_EN;
writew(tmp, &host->regs->nfc_config1);
_mxc_nand_enable_hwecc(mtd, 1);
#else
this->ecc.layout = &nand_soft_eccoob;
this->ecc.mode = NAND_ECC_SOFT;
tmp = readw(&host->regs->nfc_config1);
tmp &= ~NFC_ECC_EN;
writew(tmp, &host->regs->nfc_config1);
_mxc_nand_enable_hwecc(mtd, 0);
#endif
/* Reset NAND */
this->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
/*
* preset operation
* Unlock the internal RAM Buffer
*/
writew(0x2, &host->regs->nfc_config);
/* Blocks to be unlocked */
writew(0x0, &host->regs->nfc_unlockstart_blkaddr);
/* Originally (Freescale LTIB 2.6.21) 0x4000 was written to the
* unlockend_blkaddr, but the magic 0x4000 does not always work
* when writing more than some 32 megabytes (on 2k page nands)
* However 0xFFFF doesn't seem to have this kind
* of limitation (tried it back and forth several times).
* The linux kernel driver sets this to 0xFFFF for the v2 controller
* only, but probably this was not tested there for v1.
* The very same limitation seems to apply to this kernel driver.
* This might be NAND chip specific and the i.MX31 datasheet is
* extremely vague about the semantics of this register.
*/
writew(0xFFFF, &host->regs->nfc_unlockend_blkaddr);
/* Unlock Block Command for given address range */
writew(0x4, &host->regs->nfc_wrprot);
/* NAND bus width determines access functions used by upper layer */
if (is_16bit_nand())
this->options |= NAND_BUSWIDTH_16;
@ -1431,6 +1237,41 @@ int board_nand_init(struct nand_chip *this)
host->pagesize_2k = 0;
this->ecc.layout = &nand_hw_eccoob;
#endif
mxc_setup_config1();
return err;
#ifdef MXC_NFC_V2_1
tmp = readw(&host->regs->config1);
tmp |= NFC_ONE_CYCLE;
tmp |= NFC_4_8N_ECC;
writew(tmp, &host->regs->config1);
if (host->pagesize_2k)
writew(64/2, &host->regs->spare_area_size);
else
writew(16/2, &host->regs->spare_area_size);
#endif
/*
* preset operation
* Unlock the internal RAM Buffer
*/
writew(0x2, &host->regs->config);
/* Blocks to be unlocked */
writew(0x0, &host->regs->unlockstart_blkaddr);
/* Originally (Freescale LTIB 2.6.21) 0x4000 was written to the
* unlockend_blkaddr, but the magic 0x4000 does not always work
* when writing more than some 32 megabytes (on 2k page nands)
* However 0xFFFF doesn't seem to have this kind
* of limitation (tried it back and forth several times).
* The linux kernel driver sets this to 0xFFFF for the v2 controller
* only, but probably this was not tested there for v1.
* The very same limitation seems to apply to this kernel driver.
* This might be NAND chip specific and the i.MX31 datasheet is
* extremely vague about the semantics of this register.
*/
writew(0xFFFF, &host->regs->unlockend_blkaddr);
/* Unlock Block Command for given address range */
writew(0x4, &host->regs->wrprot);
return 0;
}

View file

@ -2573,14 +2573,13 @@ static int nand_flash_detect_onfi(struct mtd_info *mtd, struct nand_chip *chip,
mtd->writesize = le32_to_cpu(p->byte_per_page);
mtd->erasesize = le32_to_cpu(p->pages_per_block) * mtd->writesize;
mtd->oobsize = le16_to_cpu(p->spare_bytes_per_page);
chip->chipsize = (uint64_t)le32_to_cpu(p->blocks_per_lun) * mtd->erasesize;
chip->chipsize = le32_to_cpu(p->blocks_per_lun);
chip->chipsize *= (uint64_t)mtd->erasesize * p->lun_count;
*busw = 0;
if (le16_to_cpu(p->features) & 1)
*busw = NAND_BUSWIDTH_16;
chip->options &= ~NAND_CHIPOPTIONS_MSK;
chip->options |= (NAND_NO_READRDY |
NAND_NO_AUTOINCR) & NAND_CHIPOPTIONS_MSK;
chip->options |= NAND_NO_READRDY | NAND_NO_AUTOINCR;
return 1;
}
@ -2752,8 +2751,7 @@ static const struct nand_flash_dev *nand_get_flash_type(struct mtd_info *mtd,
}
}
/* Get chip options, preserve non chip based options */
chip->options &= ~NAND_CHIPOPTIONS_MSK;
chip->options |= type->options & NAND_CHIPOPTIONS_MSK;
chip->options |= type->options;
/* Check if chip is a not a samsung device. Do not clear the
* options for chips which are not having an extended id.

View file

@ -207,12 +207,6 @@ int nand_erase_opts(nand_info_t *meminfo, const nand_erase_options_t *opts)
* Support for locking / unlocking operations of some NAND devices
*****************************************************************************/
#define NAND_CMD_LOCK 0x2a
#define NAND_CMD_LOCK_TIGHT 0x2c
#define NAND_CMD_UNLOCK1 0x23
#define NAND_CMD_UNLOCK2 0x24
#define NAND_CMD_LOCK_STATUS 0x7a
/**
* nand_lock: Set all pages of NAND flash chip to the LOCK or LOCK-TIGHT
* state
@ -271,7 +265,6 @@ int nand_lock(struct mtd_info *mtd, int tight)
* >0 lock status:
* bitfield with the following combinations:
* NAND_LOCK_STATUS_TIGHT: page in tight state
* NAND_LOCK_STATUS_LOCK: page locked
* NAND_LOCK_STATUS_UNLOCK: page unlocked
*
*/
@ -300,7 +293,6 @@ int nand_get_lock_status(struct mtd_info *mtd, loff_t offset)
chip->cmdfunc(mtd, NAND_CMD_LOCK_STATUS, -1, page & chip->pagemask);
ret = chip->read_byte(mtd) & (NAND_LOCK_STATUS_TIGHT
| NAND_LOCK_STATUS_LOCK
| NAND_LOCK_STATUS_UNLOCK);
out:
@ -317,18 +309,21 @@ int nand_get_lock_status(struct mtd_info *mtd, loff_t offset)
* @param start start byte address
* @param length number of bytes to unlock (must be a multiple of
* page size nand->writesize)
* @param allexcept if set, unlock everything not selected
*
* @return 0 on success, -1 in case of error
*/
int nand_unlock(struct mtd_info *mtd, ulong start, ulong length)
int nand_unlock(struct mtd_info *mtd, loff_t start, size_t length,
int allexcept)
{
int ret = 0;
int chipnr;
int status;
int page;
struct nand_chip *chip = mtd->priv;
printf ("nand_unlock: start: %08x, length: %d!\n",
(int)start, (int)length);
debug("nand_unlock%s: start: %08llx, length: %d!\n",
allexcept ? " (allexcept)" : "", start, length);
/* select the NAND device */
chipnr = (int)(start >> chip->chip_shift);
@ -368,6 +363,15 @@ int nand_unlock(struct mtd_info *mtd, ulong start, ulong length)
/* submit ADDRESS of LAST page to unlock */
page += (int)(length >> chip->page_shift);
/*
* Page addresses for unlocking are supposed to be block-aligned.
* At least some NAND chips use the low bit to indicate that the
* page range should be inverted.
*/
if (allexcept)
page |= 1;
chip->cmdfunc(mtd, NAND_CMD_UNLOCK2, -1, page & chip->pagemask);
/* call wait ready function */

View file

@ -213,7 +213,6 @@
* NAND FLASH driver setup
*/
#define CONFIG_NAND_MXC
#define CONFIG_NAND_MXC_V1_1
#define CONFIG_MXC_NAND_REGS_BASE (NFC_BASE_ADDR)
#define CONFIG_SYS_MAX_NAND_DEVICE 1
#define CONFIG_SYS_NAND_BASE (NFC_BASE_ADDR)

View file

@ -231,7 +231,6 @@
* NAND FLASH driver setup
*/
#define CONFIG_NAND_MXC
#define CONFIG_NAND_MXC_V1_1
#define CONFIG_MXC_NAND_REGS_BASE (NFC_BASE_ADDR)
#define CONFIG_SYS_MAX_NAND_DEVICE 1
#define CONFIG_SYS_NAND_BASE (NFC_BASE_ADDR)

View file

@ -107,7 +107,6 @@
/* NAND */
#define CONFIG_NAND_MXC
#define CONFIG_NAND_MXC_V1_1
#define CONFIG_MXC_NAND_REGS_BASE (0xBB000000)
#define CONFIG_SYS_MAX_NAND_DEVICE 1
#define CONFIG_SYS_NAND_BASE (0xBB000000)

View file

@ -24,49 +24,48 @@
#define __FSL_NFC_H
/*
* TODO: Use same register defs for nand_spl mxc nand driver
* and mtd mxc nand driver.
* Register map and bit definitions for the Freescale NAND Flash Controller
* present in various i.MX devices.
*
* Register map and bit definitions for the Freescale NAND Flash
* Controller present in various i.MX devices.
* MX31 and MX27 have version 1, which has:
* 4 512-byte main buffers and
* 4 16-byte spare buffers
* to support up to 2K byte pagesize nand.
* Reading or writing a 2K page requires 4 FDI/FDO cycles.
*
* MX31 and MX27 have version 1 which has
* 4 512 byte main buffers and
* 4 16 byte spare buffers
* to support up to 2K byte pagesize nand.
* Reading or writing a 2K page requires 4 FDI/FDO cycles.
*
* MX25 has version 1.1 which has
* 8 512 byte main buffers and
* 8 64 byte spare buffers
* to support up to 4K byte pagesize nand.
* Reading or writing a 2K or 4K page requires only 1 FDI/FDO cycle.
* Also some of registers are moved and/or changed meaning as seen below.
* MX25 and MX35 have version 2.1, which has:
* 8 512-byte main buffers and
* 8 64-byte spare buffers
* to support up to 4K byte pagesize nand.
* Reading or writing a 2K or 4K page requires only 1 FDI/FDO cycle.
* Also some of registers are moved and/or changed meaning as seen below.
*/
#if defined(CONFIG_MX31) || defined(CONFIG_MX27)
#if defined(CONFIG_MX27) || defined(CONFIG_MX31)
#define MXC_NFC_V1
#elif defined(CONFIG_MX25)
#define MXC_NFC_V1_1
#define is_mxc_nfc_1() 1
#define is_mxc_nfc_21() 0
#elif defined(CONFIG_MX25) || defined(CONFIG_MX35)
#define MXC_NFC_V2_1
#define is_mxc_nfc_1() 0
#define is_mxc_nfc_21() 1
#else
#warning "MXC NFC version not defined"
#error "MXC NFC implementation not supported"
#endif
#if defined(MXC_NFC_V1)
#define NAND_MXC_NR_BUFS 4
#define NAND_MXC_SPARE_BUF_SIZE 16
#define NAND_MXC_REG_OFFSET 0xe00
#define NAND_MXC_2K_MULTI_CYCLE 1
#elif defined(MXC_NFC_V1_1)
#define NAND_MXC_2K_MULTI_CYCLE
#elif defined(MXC_NFC_V2_1)
#define NAND_MXC_NR_BUFS 8
#define NAND_MXC_SPARE_BUF_SIZE 64
#define NAND_MXC_REG_OFFSET 0x1e00
#else
#error "define CONFIG_NAND_MXC_VXXX to use the mxc spl_nand driver"
#endif
struct fsl_nfc_regs {
u32 main_area[NAND_MXC_NR_BUFS][512/4];
u32 spare_area[NAND_MXC_NR_BUFS][NAND_MXC_SPARE_BUF_SIZE/4];
u8 main_area[NAND_MXC_NR_BUFS][0x200];
u8 spare_area[NAND_MXC_NR_BUFS][NAND_MXC_SPARE_BUF_SIZE];
/*
* reserved size is offset of nfc registers
* minus total main and spare sizes
@ -74,44 +73,43 @@ struct fsl_nfc_regs {
u8 reserved1[NAND_MXC_REG_OFFSET
- NAND_MXC_NR_BUFS * (512 + NAND_MXC_SPARE_BUF_SIZE)];
#if defined(MXC_NFC_V1)
u16 bufsiz;
u16 buf_size;
u16 reserved2;
u16 buffer_address;
u16 flash_add;
u16 buf_addr;
u16 flash_addr;
u16 flash_cmd;
u16 configuration;
u16 config;
u16 ecc_status_result;
u16 ecc_rslt_main_area;
u16 ecc_rslt_spare_area;
u16 nf_wr_prot;
u16 unlock_start_blk_add;
u16 unlock_end_blk_add;
u16 nand_flash_wr_pr_st;
u16 nand_flash_config1;
u16 nand_flash_config2;
#elif defined(MXC_NFC_V1_1)
u16 rsltmain_area;
u16 rsltspare_area;
u16 wrprot;
u16 unlockstart_blkaddr;
u16 unlockend_blkaddr;
u16 nf_wrprst;
u16 config1;
u16 config2;
#elif defined(MXC_NFC_V2_1)
u16 reserved2[2];
u16 buffer_address;
u16 flash_add;
u16 buf_addr;
u16 flash_addr;
u16 flash_cmd;
u16 configuration;
u16 ecc_status_result;
u16 ecc_status_result2;
u16 config;
u32 ecc_status_result;
u16 spare_area_size;
u16 nf_wr_prot;
u16 wrprot;
u16 reserved3[2];
u16 nand_flash_wr_pr_st;
u16 nand_flash_config1;
u16 nand_flash_config2;
u16 nf_wrprst;
u16 config1;
u16 config2;
u16 reserved4;
u16 unlock_start_blk_add0;
u16 unlock_end_blk_add0;
u16 unlock_start_blk_add1;
u16 unlock_end_blk_add1;
u16 unlock_start_blk_add2;
u16 unlock_end_blk_add2;
u16 unlock_start_blk_add3;
u16 unlock_end_blk_add3;
u16 unlockstart_blkaddr;
u16 unlockend_blkaddr;
u16 unlockstart_blkaddr1;
u16 unlockend_blkaddr1;
u16 unlockstart_blkaddr2;
u16 unlockend_blkaddr2;
u16 unlockstart_blkaddr3;
u16 unlockend_blkaddr3;
#endif
};
@ -157,7 +155,7 @@ struct fsl_nfc_regs {
*/
#define NFC_INT 0x8000
#ifdef MXC_NFC_V1_1
#ifdef MXC_NFC_V2_1
#define NFC_4_8N_ECC (1 << 0)
#endif
#define NFC_SP_EN (1 << 2)
@ -167,5 +165,6 @@ struct fsl_nfc_regs {
#define NFC_RST (1 << 6)
#define NFC_CE (1 << 7)
#define NFC_ONE_CYCLE (1 << 8)
#define NFC_FP_INT (1 << 11)
#endif /* __FSL_NFC_H */

View file

@ -85,8 +85,10 @@ extern void nand_wait_ready(struct mtd_info *mtd);
#define NAND_CMD_RESET 0xff
#define NAND_CMD_LOCK 0x2a
#define NAND_CMD_LOCK_TIGHT 0x2c
#define NAND_CMD_UNLOCK1 0x23
#define NAND_CMD_UNLOCK2 0x24
#define NAND_CMD_LOCK_STATUS 0x7a
/* Extended commands for large page devices */
#define NAND_CMD_READSTART 0x30
@ -205,9 +207,6 @@ typedef enum {
#define NAND_SUBPAGE_READ(chip) ((chip->ecc.mode == NAND_ECC_SOFT) \
&& (chip->page_shift > 9))
/* Mask to zero out the chip options, which come from the id table */
#define NAND_CHIPOPTIONS_MSK (0x0000ffff & ~NAND_NO_AUTOINCR)
/* Non chip related options */
/*
* Use a flash based bad block table. OOB identifier is saved in OOB area.

View file

@ -141,11 +141,11 @@ int nand_write_skip_bad(nand_info_t *nand, loff_t offset, size_t *length,
int nand_erase_opts(nand_info_t *meminfo, const nand_erase_options_t *opts);
#define NAND_LOCK_STATUS_TIGHT 0x01
#define NAND_LOCK_STATUS_LOCK 0x02
#define NAND_LOCK_STATUS_UNLOCK 0x04
int nand_lock( nand_info_t *meminfo, int tight );
int nand_unlock( nand_info_t *meminfo, ulong start, ulong length );
int nand_lock(nand_info_t *meminfo, int tight);
int nand_unlock(nand_info_t *meminfo, loff_t start, size_t length,
int allexcept);
int nand_get_lock_status(nand_info_t *meminfo, loff_t offset);
int nand_spl_load_image(uint32_t offs, unsigned int size, void *dst);

View file

@ -36,50 +36,58 @@ static void nfc_wait_ready(void)
{
uint32_t tmp;
while (!(readw(&nfc->nand_flash_config2) & NFC_INT))
while (!(readw(&nfc->config2) & NFC_INT))
;
/* Reset interrupt flag */
tmp = readw(&nfc->nand_flash_config2);
tmp = readw(&nfc->config2);
tmp &= ~NFC_INT;
writew(tmp, &nfc->nand_flash_config2);
writew(tmp, &nfc->config2);
}
void nfc_nand_init(void)
static void nfc_nand_init(void)
{
#if defined(MXC_NFC_V1_1)
int ecc_per_page = CONFIG_SYS_NAND_PAGE_SIZE / 512;
#if defined(MXC_NFC_V2_1)
int ecc_per_page = CONFIG_SYS_NAND_PAGE_SIZE / 512;
int config1;
writew(CONFIG_SYS_NAND_SPARE_SIZE / 2, &nfc->spare_area_size);
/* unlocking RAM Buff */
writew(0x2, &nfc->configuration);
writew(0x2, &nfc->config);
/* hardware ECC checking and correct */
config1 = readw(&nfc->nand_flash_config1) | NFC_ECC_EN | 0x800;
config1 = readw(&nfc->config1) | NFC_ECC_EN | NFC_INT_MSK |
NFC_ONE_CYCLE | NFC_FP_INT;
/*
* if spare size is larger that 16 bytes per 512 byte hunk
* then use 8 symbol correction instead of 4
*/
if ((CONFIG_SYS_NAND_SPARE_SIZE / ecc_per_page) > 16)
if (CONFIG_SYS_NAND_SPARE_SIZE / ecc_per_page > 16)
config1 &= ~NFC_4_8N_ECC;
else
config1 |= NFC_4_8N_ECC;
writew(config1, &nfc->nand_flash_config1);
writew(config1, &nfc->config1);
#elif defined(MXC_NFC_V1)
/* unlocking RAM Buff */
writew(0x2, &nfc->configuration);
writew(0x2, &nfc->config);
/* hardware ECC checking and correct */
writew(NFC_ECC_EN, &nfc->nand_flash_config1);
writew(NFC_ECC_EN | NFC_INT_MSK, &nfc->config1);
#endif
}
static void nfc_nand_command(unsigned short command)
{
writew(command, &nfc->flash_cmd);
writew(NFC_CMD, &nfc->nand_flash_config2);
writew(NFC_CMD, &nfc->config2);
nfc_wait_ready();
}
static void nfc_nand_address(unsigned short address)
{
writew(address, &nfc->flash_addr);
writew(NFC_ADDR, &nfc->config2);
nfc_wait_ready();
}
@ -87,58 +95,43 @@ static void nfc_nand_page_address(unsigned int page_address)
{
unsigned int page_count;
writew(0x00, &nfc->flash_add);
writew(NFC_ADDR, &nfc->nand_flash_config2);
nfc_wait_ready();
nfc_nand_address(0x00);
/* code only for large page flash */
if (CONFIG_SYS_NAND_PAGE_SIZE > 512) {
writew(0x00, &nfc->flash_add);
writew(NFC_ADDR, &nfc->nand_flash_config2);
nfc_wait_ready();
}
if (CONFIG_SYS_NAND_PAGE_SIZE > 512)
nfc_nand_address(0x00);
page_count = CONFIG_SYS_NAND_SIZE / CONFIG_SYS_NAND_PAGE_SIZE;
if (page_address <= page_count) {
page_count--; /* transform 0x01000000 to 0x00ffffff */
do {
writew(page_address & 0xff, &nfc->flash_add);
writew(NFC_ADDR, &nfc->nand_flash_config2);
nfc_wait_ready();
nfc_nand_address(page_address & 0xff);
page_address = page_address >> 8;
page_count = page_count >> 8;
} while (page_count);
}
writew(0x00, &nfc->flash_add);
writew(NFC_ADDR, &nfc->nand_flash_config2);
nfc_wait_ready();
nfc_nand_address(0x00);
}
static void nfc_nand_data_output(void)
{
int config1 = readw(&nfc->nand_flash_config1);
#ifdef NAND_MXC_2K_MULTI_CYCLE
int i;
#endif
config1 |= NFC_ECC_EN | NFC_INT_MSK;
writew(config1, &nfc->nand_flash_config1);
writew(0, &nfc->buffer_address);
writew(NFC_OUTPUT, &nfc->nand_flash_config2);
writew(0, &nfc->buf_addr);
writew(NFC_OUTPUT, &nfc->config2);
nfc_wait_ready();
#ifdef NAND_MXC_2K_MULTI_CYCLE
/*
* This NAND controller requires multiple input commands
* for pages larger than 512 bytes.
*/
for (i = 1; i < (CONFIG_SYS_NAND_PAGE_SIZE / 512); i++) {
config1 = readw(&nfc->nand_flash_config1);
config1 |= NFC_ECC_EN | NFC_INT_MSK;
writew(config1, &nfc->nand_flash_config1);
writew(i, &nfc->buffer_address);
writew(NFC_OUTPUT, &nfc->nand_flash_config2);
for (i = 1; i < CONFIG_SYS_NAND_PAGE_SIZE / 512; i++) {
writew(i, &nfc->buf_addr);
writew(NFC_OUTPUT, &nfc->config2);
nfc_wait_ready();
}
#endif
@ -146,7 +139,35 @@ static void nfc_nand_data_output(void)
static int nfc_nand_check_ecc(void)
{
return readw(&nfc->ecc_status_result);
#if defined(MXC_NFC_V1)
u16 ecc_status = readw(&nfc->ecc_status_result);
return (ecc_status & 0x3) == 2 || (ecc_status >> 2) == 2;
#elif defined(MXC_NFC_V2_1)
u32 ecc_status = readl(&nfc->ecc_status_result);
int ecc_per_page = CONFIG_SYS_NAND_PAGE_SIZE / 512;
int err_limit = CONFIG_SYS_NAND_SPARE_SIZE / ecc_per_page > 16 ? 8 : 4;
int subpages = CONFIG_SYS_NAND_PAGE_SIZE / 512;
do {
if ((ecc_status & 0xf) > err_limit)
return 1;
ecc_status >>= 4;
} while (--subpages);
return 0;
#endif
}
static void nfc_nand_read_page(unsigned int page_address)
{
writew(0, &nfc->buf_addr); /* read in first 0 buffer */
nfc_nand_command(NAND_CMD_READ0);
nfc_nand_page_address(page_address);
if (CONFIG_SYS_NAND_PAGE_SIZE > 512)
nfc_nand_command(NAND_CMD_READSTART);
nfc_nand_data_output(); /* fill the main buffer 0 */
}
static int nfc_read_page(unsigned int page_address, unsigned char *buf)
@ -155,23 +176,16 @@ static int nfc_read_page(unsigned int page_address, unsigned char *buf)
u32 *src;
u32 *dst;
writew(0, &nfc->buffer_address); /* read in first 0 buffer */
nfc_nand_command(NAND_CMD_READ0);
nfc_nand_page_address(page_address);
if (CONFIG_SYS_NAND_PAGE_SIZE > 512)
nfc_nand_command(NAND_CMD_READSTART);
nfc_nand_data_output(); /* fill the main buffer 0 */
nfc_nand_read_page(page_address);
if (nfc_nand_check_ecc())
return -1;
src = &nfc->main_area[0][0];
src = (u32 *)&nfc->main_area[0][0];
dst = (u32 *)buf;
/* main copy loop from NAND-buffer to SDRAM memory */
for (i = 0; i < (CONFIG_SYS_NAND_PAGE_SIZE / 4); i++) {
for (i = 0; i < CONFIG_SYS_NAND_PAGE_SIZE / 4; i++) {
writel(readl(src), dst);
src++;
dst++;
@ -188,16 +202,9 @@ static int is_badblock(int pagenumber)
/* Check the first two pages for bad block markers */
for (page = pagenumber; page < pagenumber + 2; page++) {
writew(0, &nfc->buffer_address); /* read in first 0 buffer */
nfc_nand_command(NAND_CMD_READ0);
nfc_nand_page_address(page);
nfc_nand_read_page(page);
if (CONFIG_SYS_NAND_PAGE_SIZE > 512)
nfc_nand_command(NAND_CMD_READSTART);
nfc_nand_data_output(); /* fill the main buffer 0 */
src = &nfc->spare_area[0][0];
src = (u32 *)&nfc->spare_area[0][0];
/*
* IMPORTANT NOTE: The nand flash controller uses a non-
@ -230,7 +237,7 @@ static int nand_load(unsigned int from, unsigned int size, unsigned char *buf)
page = from / CONFIG_SYS_NAND_PAGE_SIZE;
i = 0;
while (i < (size / CONFIG_SYS_NAND_PAGE_SIZE)) {
while (i < size / CONFIG_SYS_NAND_PAGE_SIZE) {
if (nfc_read_page(page, buf) < 0)
return -1;