mtd/spinand: rework detect procedure for different READ_ID operation

Currently there are 3 different variants of read_id implementation:
1. opcode only. Found in GD5FxGQ4xF.
2. opcode + 1 addr byte. Found in GD5GxGQ4xA/E
3. opcode + 1 dummy byte. Found in other currently supported chips.

Original implementation was for variant 1 and let detect function
of chips with variant 2 and 3 to ignore the first byte. This isn't
robust:

1. For chips of variant 2, if SPI master doesn't keep MOSI low
during read, chip will get a random id offset, and the entire id
buffer will shift by that offset, causing detect failure.

2. For chips of variant 1, if it happens to get a devid that equals
to manufacture id of variant 2 or 3 chips, it'll get incorrectly
detected.

This patch reworks detect procedure to address problems above. New
logic do detection for all variants separatedly, in 1-2-3 order.
Since all current detect methods do exactly the same id matching
procedure, unify them into core.c and remove detect method from
manufacture_ops.

This is a rework of Chuanhong Guo <gch981213@gmail.com> patch
submitted to linux kernel

Signed-off-by: Mikhail Kshevetskiy <mikhail.kshevetskiy@iopsys.eu>
Signed-off-by: Frieder Schrempf <frieder.schrempf@kontron.de>
Link: https://lore.kernel.org/all/20230110115843.391630-1-frieder@fris.de
Signed-off-by: Dario Binacchi <dario.binacchi@amarulasolutions.com>
This commit is contained in:
Mikhail Kshevetskiy 2023-01-10 12:58:38 +01:00 committed by Dario Binacchi
parent 8670027964
commit b20913e3cb
7 changed files with 187 additions and 208 deletions

View file

@ -17,6 +17,7 @@
#include <linux/mtd/spinand.h>
#include <linux/of.h>
#include <linux/slab.h>
#include <linux/string.h>
#include <linux/spi/spi.h>
#include <linux/spi/spi-mem.h>
#else
@ -452,9 +453,11 @@ out:
return status & STATUS_BUSY ? -ETIMEDOUT : 0;
}
static int spinand_read_id_op(struct spinand_device *spinand, u8 *buf)
static int spinand_read_id_op(struct spinand_device *spinand, u8 naddr,
u8 ndummy, u8 *buf)
{
struct spi_mem_op op = SPINAND_READID_OP(0, spinand->scratchbuf,
struct spi_mem_op op = SPINAND_READID_OP(naddr, ndummy,
spinand->scratchbuf,
SPINAND_MAX_ID_LEN);
int ret;
@ -808,21 +811,6 @@ static int spinand_mtd_block_isreserved(struct mtd_info *mtd, loff_t offs)
return ret;
}
const struct spi_mem_op *
spinand_find_supported_op(struct spinand_device *spinand,
const struct spi_mem_op *ops,
unsigned int nops)
{
unsigned int i;
for (i = 0; i < nops; i++) {
if (spi_mem_supports_op(spinand->slave, &ops[i]))
return &ops[i];
}
return NULL;
}
static const struct nand_ops spinand_ops = {
.erase = spinand_erase,
.markbad = spinand_markbad,
@ -837,24 +825,62 @@ static const struct spinand_manufacturer *spinand_manufacturers[] = {
&winbond_spinand_manufacturer,
};
static int spinand_manufacturer_detect(struct spinand_device *spinand)
static int spinand_manufacturer_match(struct spinand_device *spinand,
enum spinand_readid_method rdid_method)
{
u8 *id = spinand->id.data;
unsigned int i;
int ret;
for (i = 0; i < ARRAY_SIZE(spinand_manufacturers); i++) {
ret = spinand_manufacturers[i]->ops->detect(spinand);
if (ret > 0) {
spinand->manufacturer = spinand_manufacturers[i];
return 0;
} else if (ret < 0) {
return ret;
}
}
const struct spinand_manufacturer *manufacturer =
spinand_manufacturers[i];
if (id[0] != manufacturer->id)
continue;
ret = spinand_match_and_init(spinand,
manufacturer->chips,
manufacturer->nchips,
rdid_method);
if (ret < 0)
continue;
spinand->manufacturer = manufacturer;
return 0;
}
return -ENOTSUPP;
}
static int spinand_id_detect(struct spinand_device *spinand)
{
u8 *id = spinand->id.data;
int ret;
ret = spinand_read_id_op(spinand, 0, 0, id);
if (ret)
return ret;
ret = spinand_manufacturer_match(spinand, SPINAND_READID_METHOD_OPCODE);
if (!ret)
return 0;
ret = spinand_read_id_op(spinand, 1, 0, id);
if (ret)
return ret;
ret = spinand_manufacturer_match(spinand,
SPINAND_READID_METHOD_OPCODE_ADDR);
if (!ret)
return 0;
ret = spinand_read_id_op(spinand, 0, 1, id);
if (ret)
return ret;
ret = spinand_manufacturer_match(spinand,
SPINAND_READID_METHOD_OPCODE_DUMMY);
return ret;
}
static int spinand_manufacturer_init(struct spinand_device *spinand)
{
if (spinand->manufacturer->ops->init)
@ -910,9 +936,9 @@ spinand_select_op_variant(struct spinand_device *spinand,
* @spinand: SPI NAND object
* @table: SPI NAND device description table
* @table_size: size of the device description table
* @rdid_method: read id method to match
*
* Should be used by SPI NAND manufacturer drivers when they want to find a
* match between a device ID retrieved through the READ_ID command and an
* Match between a device ID retrieved through the READ_ID command and an
* entry in the SPI NAND description table. If a match is found, the spinand
* object will be initialized with information provided by the matching
* spinand_info entry.
@ -921,8 +947,10 @@ spinand_select_op_variant(struct spinand_device *spinand,
*/
int spinand_match_and_init(struct spinand_device *spinand,
const struct spinand_info *table,
unsigned int table_size, u8 devid)
unsigned int table_size,
enum spinand_readid_method rdid_method)
{
u8 *id = spinand->id.data;
struct nand_device *nand = spinand_to_nand(spinand);
unsigned int i;
@ -930,13 +958,17 @@ int spinand_match_and_init(struct spinand_device *spinand,
const struct spinand_info *info = &table[i];
const struct spi_mem_op *op;
if (devid != info->devid)
if (rdid_method != info->devid.method)
continue;
if (memcmp(id + 1, info->devid.id, info->devid.len))
continue;
nand->memorg = table[i].memorg;
nand->eccreq = table[i].eccreq;
spinand->eccinfo = table[i].eccinfo;
spinand->flags = table[i].flags;
spinand->id.len = 1 + table[i].devid.len;
spinand->select_target = table[i].select_target;
op = spinand_select_op_variant(spinand,
@ -972,13 +1004,7 @@ static int spinand_detect(struct spinand_device *spinand)
if (ret)
return ret;
ret = spinand_read_id_op(spinand, spinand->id.data);
if (ret)
return ret;
spinand->id.len = SPINAND_MAX_ID_LEN;
ret = spinand_manufacturer_detect(spinand);
ret = spinand_id_detect(spinand);
if (ret) {
dev_err(spinand->slave->dev, "unknown raw ID %02x %02x %02x %02x\n",
spinand->id.data[0], spinand->id.data[1],
@ -1083,11 +1109,11 @@ static int spinand_init(struct spinand_device *spinand)
for (i = 0; i < nand->memorg.ntargets; i++) {
ret = spinand_select_target(spinand, i);
if (ret)
goto err_free_bufs;
goto err_manuf_cleanup;
ret = spinand_lock_block(spinand, BL_ALL_UNLOCKED);
if (ret)
goto err_free_bufs;
goto err_manuf_cleanup;
}
ret = nanddev_init(nand, &spinand_ops, THIS_MODULE);

View file

@ -158,7 +158,8 @@ static const struct mtd_ooblayout_ops gd5fxgqxxexxg_ooblayout = {
};
static const struct spinand_info gigadevice_spinand_table[] = {
SPINAND_INFO("GD5F1GQ4UExxG", 0xd1,
SPINAND_INFO("GD5F1GQ4UExxG",
SPINAND_ID(SPINAND_READID_METHOD_OPCODE_ADDR, 0xd1),
NAND_MEMORG(1, 2048, 128, 64, 1024, 1, 1, 1),
NAND_ECCREQ(8, 512),
SPINAND_INFO_OP_VARIANTS(&gd5fxgq4_read_cache_variants,
@ -167,7 +168,8 @@ static const struct spinand_info gigadevice_spinand_table[] = {
0,
SPINAND_ECCINFO(&gd5fxgqxxexxg_ooblayout,
gd5fxgq4xexxg_ecc_get_status)),
SPINAND_INFO("GD5F1GQ5UExxG", 0x51,
SPINAND_INFO("GD5F1GQ5UExxG",
SPINAND_ID(SPINAND_READID_METHOD_OPCODE_DUMMY, 0x51),
NAND_MEMORG(1, 2048, 128, 64, 1024, 1, 1, 1),
NAND_ECCREQ(4, 512),
SPINAND_INFO_OP_VARIANTS(&gd5f1gq5_read_cache_variants,
@ -178,33 +180,13 @@ static const struct spinand_info gigadevice_spinand_table[] = {
gd5fxgq5xexxg_ecc_get_status)),
};
static int gigadevice_spinand_detect(struct spinand_device *spinand)
{
u8 *id = spinand->id.data;
int ret;
/*
* For GD NANDs, There is an address byte needed to shift in before IDs
* are read out, so the first byte in raw_id is dummy.
*/
if (id[1] != SPINAND_MFR_GIGADEVICE)
return 0;
ret = spinand_match_and_init(spinand, gigadevice_spinand_table,
ARRAY_SIZE(gigadevice_spinand_table),
id[2]);
if (ret)
return ret;
return 1;
}
static const struct spinand_manufacturer_ops gigadevice_spinand_manuf_ops = {
.detect = gigadevice_spinand_detect,
};
const struct spinand_manufacturer gigadevice_spinand_manufacturer = {
.id = SPINAND_MFR_GIGADEVICE,
.name = "GigaDevice",
.chips = gigadevice_spinand_table,
.nchips = ARRAY_SIZE(gigadevice_spinand_table),
.ops = &gigadevice_spinand_manuf_ops,
};

View file

@ -105,7 +105,8 @@ static int mx35lf1ge4ab_ecc_get_status(struct spinand_device *spinand,
}
static const struct spinand_info macronix_spinand_table[] = {
SPINAND_INFO("MX35LF1GE4AB", 0x12,
SPINAND_INFO("MX35LF1GE4AB",
SPINAND_ID(SPINAND_READID_METHOD_OPCODE_DUMMY, 0x12),
NAND_MEMORG(1, 2048, 64, 64, 1024, 1, 1, 1),
NAND_ECCREQ(4, 512),
SPINAND_INFO_OP_VARIANTS(&read_cache_variants,
@ -114,7 +115,8 @@ static const struct spinand_info macronix_spinand_table[] = {
SPINAND_HAS_QE_BIT,
SPINAND_ECCINFO(&mx35lfxge4ab_ooblayout,
mx35lf1ge4ab_ecc_get_status)),
SPINAND_INFO("MX35LF2GE4AB", 0x22,
SPINAND_INFO("MX35LF2GE4AB",
SPINAND_ID(SPINAND_READID_METHOD_OPCODE_DUMMY, 0x22),
NAND_MEMORG(1, 2048, 64, 64, 2048, 2, 1, 1),
NAND_ECCREQ(4, 512),
SPINAND_INFO_OP_VARIANTS(&read_cache_variants,
@ -122,7 +124,8 @@ static const struct spinand_info macronix_spinand_table[] = {
&update_cache_variants),
SPINAND_HAS_QE_BIT,
SPINAND_ECCINFO(&mx35lfxge4ab_ooblayout, NULL)),
SPINAND_INFO("MX35UF4GE4AD", 0xb7,
SPINAND_INFO("MX35UF4GE4AD",
SPINAND_ID(SPINAND_READID_METHOD_OPCODE_DUMMY, 0xb7),
NAND_MEMORG(1, 4096, 256, 64, 2048, 1, 1, 1),
NAND_ECCREQ(8, 512),
SPINAND_INFO_OP_VARIANTS(&read_cache_variants,
@ -131,7 +134,8 @@ static const struct spinand_info macronix_spinand_table[] = {
SPINAND_HAS_QE_BIT,
SPINAND_ECCINFO(&mx35lfxge4ab_ooblayout,
mx35lf1ge4ab_ecc_get_status)),
SPINAND_INFO("MX35UF2GE4AD", 0xa6,
SPINAND_INFO("MX35UF2GE4AD",
SPINAND_ID(SPINAND_READID_METHOD_OPCODE_DUMMY, 0xa6),
NAND_MEMORG(1, 2048, 128, 64, 2048, 1, 1, 1),
NAND_ECCREQ(8, 512),
SPINAND_INFO_OP_VARIANTS(&read_cache_variants,
@ -140,7 +144,8 @@ static const struct spinand_info macronix_spinand_table[] = {
SPINAND_HAS_QE_BIT,
SPINAND_ECCINFO(&mx35lfxge4ab_ooblayout,
mx35lf1ge4ab_ecc_get_status)),
SPINAND_INFO("MX35UF2GE4AC", 0xa2,
SPINAND_INFO("MX35UF2GE4AC",
SPINAND_ID(SPINAND_READID_METHOD_OPCODE_DUMMY, 0xa2),
NAND_MEMORG(1, 2048, 64, 64, 2048, 1, 1, 1),
NAND_ECCREQ(4, 512),
SPINAND_INFO_OP_VARIANTS(&read_cache_variants,
@ -149,7 +154,8 @@ static const struct spinand_info macronix_spinand_table[] = {
SPINAND_HAS_QE_BIT,
SPINAND_ECCINFO(&mx35lfxge4ab_ooblayout,
mx35lf1ge4ab_ecc_get_status)),
SPINAND_INFO("MX35UF1GE4AD", 0x96,
SPINAND_INFO("MX35UF1GE4AD",
SPINAND_ID(SPINAND_READID_METHOD_OPCODE_DUMMY, 0x96),
NAND_MEMORG(1, 2048, 128, 64, 1024, 1, 1, 1),
NAND_ECCREQ(8, 512),
SPINAND_INFO_OP_VARIANTS(&read_cache_variants,
@ -158,7 +164,8 @@ static const struct spinand_info macronix_spinand_table[] = {
SPINAND_HAS_QE_BIT,
SPINAND_ECCINFO(&mx35lfxge4ab_ooblayout,
mx35lf1ge4ab_ecc_get_status)),
SPINAND_INFO("MX35UF1GE4AC", 0x92,
SPINAND_INFO("MX35UF1GE4AC",
SPINAND_ID(SPINAND_READID_METHOD_OPCODE_DUMMY, 0x92),
NAND_MEMORG(1, 2048, 64, 64, 1024, 1, 1, 1),
NAND_ECCREQ(4, 512),
SPINAND_INFO_OP_VARIANTS(&read_cache_variants,
@ -170,33 +177,13 @@ static const struct spinand_info macronix_spinand_table[] = {
};
static int macronix_spinand_detect(struct spinand_device *spinand)
{
u8 *id = spinand->id.data;
int ret;
/*
* Macronix SPI NAND read ID needs a dummy byte, so the first byte in
* raw_id is garbage.
*/
if (id[1] != SPINAND_MFR_MACRONIX)
return 0;
ret = spinand_match_and_init(spinand, macronix_spinand_table,
ARRAY_SIZE(macronix_spinand_table),
id[2]);
if (ret)
return ret;
return 1;
}
static const struct spinand_manufacturer_ops macronix_spinand_manuf_ops = {
.detect = macronix_spinand_detect,
};
const struct spinand_manufacturer macronix_spinand_manufacturer = {
.id = SPINAND_MFR_MACRONIX,
.name = "Macronix",
.chips = macronix_spinand_table,
.nchips = ARRAY_SIZE(macronix_spinand_table),
.ops = &macronix_spinand_manuf_ops,
};

View file

@ -120,7 +120,8 @@ static int micron_8_ecc_get_status(struct spinand_device *spinand,
static const struct spinand_info micron_spinand_table[] = {
/* M79A 2Gb 3.3V */
SPINAND_INFO("MT29F2G01ABAGD", 0x24,
SPINAND_INFO("MT29F2G01ABAGD",
SPINAND_ID(SPINAND_READID_METHOD_OPCODE_DUMMY, 0x24),
NAND_MEMORG(1, 2048, 128, 64, 2048, 2, 1, 1),
NAND_ECCREQ(8, 512),
SPINAND_INFO_OP_VARIANTS(&read_cache_variants,
@ -130,7 +131,8 @@ static const struct spinand_info micron_spinand_table[] = {
SPINAND_ECCINFO(&micron_8_ooblayout,
micron_8_ecc_get_status)),
/* M79A 2Gb 1.8V */
SPINAND_INFO("MT29F2G01ABBGD", 0x25,
SPINAND_INFO("MT29F2G01ABBGD",
SPINAND_ID(SPINAND_READID_METHOD_OPCODE_DUMMY, 0x25),
NAND_MEMORG(1, 2048, 128, 64, 2048, 2, 1, 1),
NAND_ECCREQ(8, 512),
SPINAND_INFO_OP_VARIANTS(&read_cache_variants,
@ -140,7 +142,8 @@ static const struct spinand_info micron_spinand_table[] = {
SPINAND_ECCINFO(&micron_8_ooblayout,
micron_8_ecc_get_status)),
/* M78A 1Gb 3.3V */
SPINAND_INFO("MT29F1G01ABAFD", 0x14,
SPINAND_INFO("MT29F1G01ABAFD",
SPINAND_ID(SPINAND_READID_METHOD_OPCODE_DUMMY, 0x14),
NAND_MEMORG(1, 2048, 128, 64, 1024, 1, 1, 1),
NAND_ECCREQ(8, 512),
SPINAND_INFO_OP_VARIANTS(&read_cache_variants,
@ -150,7 +153,8 @@ static const struct spinand_info micron_spinand_table[] = {
SPINAND_ECCINFO(&micron_8_ooblayout,
micron_8_ecc_get_status)),
/* M78A 1Gb 1.8V */
SPINAND_INFO("MT29F1G01ABAFD", 0x15,
SPINAND_INFO("MT29F1G01ABAFD",
SPINAND_ID(SPINAND_READID_METHOD_OPCODE_DUMMY, 0x15),
NAND_MEMORG(1, 2048, 128, 64, 1024, 1, 1, 1),
NAND_ECCREQ(8, 512),
SPINAND_INFO_OP_VARIANTS(&read_cache_variants,
@ -160,7 +164,8 @@ static const struct spinand_info micron_spinand_table[] = {
SPINAND_ECCINFO(&micron_8_ooblayout,
micron_8_ecc_get_status)),
/* M79A 4Gb 3.3V */
SPINAND_INFO("MT29F4G01ADAGD", 0x36,
SPINAND_INFO("MT29F4G01ADAGD",
SPINAND_ID(SPINAND_READID_METHOD_OPCODE_DUMMY, 0x36),
NAND_MEMORG(1, 2048, 128, 64, 2048, 2, 1, 2),
NAND_ECCREQ(8, 512),
SPINAND_INFO_OP_VARIANTS(&read_cache_variants,
@ -171,7 +176,8 @@ static const struct spinand_info micron_spinand_table[] = {
micron_8_ecc_get_status),
SPINAND_SELECT_TARGET(micron_select_target)),
/* M70A 4Gb 3.3V */
SPINAND_INFO("MT29F4G01ABAFD", 0x34,
SPINAND_INFO("MT29F4G01ABAFD",
SPINAND_ID(SPINAND_READID_METHOD_OPCODE_DUMMY, 0x34),
NAND_MEMORG(1, 4096, 256, 64, 2048, 1, 1, 1),
NAND_ECCREQ(8, 512),
SPINAND_INFO_OP_VARIANTS(&read_cache_variants,
@ -181,7 +187,8 @@ static const struct spinand_info micron_spinand_table[] = {
SPINAND_ECCINFO(&micron_8_ooblayout,
micron_8_ecc_get_status)),
/* M70A 4Gb 1.8V */
SPINAND_INFO("MT29F4G01ABBFD", 0x35,
SPINAND_INFO("MT29F4G01ABBFD",
SPINAND_ID(SPINAND_READID_METHOD_OPCODE_DUMMY, 0x35),
NAND_MEMORG(1, 4096, 256, 64, 2048, 1, 1, 1),
NAND_ECCREQ(8, 512),
SPINAND_INFO_OP_VARIANTS(&read_cache_variants,
@ -191,7 +198,8 @@ static const struct spinand_info micron_spinand_table[] = {
SPINAND_ECCINFO(&micron_8_ooblayout,
micron_8_ecc_get_status)),
/* M70A 8Gb 3.3V */
SPINAND_INFO("MT29F8G01ADAFD", 0x46,
SPINAND_INFO("MT29F8G01ADAFD",
SPINAND_ID(SPINAND_READID_METHOD_OPCODE_DUMMY, 0x46),
NAND_MEMORG(1, 4096, 256, 64, 2048, 1, 1, 2),
NAND_ECCREQ(8, 512),
SPINAND_INFO_OP_VARIANTS(&read_cache_variants,
@ -202,7 +210,8 @@ static const struct spinand_info micron_spinand_table[] = {
micron_8_ecc_get_status),
SPINAND_SELECT_TARGET(micron_select_target)),
/* M70A 8Gb 1.8V */
SPINAND_INFO("MT29F8G01ADBFD", 0x47,
SPINAND_INFO("MT29F8G01ADBFD",
SPINAND_ID(SPINAND_READID_METHOD_OPCODE_DUMMY, 0x47),
NAND_MEMORG(1, 4096, 256, 64, 2048, 1, 1, 2),
NAND_ECCREQ(8, 512),
SPINAND_INFO_OP_VARIANTS(&read_cache_variants,
@ -214,26 +223,6 @@ static const struct spinand_info micron_spinand_table[] = {
SPINAND_SELECT_TARGET(micron_select_target)),
};
static int micron_spinand_detect(struct spinand_device *spinand)
{
u8 *id = spinand->id.data;
int ret;
/*
* Micron SPI NAND read ID need a dummy byte,
* so the first byte in raw_id is dummy.
*/
if (id[1] != SPINAND_MFR_MICRON)
return 0;
ret = spinand_match_and_init(spinand, micron_spinand_table,
ARRAY_SIZE(micron_spinand_table), id[2]);
if (ret)
return ret;
return 1;
}
static int micron_spinand_init(struct spinand_device *spinand)
{
/*
@ -248,12 +237,13 @@ static int micron_spinand_init(struct spinand_device *spinand)
}
static const struct spinand_manufacturer_ops micron_spinand_manuf_ops = {
.detect = micron_spinand_detect,
.init = micron_spinand_init,
};
const struct spinand_manufacturer micron_spinand_manufacturer = {
.id = SPINAND_MFR_MICRON,
.name = "Micron",
.chips = micron_spinand_table,
.nchips = ARRAY_SIZE(micron_spinand_table),
.ops = &micron_spinand_manuf_ops,
};

View file

@ -111,7 +111,8 @@ static int tx58cxgxsxraix_ecc_get_status(struct spinand_device *spinand,
static const struct spinand_info toshiba_spinand_table[] = {
/* 3.3V 1Gb (1st generation) */
SPINAND_INFO("TC58CVG0S3HRAIG", 0xC2,
SPINAND_INFO("TC58CVG0S3HRAIG",
SPINAND_ID(SPINAND_READID_METHOD_OPCODE_DUMMY, 0xC2),
NAND_MEMORG(1, 2048, 128, 64, 1024, 1, 1, 1),
NAND_ECCREQ(8, 512),
SPINAND_INFO_OP_VARIANTS(&read_cache_variants,
@ -121,7 +122,8 @@ static const struct spinand_info toshiba_spinand_table[] = {
SPINAND_ECCINFO(&tx58cxgxsxraix_ooblayout,
tx58cxgxsxraix_ecc_get_status)),
/* 3.3V 2Gb (1st generation) */
SPINAND_INFO("TC58CVG1S3HRAIG", 0xCB,
SPINAND_INFO("TC58CVG1S3HRAIG",
SPINAND_ID(SPINAND_READID_METHOD_OPCODE_DUMMY, 0xCB),
NAND_MEMORG(1, 2048, 128, 64, 2048, 1, 1, 1),
NAND_ECCREQ(8, 512),
SPINAND_INFO_OP_VARIANTS(&read_cache_variants,
@ -131,7 +133,8 @@ static const struct spinand_info toshiba_spinand_table[] = {
SPINAND_ECCINFO(&tx58cxgxsxraix_ooblayout,
tx58cxgxsxraix_ecc_get_status)),
/* 3.3V 4Gb (1st generation) */
SPINAND_INFO("TC58CVG2S0HRAIG", 0xCD,
SPINAND_INFO("TC58CVG2S0HRAIG",
SPINAND_ID(SPINAND_READID_METHOD_OPCODE_DUMMY, 0xCD),
NAND_MEMORG(1, 4096, 256, 64, 2048, 1, 1, 1),
NAND_ECCREQ(8, 512),
SPINAND_INFO_OP_VARIANTS(&read_cache_variants,
@ -141,7 +144,8 @@ static const struct spinand_info toshiba_spinand_table[] = {
SPINAND_ECCINFO(&tx58cxgxsxraix_ooblayout,
tx58cxgxsxraix_ecc_get_status)),
/* 1.8V 1Gb (1st generation) */
SPINAND_INFO("TC58CYG0S3HRAIG", 0xB2,
SPINAND_INFO("TC58CYG0S3HRAIG",
SPINAND_ID(SPINAND_READID_METHOD_OPCODE_DUMMY, 0xB2),
NAND_MEMORG(1, 2048, 128, 64, 1024, 1, 1, 1),
NAND_ECCREQ(8, 512),
SPINAND_INFO_OP_VARIANTS(&read_cache_variants,
@ -151,7 +155,8 @@ static const struct spinand_info toshiba_spinand_table[] = {
SPINAND_ECCINFO(&tx58cxgxsxraix_ooblayout,
tx58cxgxsxraix_ecc_get_status)),
/* 1.8V 2Gb (1st generation) */
SPINAND_INFO("TC58CYG1S3HRAIG", 0xBB,
SPINAND_INFO("TC58CYG1S3HRAIG",
SPINAND_ID(SPINAND_READID_METHOD_OPCODE_DUMMY, 0xBB),
NAND_MEMORG(1, 2048, 128, 64, 2048, 1, 1, 1),
NAND_ECCREQ(8, 512),
SPINAND_INFO_OP_VARIANTS(&read_cache_variants,
@ -161,7 +166,8 @@ static const struct spinand_info toshiba_spinand_table[] = {
SPINAND_ECCINFO(&tx58cxgxsxraix_ooblayout,
tx58cxgxsxraix_ecc_get_status)),
/* 1.8V 4Gb (1st generation) */
SPINAND_INFO("TC58CYG2S0HRAIG", 0xBD,
SPINAND_INFO("TC58CYG2S0HRAIG",
SPINAND_ID(SPINAND_READID_METHOD_OPCODE_DUMMY, 0xBD),
NAND_MEMORG(1, 4096, 256, 64, 2048, 1, 1, 1),
NAND_ECCREQ(8, 512),
SPINAND_INFO_OP_VARIANTS(&read_cache_variants,
@ -176,7 +182,8 @@ static const struct spinand_info toshiba_spinand_table[] = {
* QE_BIT.
*/
/* 3.3V 1Gb (2nd generation) */
SPINAND_INFO("TC58CVG0S3HRAIJ", 0xE2,
SPINAND_INFO("TC58CVG0S3HRAIJ",
SPINAND_ID(SPINAND_READID_METHOD_OPCODE_DUMMY, 0xE2),
NAND_MEMORG(1, 2048, 128, 64, 1024, 1, 1, 1),
NAND_ECCREQ(8, 512),
SPINAND_INFO_OP_VARIANTS(&read_cache_variants,
@ -186,7 +193,8 @@ static const struct spinand_info toshiba_spinand_table[] = {
SPINAND_ECCINFO(&tx58cxgxsxraix_ooblayout,
tx58cxgxsxraix_ecc_get_status)),
/* 3.3V 2Gb (2nd generation) */
SPINAND_INFO("TC58CVG1S3HRAIJ", 0xEB,
SPINAND_INFO("TC58CVG1S3HRAIJ",
SPINAND_ID(SPINAND_READID_METHOD_OPCODE_DUMMY, 0xEB),
NAND_MEMORG(1, 2048, 128, 64, 2048, 1, 1, 1),
NAND_ECCREQ(8, 512),
SPINAND_INFO_OP_VARIANTS(&read_cache_variants,
@ -196,7 +204,8 @@ static const struct spinand_info toshiba_spinand_table[] = {
SPINAND_ECCINFO(&tx58cxgxsxraix_ooblayout,
tx58cxgxsxraix_ecc_get_status)),
/* 3.3V 4Gb (2nd generation) */
SPINAND_INFO("TC58CVG2S0HRAIJ", 0xED,
SPINAND_INFO("TC58CVG2S0HRAIJ",
SPINAND_ID(SPINAND_READID_METHOD_OPCODE_DUMMY, 0xED),
NAND_MEMORG(1, 4096, 256, 64, 2048, 1, 1, 1),
NAND_ECCREQ(8, 512),
SPINAND_INFO_OP_VARIANTS(&read_cache_variants,
@ -206,7 +215,8 @@ static const struct spinand_info toshiba_spinand_table[] = {
SPINAND_ECCINFO(&tx58cxgxsxraix_ooblayout,
tx58cxgxsxraix_ecc_get_status)),
/* 3.3V 8Gb (2nd generation) */
SPINAND_INFO("TH58CVG3S0HRAIJ", 0xE4,
SPINAND_INFO("TH58CVG3S0HRAIJ",
SPINAND_ID(SPINAND_READID_METHOD_OPCODE_DUMMY, 0xE4),
NAND_MEMORG(1, 4096, 256, 64, 4096, 1, 1, 1),
NAND_ECCREQ(8, 512),
SPINAND_INFO_OP_VARIANTS(&read_cache_variants,
@ -216,7 +226,8 @@ static const struct spinand_info toshiba_spinand_table[] = {
SPINAND_ECCINFO(&tx58cxgxsxraix_ooblayout,
tx58cxgxsxraix_ecc_get_status)),
/* 1.8V 1Gb (2nd generation) */
SPINAND_INFO("TC58CYG0S3HRAIJ", 0xD2,
SPINAND_INFO("TC58CYG0S3HRAIJ",
SPINAND_ID(SPINAND_READID_METHOD_OPCODE_DUMMY, 0xD2),
NAND_MEMORG(1, 2048, 128, 64, 1024, 1, 1, 1),
NAND_ECCREQ(8, 512),
SPINAND_INFO_OP_VARIANTS(&read_cache_variants,
@ -226,7 +237,8 @@ static const struct spinand_info toshiba_spinand_table[] = {
SPINAND_ECCINFO(&tx58cxgxsxraix_ooblayout,
tx58cxgxsxraix_ecc_get_status)),
/* 1.8V 2Gb (2nd generation) */
SPINAND_INFO("TC58CYG1S3HRAIJ", 0xDB,
SPINAND_INFO("TC58CYG1S3HRAIJ",
SPINAND_ID(SPINAND_READID_METHOD_OPCODE_DUMMY, 0xDB),
NAND_MEMORG(1, 2048, 128, 64, 2048, 1, 1, 1),
NAND_ECCREQ(8, 512),
SPINAND_INFO_OP_VARIANTS(&read_cache_variants,
@ -236,7 +248,8 @@ static const struct spinand_info toshiba_spinand_table[] = {
SPINAND_ECCINFO(&tx58cxgxsxraix_ooblayout,
tx58cxgxsxraix_ecc_get_status)),
/* 1.8V 4Gb (2nd generation) */
SPINAND_INFO("TC58CYG2S0HRAIJ", 0xDD,
SPINAND_INFO("TC58CYG2S0HRAIJ",
SPINAND_ID(SPINAND_READID_METHOD_OPCODE_DUMMY, 0xDD),
NAND_MEMORG(1, 4096, 256, 64, 2048, 1, 1, 1),
NAND_ECCREQ(8, 512),
SPINAND_INFO_OP_VARIANTS(&read_cache_variants,
@ -246,7 +259,8 @@ static const struct spinand_info toshiba_spinand_table[] = {
SPINAND_ECCINFO(&tx58cxgxsxraix_ooblayout,
tx58cxgxsxraix_ecc_get_status)),
/* 1.8V 8Gb (2nd generation) */
SPINAND_INFO("TH58CYG3S0HRAIJ", 0xD4,
SPINAND_INFO("TH58CYG3S0HRAIJ",
SPINAND_ID(SPINAND_READID_METHOD_OPCODE_DUMMY, 0xD4),
NAND_MEMORG(1, 4096, 256, 64, 4096, 1, 1, 1),
NAND_ECCREQ(8, 512),
SPINAND_INFO_OP_VARIANTS(&read_cache_variants,
@ -257,33 +271,13 @@ static const struct spinand_info toshiba_spinand_table[] = {
tx58cxgxsxraix_ecc_get_status)),
};
static int toshiba_spinand_detect(struct spinand_device *spinand)
{
u8 *id = spinand->id.data;
int ret;
/*
* Toshiba SPI NAND read ID needs a dummy byte,
* so the first byte in id is garbage.
*/
if (id[1] != SPINAND_MFR_TOSHIBA)
return 0;
ret = spinand_match_and_init(spinand, toshiba_spinand_table,
ARRAY_SIZE(toshiba_spinand_table),
id[2]);
if (ret)
return ret;
return 1;
}
static const struct spinand_manufacturer_ops toshiba_spinand_manuf_ops = {
.detect = toshiba_spinand_detect,
};
const struct spinand_manufacturer toshiba_spinand_manufacturer = {
.id = SPINAND_MFR_TOSHIBA,
.name = "Toshiba",
.chips = toshiba_spinand_table,
.nchips = ARRAY_SIZE(toshiba_spinand_table),
.ops = &toshiba_spinand_manuf_ops,
};

View file

@ -79,7 +79,8 @@ static int w25m02gv_select_target(struct spinand_device *spinand,
}
static const struct spinand_info winbond_spinand_table[] = {
SPINAND_INFO("W25M02GV", 0xAB,
SPINAND_INFO("W25M02GV",
SPINAND_ID(SPINAND_READID_METHOD_OPCODE_DUMMY, 0xab),
NAND_MEMORG(1, 2048, 64, 64, 1024, 1, 1, 2),
NAND_ECCREQ(1, 512),
SPINAND_INFO_OP_VARIANTS(&read_cache_variants,
@ -88,7 +89,8 @@ static const struct spinand_info winbond_spinand_table[] = {
0,
SPINAND_ECCINFO(&w25m02gv_ooblayout, NULL),
SPINAND_SELECT_TARGET(w25m02gv_select_target)),
SPINAND_INFO("W25N01GV", 0xAA,
SPINAND_INFO("W25N01GV",
SPINAND_ID(SPINAND_READID_METHOD_OPCODE_DUMMY, 0xaa),
NAND_MEMORG(1, 2048, 64, 64, 1024, 1, 1, 1),
NAND_ECCREQ(1, 512),
SPINAND_INFO_OP_VARIANTS(&read_cache_variants,
@ -98,31 +100,6 @@ static const struct spinand_info winbond_spinand_table[] = {
SPINAND_ECCINFO(&w25m02gv_ooblayout, NULL)),
};
/**
* winbond_spinand_detect - initialize device related part in spinand_device
* struct if it is a Winbond device.
* @spinand: SPI NAND device structure
*/
static int winbond_spinand_detect(struct spinand_device *spinand)
{
u8 *id = spinand->id.data;
int ret;
/*
* Winbond SPI NAND read ID need a dummy byte,
* so the first byte in raw_id is dummy.
*/
if (id[1] != SPINAND_MFR_WINBOND)
return 0;
ret = spinand_match_and_init(spinand, winbond_spinand_table,
ARRAY_SIZE(winbond_spinand_table), id[2]);
if (ret)
return ret;
return 1;
}
static int winbond_spinand_init(struct spinand_device *spinand)
{
struct nand_device *nand = spinand_to_nand(spinand);
@ -142,12 +119,13 @@ static int winbond_spinand_init(struct spinand_device *spinand)
}
static const struct spinand_manufacturer_ops winbond_spinand_manuf_ops = {
.detect = winbond_spinand_detect,
.init = winbond_spinand_init,
};
const struct spinand_manufacturer winbond_spinand_manufacturer = {
.id = SPINAND_MFR_WINBOND,
.name = "Winbond",
.chips = winbond_spinand_table,
.nchips = ARRAY_SIZE(winbond_spinand_table),
.ops = &winbond_spinand_manuf_ops,
};

View file

@ -39,9 +39,9 @@
SPI_MEM_OP_NO_DUMMY, \
SPI_MEM_OP_NO_DATA)
#define SPINAND_READID_OP(ndummy, buf, len) \
#define SPINAND_READID_OP(naddr, ndummy, buf, len) \
SPI_MEM_OP(SPI_MEM_OP_CMD(0x9f, 1), \
SPI_MEM_OP_NO_ADDR, \
SPI_MEM_OP_ADDR(naddr, 0, 1), \
SPI_MEM_OP_DUMMY(ndummy, 1), \
SPI_MEM_OP_DATA_IN(len, buf, 1))
@ -153,37 +153,46 @@ struct spinand_device;
* @data: buffer containing the id bytes. Currently 4 bytes large, but can
* be extended if required
* @len: ID length
*
* struct_spinand_id->data contains all bytes returned after a READ_ID command,
* including dummy bytes if the chip does not emit ID bytes right after the
* READ_ID command. The responsibility to extract real ID bytes is left to
* struct_manufacurer_ops->detect().
*/
struct spinand_id {
u8 data[SPINAND_MAX_ID_LEN];
int len;
};
enum spinand_readid_method {
SPINAND_READID_METHOD_OPCODE,
SPINAND_READID_METHOD_OPCODE_ADDR,
SPINAND_READID_METHOD_OPCODE_DUMMY,
};
/**
* struct spinand_devid - SPI NAND device id structure
* @id: device id of current chip
* @len: number of bytes in device id
* @method: method to read chip id
* There are 3 possible variants:
* SPINAND_READID_METHOD_OPCODE: chip id is returned immediately
* after read_id opcode.
* SPINAND_READID_METHOD_OPCODE_ADDR: chip id is returned after
* read_id opcode + 1-byte address.
* SPINAND_READID_METHOD_OPCODE_DUMMY: chip id is returned after
* read_id opcode + 1 dummy byte.
*/
struct spinand_devid {
const u8 *id;
const u8 len;
const enum spinand_readid_method method;
};
/**
* struct manufacurer_ops - SPI NAND manufacturer specific operations
* @detect: detect a SPI NAND device. Every time a SPI NAND device is probed
* the core calls the struct_manufacurer_ops->detect() hook of each
* registered manufacturer until one of them return 1. Note that
* the first thing to check in this hook is that the manufacturer ID
* in struct_spinand_device->id matches the manufacturer whose
* ->detect() hook has been called. Should return 1 if there's a
* match, 0 if the manufacturer ID does not match and a negative
* error code otherwise. When true is returned, the core assumes
* that properties of the NAND chip (spinand->base.memorg and
* spinand->base.eccreq) have been filled
* @init: initialize a SPI NAND device
* @cleanup: cleanup a SPI NAND device
*
* Each SPI NAND manufacturer driver should implement this interface so that
* NAND chips coming from this vendor can be detected and initialized properly.
* NAND chips coming from this vendor can be initialized properly.
*/
struct spinand_manufacturer_ops {
int (*detect)(struct spinand_device *spinand);
int (*init)(struct spinand_device *spinand);
void (*cleanup)(struct spinand_device *spinand);
};
@ -192,11 +201,16 @@ struct spinand_manufacturer_ops {
* struct spinand_manufacturer - SPI NAND manufacturer instance
* @id: manufacturer ID
* @name: manufacturer name
* @devid_len: number of bytes in device ID
* @chips: supported SPI NANDs under current manufacturer
* @nchips: number of SPI NANDs available in chips array
* @ops: manufacturer operations
*/
struct spinand_manufacturer {
u8 id;
char *name;
const struct spinand_info *chips;
const size_t nchips;
const struct spinand_manufacturer_ops *ops;
};
@ -268,7 +282,7 @@ struct spinand_ecc_info {
*/
struct spinand_info {
const char *model;
u8 devid;
struct spinand_devid devid;
u32 flags;
struct nand_memory_organization memorg;
struct nand_ecc_req eccreq;
@ -282,6 +296,13 @@ struct spinand_info {
unsigned int target);
};
#define SPINAND_ID(__method, ...) \
{ \
.id = (const u8[]){ __VA_ARGS__ }, \
.len = sizeof((u8[]){ __VA_ARGS__ }), \
.method = __method, \
}
#define SPINAND_INFO_OP_VARIANTS(__read, __write, __update) \
{ \
.read_cache = __read, \
@ -440,9 +461,10 @@ static inline void spinand_set_ofnode(struct spinand_device *spinand,
}
#endif /* __UBOOT__ */
int spinand_match_and_init(struct spinand_device *dev,
int spinand_match_and_init(struct spinand_device *spinand,
const struct spinand_info *table,
unsigned int table_size, u8 devid);
unsigned int table_size,
enum spinand_readid_method rdid_method);
int spinand_upd_cfg(struct spinand_device *spinand, u8 mask, u8 val);
int spinand_select_target(struct spinand_device *spinand, unsigned int target);