remoteproc: uclass: Add remoteproc resource handling helpers

Add remoteproc resource handling helpers. These functions
are primarily to parse the resource table and to handle
different types of resources. Carveout, devmem, trace &
vring resources are handled.

Signed-off-by: Keerthy <j-keerthy@ti.com>
[Amjad: fix redefinition of "struct resource_table" and compile warnings ]
Signed-off-by: Amjad Ouled-Ameur <aouledameur@baylibre.com>
This commit is contained in:
Keerthy 2022-01-27 13:16:55 +01:00 committed by Tom Rini
parent 8a92603a34
commit a03df89844
2 changed files with 917 additions and 1 deletions

View file

@ -8,15 +8,31 @@
#define pr_fmt(fmt) "%s: " fmt, __func__
#include <common.h>
#include <elf.h>
#include <errno.h>
#include <log.h>
#include <malloc.h>
#include <virtio_ring.h>
#include <remoteproc.h>
#include <asm/io.h>
#include <dm/device-internal.h>
#include <dm.h>
#include <dm/uclass.h>
#include <dm/uclass-internal.h>
#include <linux/compat.h>
DECLARE_GLOBAL_DATA_PTR;
struct resource_table {
u32 ver;
u32 num;
u32 reserved[2];
u32 offset[0];
} __packed;
typedef int (*handle_resource_t) (struct udevice *, void *, int offset, int avail);
static struct resource_table *rsc_table;
/**
* for_each_remoteproc_device() - iterate through the list of rproc devices
@ -196,6 +212,80 @@ static int rproc_post_probe(struct udevice *dev)
return 0;
}
/**
* rproc_add_res() - After parsing the resource table add the mappings
* @dev: device we finished probing
* @mapping: rproc_mem_entry for the resource
*
* Return: if the remote proc driver has a add_res routine, invokes it and
* hands over the return value. overall, 0 if all went well, else appropriate
* error value.
*/
static int rproc_add_res(struct udevice *dev, struct rproc_mem_entry *mapping)
{
const struct dm_rproc_ops *ops = rproc_get_ops(dev);
if (!ops->add_res)
return -ENOSYS;
return ops->add_res(dev, mapping);
}
/**
* rproc_alloc_mem() - After parsing the resource table allocat mem
* @dev: device we finished probing
* @len: rproc_mem_entry for the resource
* @align: alignment for the resource
*
* Return: if the remote proc driver has a add_res routine, invokes it and
* hands over the return value. overall, 0 if all went well, else appropriate
* error value.
*/
static void *rproc_alloc_mem(struct udevice *dev, unsigned long len,
unsigned long align)
{
const struct dm_rproc_ops *ops;
ops = rproc_get_ops(dev);
if (!ops) {
debug("%s driver has no ops?\n", dev->name);
return NULL;
}
if (ops->alloc_mem)
return ops->alloc_mem(dev, len, align);
return NULL;
}
/**
* rproc_config_pagetable() - Configure page table for remote processor
* @dev: device we finished probing
* @virt: Virtual address of the resource
* @phys: Physical address the resource
* @len: length the resource
*
* Return: if the remote proc driver has a add_res routine, invokes it and
* hands over the return value. overall, 0 if all went well, else appropriate
* error value.
*/
static int rproc_config_pagetable(struct udevice *dev, unsigned int virt,
unsigned int phys, unsigned int len)
{
const struct dm_rproc_ops *ops;
ops = rproc_get_ops(dev);
if (!ops) {
debug("%s driver has no ops?\n", dev->name);
return -EINVAL;
}
if (ops->config_pagetable)
return ops->config_pagetable(dev, virt, phys, len);
return 0;
}
UCLASS_DRIVER(rproc) = {
.id = UCLASS_REMOTEPROC,
.name = "remoteproc",
@ -426,3 +516,447 @@ int rproc_is_running(int id)
{
return _rproc_ops_wrapper(id, RPROC_RUNNING);
};
static int handle_trace(struct udevice *dev, struct fw_rsc_trace *rsc,
int offset, int avail)
{
if (sizeof(*rsc) > avail) {
debug("trace rsc is truncated\n");
return -EINVAL;
}
/*
* make sure reserved bytes are zeroes
*/
if (rsc->reserved) {
debug("trace rsc has non zero reserved bytes\n");
return -EINVAL;
}
debug("trace rsc: da 0x%x, len 0x%x\n", rsc->da, rsc->len);
return 0;
}
static int handle_devmem(struct udevice *dev, struct fw_rsc_devmem *rsc,
int offset, int avail)
{
struct rproc_mem_entry *mapping;
if (sizeof(*rsc) > avail) {
debug("devmem rsc is truncated\n");
return -EINVAL;
}
/*
* make sure reserved bytes are zeroes
*/
if (rsc->reserved) {
debug("devmem rsc has non zero reserved bytes\n");
return -EINVAL;
}
debug("devmem rsc: pa 0x%x, da 0x%x, len 0x%x\n",
rsc->pa, rsc->da, rsc->len);
rproc_config_pagetable(dev, rsc->da, rsc->pa, rsc->len);
mapping = kzalloc(sizeof(*mapping), GFP_KERNEL);
if (!mapping)
return -ENOMEM;
/*
* We'll need this info later when we'll want to unmap everything
* (e.g. on shutdown).
*
* We can't trust the remote processor not to change the resource
* table, so we must maintain this info independently.
*/
mapping->dma = rsc->pa;
mapping->da = rsc->da;
mapping->len = rsc->len;
rproc_add_res(dev, mapping);
debug("mapped devmem pa 0x%x, da 0x%x, len 0x%x\n",
rsc->pa, rsc->da, rsc->len);
return 0;
}
static int handle_carveout(struct udevice *dev, struct fw_rsc_carveout *rsc,
int offset, int avail)
{
struct rproc_mem_entry *mapping;
if (sizeof(*rsc) > avail) {
debug("carveout rsc is truncated\n");
return -EINVAL;
}
/*
* make sure reserved bytes are zeroes
*/
if (rsc->reserved) {
debug("carveout rsc has non zero reserved bytes\n");
return -EINVAL;
}
debug("carveout rsc: da %x, pa %x, len %x, flags %x\n",
rsc->da, rsc->pa, rsc->len, rsc->flags);
rsc->pa = (uintptr_t)rproc_alloc_mem(dev, rsc->len, 8);
if (!rsc->pa) {
debug
("failed to allocate carveout rsc: da %x, pa %x, len %x, flags %x\n",
rsc->da, rsc->pa, rsc->len, rsc->flags);
return -ENOMEM;
}
rproc_config_pagetable(dev, rsc->da, rsc->pa, rsc->len);
/*
* Ok, this is non-standard.
*
* Sometimes we can't rely on the generic iommu-based DMA API
* to dynamically allocate the device address and then set the IOMMU
* tables accordingly, because some remote processors might
* _require_ us to use hard coded device addresses that their
* firmware was compiled with.
*
* In this case, we must use the IOMMU API directly and map
* the memory to the device address as expected by the remote
* processor.
*
* Obviously such remote processor devices should not be configured
* to use the iommu-based DMA API: we expect 'dma' to contain the
* physical address in this case.
*/
mapping = kzalloc(sizeof(*mapping), GFP_KERNEL);
if (!mapping)
return -ENOMEM;
/*
* We'll need this info later when we'll want to unmap
* everything (e.g. on shutdown).
*
* We can't trust the remote processor not to change the
* resource table, so we must maintain this info independently.
*/
mapping->dma = rsc->pa;
mapping->da = rsc->da;
mapping->len = rsc->len;
rproc_add_res(dev, mapping);
debug("carveout mapped 0x%x to 0x%x\n", rsc->da, rsc->pa);
return 0;
}
#define RPROC_PAGE_SHIFT 12
#define RPROC_PAGE_SIZE BIT(RPROC_PAGE_SHIFT)
#define RPROC_PAGE_ALIGN(x) (((x) + (RPROC_PAGE_SIZE - 1)) & ~(RPROC_PAGE_SIZE - 1))
static int alloc_vring(struct udevice *dev, struct fw_rsc_vdev *rsc, int i)
{
struct fw_rsc_vdev_vring *vring = &rsc->vring[i];
int size;
int order;
void *pa;
debug("vdev rsc: vring%d: da %x, qsz %d, align %d\n",
i, vring->da, vring->num, vring->align);
/*
* verify queue size and vring alignment are sane
*/
if (!vring->num || !vring->align) {
debug("invalid qsz (%d) or alignment (%d)\n", vring->num,
vring->align);
return -EINVAL;
}
/*
* actual size of vring (in bytes)
*/
size = RPROC_PAGE_ALIGN(vring_size(vring->num, vring->align));
order = vring->align >> RPROC_PAGE_SHIFT;
pa = rproc_alloc_mem(dev, size, order);
if (!pa) {
debug("failed to allocate vring rsc\n");
return -ENOMEM;
}
debug("alloc_mem(%#x, %d): %p\n", size, order, pa);
vring->da = (uintptr_t)pa;
return !pa;
}
static int handle_vdev(struct udevice *dev, struct fw_rsc_vdev *rsc,
int offset, int avail)
{
int i, ret;
void *pa;
/*
* make sure resource isn't truncated
*/
if (sizeof(*rsc) + rsc->num_of_vrings * sizeof(struct fw_rsc_vdev_vring)
+ rsc->config_len > avail) {
debug("vdev rsc is truncated\n");
return -EINVAL;
}
/*
* make sure reserved bytes are zeroes
*/
if (rsc->reserved[0] || rsc->reserved[1]) {
debug("vdev rsc has non zero reserved bytes\n");
return -EINVAL;
}
debug("vdev rsc: id %d, dfeatures %x, cfg len %d, %d vrings\n",
rsc->id, rsc->dfeatures, rsc->config_len, rsc->num_of_vrings);
/*
* we currently support only two vrings per rvdev
*/
if (rsc->num_of_vrings > 2) {
debug("too many vrings: %d\n", rsc->num_of_vrings);
return -EINVAL;
}
/*
* allocate the vrings
*/
for (i = 0; i < rsc->num_of_vrings; i++) {
ret = alloc_vring(dev, rsc, i);
if (ret)
goto alloc_error;
}
pa = rproc_alloc_mem(dev, RPMSG_TOTAL_BUF_SPACE, 6);
if (!pa) {
debug("failed to allocate vdev rsc\n");
return -ENOMEM;
}
debug("vring buffer alloc_mem(%#x, 6): %p\n", RPMSG_TOTAL_BUF_SPACE,
pa);
return 0;
alloc_error:
return ret;
}
/*
* A lookup table for resource handlers. The indices are defined in
* enum fw_resource_type.
*/
static handle_resource_t loading_handlers[RSC_LAST] = {
[RSC_CARVEOUT] = (handle_resource_t)handle_carveout,
[RSC_DEVMEM] = (handle_resource_t)handle_devmem,
[RSC_TRACE] = (handle_resource_t)handle_trace,
[RSC_VDEV] = (handle_resource_t)handle_vdev,
};
/*
* handle firmware resource entries before booting the remote processor
*/
static int handle_resources(struct udevice *dev, int len,
handle_resource_t handlers[RSC_LAST])
{
handle_resource_t handler;
int ret = 0, i;
for (i = 0; i < rsc_table->num; i++) {
int offset = rsc_table->offset[i];
struct fw_rsc_hdr *hdr = (void *)rsc_table + offset;
int avail = len - offset - sizeof(*hdr);
void *rsc = (void *)hdr + sizeof(*hdr);
/*
* make sure table isn't truncated
*/
if (avail < 0) {
debug("rsc table is truncated\n");
return -EINVAL;
}
debug("rsc: type %d\n", hdr->type);
if (hdr->type >= RSC_LAST) {
debug("unsupported resource %d\n", hdr->type);
continue;
}
handler = handlers[hdr->type];
if (!handler)
continue;
ret = handler(dev, rsc, offset + sizeof(*hdr), avail);
if (ret)
break;
}
return ret;
}
static int
handle_intmem_to_l3_mapping(struct udevice *dev,
struct rproc_intmem_to_l3_mapping *l3_mapping)
{
u32 i = 0;
for (i = 0; i < l3_mapping->num_entries; i++) {
struct l3_map *curr_map = &l3_mapping->mappings[i];
struct rproc_mem_entry *mapping;
mapping = kzalloc(sizeof(*mapping), GFP_KERNEL);
if (!mapping)
return -ENOMEM;
mapping->dma = curr_map->l3_addr;
mapping->da = curr_map->priv_addr;
mapping->len = curr_map->len;
rproc_add_res(dev, mapping);
}
return 0;
}
static Elf32_Shdr *rproc_find_table(unsigned int addr)
{
Elf32_Ehdr *ehdr; /* Elf header structure pointer */
Elf32_Shdr *shdr; /* Section header structure pointer */
Elf32_Shdr sectionheader;
int i;
u8 *elf_data;
char *name_table;
struct resource_table *ptable;
ehdr = (Elf32_Ehdr *)(uintptr_t)addr;
elf_data = (u8 *)ehdr;
shdr = (Elf32_Shdr *)(elf_data + ehdr->e_shoff);
memcpy(&sectionheader, &shdr[ehdr->e_shstrndx], sizeof(sectionheader));
name_table = (char *)(elf_data + sectionheader.sh_offset);
for (i = 0; i < ehdr->e_shnum; i++, shdr++) {
memcpy(&sectionheader, shdr, sizeof(sectionheader));
u32 size = sectionheader.sh_size;
u32 offset = sectionheader.sh_offset;
if (strcmp
(name_table + sectionheader.sh_name, ".resource_table"))
continue;
ptable = (struct resource_table *)(elf_data + offset);
/*
* make sure table has at least the header
*/
if (sizeof(struct resource_table) > size) {
debug("header-less resource table\n");
return NULL;
}
/*
* we don't support any version beyond the first
*/
if (ptable->ver != 1) {
debug("unsupported fw ver: %d\n", ptable->ver);
return NULL;
}
/*
* make sure reserved bytes are zeroes
*/
if (ptable->reserved[0] || ptable->reserved[1]) {
debug("non zero reserved bytes\n");
return NULL;
}
/*
* make sure the offsets array isn't truncated
*/
if (ptable->num * sizeof(ptable->offset[0]) +
sizeof(struct resource_table) > size) {
debug("resource table incomplete\n");
return NULL;
}
return shdr;
}
return NULL;
}
struct resource_table *rproc_find_resource_table(struct udevice *dev,
unsigned int addr,
int *tablesz)
{
Elf32_Shdr *shdr;
Elf32_Shdr sectionheader;
struct resource_table *ptable;
u8 *elf_data = (u8 *)(uintptr_t)addr;
shdr = rproc_find_table(addr);
if (!shdr) {
debug("%s: failed to get resource section header\n", __func__);
return NULL;
}
memcpy(&sectionheader, shdr, sizeof(sectionheader));
ptable = (struct resource_table *)(elf_data + sectionheader.sh_offset);
if (tablesz)
*tablesz = sectionheader.sh_size;
return ptable;
}
unsigned long rproc_parse_resource_table(struct udevice *dev, struct rproc *cfg)
{
struct resource_table *ptable = NULL;
int tablesz;
int ret;
unsigned long addr;
addr = cfg->load_addr;
ptable = rproc_find_resource_table(dev, addr, &tablesz);
if (!ptable) {
debug("%s : failed to find resource table\n", __func__);
return 0;
}
debug("%s : found resource table\n", __func__);
rsc_table = kzalloc(tablesz, GFP_KERNEL);
if (!rsc_table) {
debug("resource table alloc failed!\n");
return 0;
}
/*
* Copy the resource table into a local buffer before handling the
* resource table.
*/
memcpy(rsc_table, ptable, tablesz);
if (cfg->intmem_to_l3_mapping)
handle_intmem_to_l3_mapping(dev, cfg->intmem_to_l3_mapping);
ret = handle_resources(dev, tablesz, loading_handlers);
if (ret) {
debug("handle_resources failed: %d\n", ret);
return 0;
}
/*
* Instead of trying to mimic the kernel flow of copying the
* processed resource table into its post ELF load location in DDR
* copying it into its original location.
*/
memcpy(ptable, rsc_table, tablesz);
free(rsc_table);
rsc_table = NULL;
return 1;
}

View file

@ -1,4 +1,4 @@
/* SPDX-License-Identifier: GPL-2.0+ */
/* SPDX-License-Identifier: GPL-2.0 */
/*
* (C) Copyright 2015
* Texas Instruments Incorporated - http://www.ti.com/
@ -15,6 +15,375 @@
*/
#include <dm/platdata.h> /* For platform data support - non dt world */
/**
* struct fw_rsc_hdr - firmware resource entry header
* @type: resource type
* @data: resource data
*
* Every resource entry begins with a 'struct fw_rsc_hdr' header providing
* its @type. The content of the entry itself will immediately follow
* this header, and it should be parsed according to the resource type.
*/
struct fw_rsc_hdr {
u32 type;
u8 data[0];
};
/**
* enum fw_resource_type - types of resource entries
*
* @RSC_CARVEOUT: request for allocation of a physically contiguous
* memory region.
* @RSC_DEVMEM: request to iommu_map a memory-based peripheral.
* @RSC_TRACE: announces the availability of a trace buffer into which
* the remote processor will be writing logs.
* @RSC_VDEV: declare support for a virtio device, and serve as its
* virtio header.
* @RSC_PRELOAD_VENDOR: a vendor resource type that needs to be handled by
* remoteproc implementations before loading
* @RSC_POSTLOAD_VENDOR: a vendor resource type that needs to be handled by
* remoteproc implementations after loading
* @RSC_LAST: just keep this one at the end
*
* For more details regarding a specific resource type, please see its
* dedicated structure below.
*
* Please note that these values are used as indices to the rproc_handle_rsc
* lookup table, so please keep them sane. Moreover, @RSC_LAST is used to
* check the validity of an index before the lookup table is accessed, so
* please update it as needed.
*/
enum fw_resource_type {
RSC_CARVEOUT = 0,
RSC_DEVMEM = 1,
RSC_TRACE = 2,
RSC_VDEV = 3,
RSC_PRELOAD_VENDOR = 4,
RSC_POSTLOAD_VENDOR = 5,
RSC_LAST = 6,
};
#define FW_RSC_ADDR_ANY (-1)
/**
* struct fw_rsc_carveout - physically contiguous memory request
* @da: device address
* @pa: physical address
* @len: length (in bytes)
* @flags: iommu protection flags
* @reserved: reserved (must be zero)
* @name: human-readable name of the requested memory region
*
* This resource entry requests the host to allocate a physically contiguous
* memory region.
*
* These request entries should precede other firmware resource entries,
* as other entries might request placing other data objects inside
* these memory regions (e.g. data/code segments, trace resource entries, ...).
*
* Allocating memory this way helps utilizing the reserved physical memory
* (e.g. CMA) more efficiently, and also minimizes the number of TLB entries
* needed to map it (in case @rproc is using an IOMMU). Reducing the TLB
* pressure is important; it may have a substantial impact on performance.
*
* If the firmware is compiled with static addresses, then @da should specify
* the expected device address of this memory region. If @da is set to
* FW_RSC_ADDR_ANY, then the host will dynamically allocate it, and then
* overwrite @da with the dynamically allocated address.
*
* We will always use @da to negotiate the device addresses, even if it
* isn't using an iommu. In that case, though, it will obviously contain
* physical addresses.
*
* Some remote processors needs to know the allocated physical address
* even if they do use an iommu. This is needed, e.g., if they control
* hardware accelerators which access the physical memory directly (this
* is the case with OMAP4 for instance). In that case, the host will
* overwrite @pa with the dynamically allocated physical address.
* Generally we don't want to expose physical addresses if we don't have to
* (remote processors are generally _not_ trusted), so we might want to
* change this to happen _only_ when explicitly required by the hardware.
*
* @flags is used to provide IOMMU protection flags, and @name should
* (optionally) contain a human readable name of this carveout region
* (mainly for debugging purposes).
*/
struct fw_rsc_carveout {
u32 da;
u32 pa;
u32 len;
u32 flags;
u32 reserved;
u8 name[32];
};
/**
* struct fw_rsc_devmem - iommu mapping request
* @da: device address
* @pa: physical address
* @len: length (in bytes)
* @flags: iommu protection flags
* @reserved: reserved (must be zero)
* @name: human-readable name of the requested region to be mapped
*
* This resource entry requests the host to iommu map a physically contiguous
* memory region. This is needed in case the remote processor requires
* access to certain memory-based peripherals; _never_ use it to access
* regular memory.
*
* This is obviously only needed if the remote processor is accessing memory
* via an iommu.
*
* @da should specify the required device address, @pa should specify
* the physical address we want to map, @len should specify the size of
* the mapping and @flags is the IOMMU protection flags. As always, @name may
* (optionally) contain a human readable name of this mapping (mainly for
* debugging purposes).
*
* Note: at this point we just "trust" those devmem entries to contain valid
* physical addresses, but this isn't safe and will be changed: eventually we
* want remoteproc implementations to provide us ranges of physical addresses
* the firmware is allowed to request, and not allow firmwares to request
* access to physical addresses that are outside those ranges.
*/
struct fw_rsc_devmem {
u32 da;
u32 pa;
u32 len;
u32 flags;
u32 reserved;
u8 name[32];
};
/**
* struct fw_rsc_trace - trace buffer declaration
* @da: device address
* @len: length (in bytes)
* @reserved: reserved (must be zero)
* @name: human-readable name of the trace buffer
*
* This resource entry provides the host information about a trace buffer
* into which the remote processor will write log messages.
*
* @da specifies the device address of the buffer, @len specifies
* its size, and @name may contain a human readable name of the trace buffer.
*
* After booting the remote processor, the trace buffers are exposed to the
* user via debugfs entries (called trace0, trace1, etc..).
*/
struct fw_rsc_trace {
u32 da;
u32 len;
u32 reserved;
u8 name[32];
};
/**
* struct fw_rsc_vdev_vring - vring descriptor entry
* @da: device address
* @align: the alignment between the consumer and producer parts of the vring
* @num: num of buffers supported by this vring (must be power of two)
* @notifyid is a unique rproc-wide notify index for this vring. This notify
* index is used when kicking a remote processor, to let it know that this
* vring is triggered.
* @pa: physical address
*
* This descriptor is not a resource entry by itself; it is part of the
* vdev resource type (see below).
*
* Note that @da should either contain the device address where
* the remote processor is expecting the vring, or indicate that
* dynamically allocation of the vring's device address is supported.
*/
struct fw_rsc_vdev_vring {
u32 da;
u32 align;
u32 num;
u32 notifyid;
u32 pa;
};
/**
* struct fw_rsc_vdev - virtio device header
* @id: virtio device id (as in virtio_ids.h)
* @notifyid is a unique rproc-wide notify index for this vdev. This notify
* index is used when kicking a remote processor, to let it know that the
* status/features of this vdev have changes.
* @dfeatures specifies the virtio device features supported by the firmware
* @gfeatures is a place holder used by the host to write back the
* negotiated features that are supported by both sides.
* @config_len is the size of the virtio config space of this vdev. The config
* space lies in the resource table immediate after this vdev header.
* @status is a place holder where the host will indicate its virtio progress.
* @num_of_vrings indicates how many vrings are described in this vdev header
* @reserved: reserved (must be zero)
* @vring is an array of @num_of_vrings entries of 'struct fw_rsc_vdev_vring'.
*
* This resource is a virtio device header: it provides information about
* the vdev, and is then used by the host and its peer remote processors
* to negotiate and share certain virtio properties.
*
* By providing this resource entry, the firmware essentially asks remoteproc
* to statically allocate a vdev upon registration of the rproc (dynamic vdev
* allocation is not yet supported).
*
* Note: unlike virtualization systems, the term 'host' here means
* the Linux side which is running remoteproc to control the remote
* processors. We use the name 'gfeatures' to comply with virtio's terms,
* though there isn't really any virtualized guest OS here: it's the host
* which is responsible for negotiating the final features.
* Yeah, it's a bit confusing.
*
* Note: immediately following this structure is the virtio config space for
* this vdev (which is specific to the vdev; for more info, read the virtio
* spec). the size of the config space is specified by @config_len.
*/
struct fw_rsc_vdev {
u32 id;
u32 notifyid;
u32 dfeatures;
u32 gfeatures;
u32 config_len;
u8 status;
u8 num_of_vrings;
u8 reserved[2];
struct fw_rsc_vdev_vring vring[0];
};
/**
* struct rproc_mem_entry - memory entry descriptor
* @va: virtual address
* @dma: dma address
* @len: length, in bytes
* @da: device address
* @priv: associated data
* @name: associated memory region name (optional)
* @node: list node
*/
struct rproc_mem_entry {
void *va;
dma_addr_t dma;
int len;
u32 da;
void *priv;
char name[32];
struct list_head node;
};
struct rproc;
typedef u32(*init_func_proto) (u32 core_id, struct rproc *cfg);
struct l3_map {
u32 priv_addr;
u32 l3_addr;
u32 len;
};
struct rproc_intmem_to_l3_mapping {
u32 num_entries;
struct l3_map mappings[16];
};
/**
* enum rproc_crash_type - remote processor crash types
* @RPROC_MMUFAULT: iommu fault
* @RPROC_WATCHDOG: watchdog bite
* @RPROC_FATAL_ERROR fatal error
*
* Each element of the enum is used as an array index. So that, the value of
* the elements should be always something sane.
*
* Feel free to add more types when needed.
*/
enum rproc_crash_type {
RPROC_MMUFAULT,
RPROC_WATCHDOG,
RPROC_FATAL_ERROR,
};
/* we currently support only two vrings per rvdev */
#define RVDEV_NUM_VRINGS 2
#define RPMSG_NUM_BUFS (512)
#define RPMSG_BUF_SIZE (512)
#define RPMSG_TOTAL_BUF_SPACE (RPMSG_NUM_BUFS * RPMSG_BUF_SIZE)
/**
* struct rproc_vring - remoteproc vring state
* @va: virtual address
* @dma: dma address
* @len: length, in bytes
* @da: device address
* @align: vring alignment
* @notifyid: rproc-specific unique vring index
* @rvdev: remote vdev
* @vq: the virtqueue of this vring
*/
struct rproc_vring {
void *va;
dma_addr_t dma;
int len;
u32 da;
u32 align;
int notifyid;
struct rproc_vdev *rvdev;
struct virtqueue *vq;
};
/** struct rproc - structure with all processor specific information for
* loading remotecore from boot loader.
*
* @num_iommus: Number of IOMMUs for this remote core. Zero indicates that the
* processor does not have an IOMMU.
*
* @cma_base: Base address of the carveout for this remotecore.
*
* @cma_size: Length of the carveout in bytes.
*
* @page_table_addr: array with the physical address of the page table. We are
* using the same page table for both IOMMU's. There is currently no strong
* usecase for maintaining different page tables for different MMU's servicing
* the same CPU.
*
* @mmu_base_addr: base address of the MMU
*
* @entry_point: address that is the entry point for the remote core. This
* address is in the memory view of the remotecore.
*
* @load_addr: Address to which the bootloader loads the firmware from
* persistent storage before invoking the ELF loader. Keeping this address
* configurable allows future optimizations such as loading the firmware from
* storage for remotecore2 via EDMA while the CPU is processing the ELF image
* of remotecore1. This address is in the memory view of the A15.
*
* @firmware_name: Name of the file that is expected to contain the ELF image.
*
* @has_rsc_table: Flag populated after parsing the ELF binary on target.
*/
struct rproc {
u32 num_iommus;
unsigned long cma_base;
u32 cma_size;
unsigned long page_table_addr;
unsigned long mmu_base_addr[2];
unsigned long load_addr;
unsigned long entry_point;
char *core_name;
char *firmware_name;
char *ptn;
init_func_proto start_clocks;
init_func_proto config_mmu;
init_func_proto config_peripherals;
init_func_proto start_core;
u32 has_rsc_table;
struct rproc_intmem_to_l3_mapping *intmem_to_l3_mapping;
u32 trace_pa;
u32 trace_len;
};
extern struct rproc *rproc_cfg_arr[2];
/**
* enum rproc_mem_type - What type of memory model does the rproc use
* @RPROC_INTERNAL_MEMORY_MAPPED: Remote processor uses own memory and is memory
@ -126,6 +495,12 @@ struct dm_rproc_ops {
* @return virtual address.
*/
void * (*device_to_virt)(struct udevice *dev, ulong da, ulong size);
int (*add_res)(struct udevice *dev,
struct rproc_mem_entry *mapping);
void * (*alloc_mem)(struct udevice *dev, unsigned long len,
unsigned long align);
unsigned int (*config_pagetable)(struct udevice *dev, unsigned int virt,
unsigned int phys, unsigned int len);
};
/* Accessor */
@ -322,6 +697,13 @@ int rproc_elf64_load_rsc_table(struct udevice *dev, ulong fw_addr,
*/
int rproc_elf_load_rsc_table(struct udevice *dev, ulong fw_addr,
ulong fw_size, ulong *rsc_addr, ulong *rsc_size);
unsigned long rproc_parse_resource_table(struct udevice *dev,
struct rproc *cfg);
struct resource_table *rproc_find_resource_table(struct udevice *dev,
unsigned int addr,
int *tablesz);
#else
static inline int rproc_init(void) { return -ENOSYS; }
static inline int rproc_dev_init(int id) { return -ENOSYS; }