- spi cs accessing slaves (Bin Meng)
- spi prevent overriding established bus (Marcin Wojtas)
- support speed in spi command (Marek Vasut)
- add W25N01GV spinand (Robert Marko)
- move cadence_qspi to use spi-mem (Vignesh Raghavendra)
- add octal mode (Vignesh Raghavendra)
This commit is contained in:
Tom Rini 2020-01-27 19:57:13 -05:00
commit 86e42b3629
16 changed files with 1290 additions and 239 deletions

View file

@ -28,6 +28,7 @@
static unsigned int bus; static unsigned int bus;
static unsigned int cs; static unsigned int cs;
static unsigned int mode; static unsigned int mode;
static unsigned int freq;
static int bitlen; static int bitlen;
static uchar dout[MAX_SPI_BYTES]; static uchar dout[MAX_SPI_BYTES];
static uchar din[MAX_SPI_BYTES]; static uchar din[MAX_SPI_BYTES];
@ -45,12 +46,12 @@ static int do_spi_xfer(int bus, int cs)
str = strdup(name); str = strdup(name);
if (!str) if (!str)
return -ENOMEM; return -ENOMEM;
ret = spi_get_bus_and_cs(bus, cs, 1000000, mode, "spi_generic_drv", ret = spi_get_bus_and_cs(bus, cs, freq, mode, "spi_generic_drv",
str, &dev, &slave); str, &dev, &slave);
if (ret) if (ret)
return ret; return ret;
#else #else
slave = spi_setup_slave(bus, cs, 1000000, mode); slave = spi_setup_slave(bus, cs, freq, mode);
if (!slave) { if (!slave) {
printf("Invalid device %d:%d\n", bus, cs); printf("Invalid device %d:%d\n", bus, cs);
return -EINVAL; return -EINVAL;
@ -106,6 +107,8 @@ int do_spi (cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[])
* We use the last specified parameters, unless new ones are * We use the last specified parameters, unless new ones are
* entered. * entered.
*/ */
if (freq == 0)
freq = 1000000;
if ((flag & CMD_FLAG_REPEAT) == 0) if ((flag & CMD_FLAG_REPEAT) == 0)
{ {
@ -119,7 +122,9 @@ int do_spi (cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[])
bus = CONFIG_DEFAULT_SPI_BUS; bus = CONFIG_DEFAULT_SPI_BUS;
} }
if (*cp == '.') if (*cp == '.')
mode = simple_strtoul(cp+1, NULL, 10); mode = simple_strtoul(cp+1, &cp, 10);
if (*cp == '@')
freq = simple_strtoul(cp+1, &cp, 10);
} }
if (argc >= 3) if (argc >= 3)
bitlen = simple_strtoul(argv[2], NULL, 10); bitlen = simple_strtoul(argv[2], NULL, 10);
@ -159,10 +164,11 @@ int do_spi (cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[])
U_BOOT_CMD( U_BOOT_CMD(
sspi, 5, 1, do_spi, sspi, 5, 1, do_spi,
"SPI utility command", "SPI utility command",
"[<bus>:]<cs>[.<mode>] <bit_len> <dout> - Send and receive bits\n" "[<bus>:]<cs>[.<mode>][@<freq>] <bit_len> <dout> - Send and receive bits\n"
"<bus> - Identifies the SPI bus\n" "<bus> - Identifies the SPI bus\n"
"<cs> - Identifies the chip select\n" "<cs> - Identifies the chip select\n"
"<mode> - Identifies the SPI mode to use\n" "<mode> - Identifies the SPI mode to use\n"
"<freq> - Identifies the SPI bus frequency in Hz\n"
"<bit_len> - Number of bits to send (base 10)\n" "<bit_len> - Number of bits to send (base 10)\n"
"<dout> - Hexadecimal string that gets sent" "<dout> - Hexadecimal string that gets sent"
); );

View file

@ -86,6 +86,14 @@ static const struct spinand_info winbond_spinand_table[] = {
0, 0,
SPINAND_ECCINFO(&w25m02gv_ooblayout, NULL), SPINAND_ECCINFO(&w25m02gv_ooblayout, NULL),
SPINAND_SELECT_TARGET(w25m02gv_select_target)), SPINAND_SELECT_TARGET(w25m02gv_select_target)),
SPINAND_INFO("W25N01GV", 0xAA,
NAND_MEMORG(1, 2048, 64, 64, 1024, 1, 1, 1),
NAND_ECCREQ(1, 512),
SPINAND_INFO_OP_VARIANTS(&read_cache_variants,
&write_cache_variants,
&update_cache_variants),
0,
SPINAND_ECCINFO(&w25m02gv_ooblayout, NULL)),
}; };
/** /**

View file

@ -37,7 +37,7 @@ struct flash_info {
u16 page_size; u16 page_size;
u16 addr_width; u16 addr_width;
u16 flags; u32 flags;
#define SECT_4K BIT(0) /* SPINOR_OP_BE_4K works uniformly */ #define SECT_4K BIT(0) /* SPINOR_OP_BE_4K works uniformly */
#define SPI_NOR_NO_ERASE BIT(1) /* No erase command needed */ #define SPI_NOR_NO_ERASE BIT(1) /* No erase command needed */
#define SST_WRITE BIT(2) /* use SST byte programming */ #define SST_WRITE BIT(2) /* use SST byte programming */
@ -66,6 +66,7 @@ struct flash_info {
#define SPI_NOR_SKIP_SFDP BIT(13) /* Skip parsing of SFDP tables */ #define SPI_NOR_SKIP_SFDP BIT(13) /* Skip parsing of SFDP tables */
#define USE_CLSR BIT(14) /* use CLSR command */ #define USE_CLSR BIT(14) /* use CLSR command */
#define SPI_NOR_HAS_SST26LOCK BIT(15) /* Flash supports lock/unlock via BPR */ #define SPI_NOR_HAS_SST26LOCK BIT(15) /* Flash supports lock/unlock via BPR */
#define SPI_NOR_OCTAL_READ BIT(16) /* Flash supports Octal Read */
}; };
extern const struct flash_info spi_nor_ids[]; extern const struct flash_info spi_nor_ids[];

View file

@ -251,6 +251,8 @@ static u8 spi_nor_convert_3to4_read(u8 opcode)
{ SPINOR_OP_READ_1_2_2, SPINOR_OP_READ_1_2_2_4B }, { SPINOR_OP_READ_1_2_2, SPINOR_OP_READ_1_2_2_4B },
{ SPINOR_OP_READ_1_1_4, SPINOR_OP_READ_1_1_4_4B }, { SPINOR_OP_READ_1_1_4, SPINOR_OP_READ_1_1_4_4B },
{ SPINOR_OP_READ_1_4_4, SPINOR_OP_READ_1_4_4_4B }, { SPINOR_OP_READ_1_4_4, SPINOR_OP_READ_1_4_4_4B },
{ SPINOR_OP_READ_1_1_8, SPINOR_OP_READ_1_1_8_4B },
{ SPINOR_OP_READ_1_8_8, SPINOR_OP_READ_1_8_8_4B },
{ SPINOR_OP_READ_1_1_1_DTR, SPINOR_OP_READ_1_1_1_DTR_4B }, { SPINOR_OP_READ_1_1_1_DTR, SPINOR_OP_READ_1_1_1_DTR_4B },
{ SPINOR_OP_READ_1_2_2_DTR, SPINOR_OP_READ_1_2_2_DTR_4B }, { SPINOR_OP_READ_1_2_2_DTR, SPINOR_OP_READ_1_2_2_DTR_4B },
@ -267,6 +269,8 @@ static u8 spi_nor_convert_3to4_program(u8 opcode)
{ SPINOR_OP_PP, SPINOR_OP_PP_4B }, { SPINOR_OP_PP, SPINOR_OP_PP_4B },
{ SPINOR_OP_PP_1_1_4, SPINOR_OP_PP_1_1_4_4B }, { SPINOR_OP_PP_1_1_4, SPINOR_OP_PP_1_1_4_4B },
{ SPINOR_OP_PP_1_4_4, SPINOR_OP_PP_1_4_4_4B }, { SPINOR_OP_PP_1_4_4, SPINOR_OP_PP_1_4_4_4B },
{ SPINOR_OP_PP_1_1_8, SPINOR_OP_PP_1_1_8_4B },
{ SPINOR_OP_PP_1_8_8, SPINOR_OP_PP_1_8_8_4B },
}; };
return spi_nor_convert_opcode(opcode, spi_nor_3to4_program, return spi_nor_convert_opcode(opcode, spi_nor_3to4_program,
@ -2169,6 +2173,13 @@ static int spi_nor_init_params(struct spi_nor *nor,
SNOR_PROTO_1_1_4); SNOR_PROTO_1_1_4);
} }
if (info->flags & SPI_NOR_OCTAL_READ) {
params->hwcaps.mask |= SNOR_HWCAPS_READ_1_1_8;
spi_nor_set_read_settings(&params->reads[SNOR_CMD_READ_1_1_8],
0, 8, SPINOR_OP_READ_1_1_8,
SNOR_PROTO_1_1_8);
}
/* Page Program settings. */ /* Page Program settings. */
params->hwcaps.mask |= SNOR_HWCAPS_PP; params->hwcaps.mask |= SNOR_HWCAPS_PP;
spi_nor_set_pp_settings(&params->page_programs[SNOR_CMD_PP], spi_nor_set_pp_settings(&params->page_programs[SNOR_CMD_PP],
@ -2476,7 +2487,14 @@ int spi_nor_scan(struct spi_nor *nor)
nor->read_reg = spi_nor_read_reg; nor->read_reg = spi_nor_read_reg;
nor->write_reg = spi_nor_write_reg; nor->write_reg = spi_nor_write_reg;
if (spi->mode & SPI_RX_QUAD) { if (spi->mode & SPI_RX_OCTAL) {
hwcaps.mask |= SNOR_HWCAPS_READ_1_1_8;
if (spi->mode & SPI_TX_OCTAL)
hwcaps.mask |= (SNOR_HWCAPS_READ_1_8_8 |
SNOR_HWCAPS_PP_1_1_8 |
SNOR_HWCAPS_PP_1_8_8);
} else if (spi->mode & SPI_RX_QUAD) {
hwcaps.mask |= SNOR_HWCAPS_READ_1_1_4; hwcaps.mask |= SNOR_HWCAPS_READ_1_1_4;
if (spi->mode & SPI_TX_QUAD) if (spi->mode & SPI_TX_QUAD)

View file

@ -192,6 +192,13 @@ config MVEBU_A3700_SPI
used to access the SPI NOR flash on platforms embedding this used to access the SPI NOR flash on platforms embedding this
Marvell IP core. Marvell IP core.
config NXP_FSPI
bool "NXP FlexSPI driver"
depends on SPI_MEM
help
Enable the NXP FlexSPI (FSPI) driver. This driver can be used to
access the SPI NOR flash on platforms embedding this NXP IP core.
config PIC32_SPI config PIC32_SPI
bool "Microchip PIC32 SPI driver" bool "Microchip PIC32 SPI driver"
depends on MACH_PIC32 depends on MACH_PIC32

View file

@ -43,6 +43,7 @@ obj-$(CONFIG_MSCC_BB_SPI) += mscc_bb_spi.o
obj-$(CONFIG_MVEBU_A3700_SPI) += mvebu_a3700_spi.o obj-$(CONFIG_MVEBU_A3700_SPI) += mvebu_a3700_spi.o
obj-$(CONFIG_MXC_SPI) += mxc_spi.o obj-$(CONFIG_MXC_SPI) += mxc_spi.o
obj-$(CONFIG_MXS_SPI) += mxs_spi.o obj-$(CONFIG_MXS_SPI) += mxs_spi.o
obj-$(CONFIG_NXP_FSPI) += nxp_fspi.o
obj-$(CONFIG_ATCSPI200_SPI) += atcspi200_spi.o obj-$(CONFIG_ATCSPI200_SPI) += atcspi200_spi.o
obj-$(CONFIG_OMAP3_SPI) += omap3_spi.o obj-$(CONFIG_OMAP3_SPI) += omap3_spi.o
obj-$(CONFIG_PIC32_SPI) += pic32_spi.o obj-$(CONFIG_PIC32_SPI) += pic32_spi.o

View file

@ -6,18 +6,21 @@
#include <common.h> #include <common.h>
#include <clk.h> #include <clk.h>
#include <asm-generic/io.h>
#include <dm.h> #include <dm.h>
#include <fdtdec.h> #include <fdtdec.h>
#include <malloc.h> #include <malloc.h>
#include <reset.h> #include <reset.h>
#include <spi.h> #include <spi.h>
#include <spi-mem.h>
#include <linux/errno.h> #include <linux/errno.h>
#include <linux/sizes.h>
#include "cadence_qspi.h" #include "cadence_qspi.h"
#define CQSPI_STIG_READ 0 #define CQSPI_STIG_READ 0
#define CQSPI_STIG_WRITE 1 #define CQSPI_STIG_WRITE 1
#define CQSPI_INDIRECT_READ 2 #define CQSPI_READ 2
#define CQSPI_INDIRECT_WRITE 3 #define CQSPI_WRITE 3
static int cadence_spi_write_speed(struct udevice *bus, uint hz) static int cadence_spi_write_speed(struct udevice *bus, uint hz)
{ {
@ -35,12 +38,21 @@ static int cadence_spi_write_speed(struct udevice *bus, uint hz)
return 0; return 0;
} }
static int cadence_spi_read_id(void *reg_base, u8 len, u8 *idcode)
{
struct spi_mem_op op = SPI_MEM_OP(SPI_MEM_OP_CMD(0x9F, 1),
SPI_MEM_OP_NO_ADDR,
SPI_MEM_OP_NO_DUMMY,
SPI_MEM_OP_DATA_IN(len, idcode, 1));
return cadence_qspi_apb_command_read(reg_base, &op);
}
/* Calibration sequence to determine the read data capture delay register */ /* Calibration sequence to determine the read data capture delay register */
static int spi_calibration(struct udevice *bus, uint hz) static int spi_calibration(struct udevice *bus, uint hz)
{ {
struct cadence_spi_priv *priv = dev_get_priv(bus); struct cadence_spi_priv *priv = dev_get_priv(bus);
void *base = priv->regbase; void *base = priv->regbase;
u8 opcode_rdid = 0x9F;
unsigned int idcode = 0, temp = 0; unsigned int idcode = 0, temp = 0;
int err = 0, i, range_lo = -1, range_hi = -1; int err = 0, i, range_lo = -1, range_hi = -1;
@ -54,8 +66,7 @@ static int spi_calibration(struct udevice *bus, uint hz)
cadence_qspi_apb_controller_enable(base); cadence_qspi_apb_controller_enable(base);
/* read the ID which will be our golden value */ /* read the ID which will be our golden value */
err = cadence_qspi_apb_command_read(base, 1, &opcode_rdid, err = cadence_spi_read_id(base, 3, (u8 *)&idcode);
3, (u8 *)&idcode);
if (err) { if (err) {
puts("SF: Calibration failed (read)\n"); puts("SF: Calibration failed (read)\n");
return err; return err;
@ -74,8 +85,7 @@ static int spi_calibration(struct udevice *bus, uint hz)
cadence_qspi_apb_controller_enable(base); cadence_qspi_apb_controller_enable(base);
/* issue a RDID to get the ID value */ /* issue a RDID to get the ID value */
err = cadence_qspi_apb_command_read(base, 1, &opcode_rdid, err = cadence_spi_read_id(base, 3, (u8 *)&temp);
3, (u8 *)&temp);
if (err) { if (err) {
puts("SF: Calibration failed (read)\n"); puts("SF: Calibration failed (read)\n");
return err; return err;
@ -182,6 +192,7 @@ static int cadence_spi_remove(struct udevice *dev)
static int cadence_spi_set_mode(struct udevice *bus, uint mode) static int cadence_spi_set_mode(struct udevice *bus, uint mode)
{ {
struct cadence_spi_platdata *plat = bus->platdata;
struct cadence_spi_priv *priv = dev_get_priv(bus); struct cadence_spi_priv *priv = dev_get_priv(bus);
/* Disable QSPI */ /* Disable QSPI */
@ -190,104 +201,64 @@ static int cadence_spi_set_mode(struct udevice *bus, uint mode)
/* Set SPI mode */ /* Set SPI mode */
cadence_qspi_apb_set_clk_mode(priv->regbase, mode); cadence_qspi_apb_set_clk_mode(priv->regbase, mode);
/* Enable Direct Access Controller */
if (plat->use_dac_mode)
cadence_qspi_apb_dac_mode_enable(priv->regbase);
/* Enable QSPI */ /* Enable QSPI */
cadence_qspi_apb_controller_enable(priv->regbase); cadence_qspi_apb_controller_enable(priv->regbase);
return 0; return 0;
} }
static int cadence_spi_xfer(struct udevice *dev, unsigned int bitlen, static int cadence_spi_mem_exec_op(struct spi_slave *spi,
const void *dout, void *din, unsigned long flags) const struct spi_mem_op *op)
{ {
struct udevice *bus = dev->parent; struct udevice *bus = spi->dev->parent;
struct cadence_spi_platdata *plat = bus->platdata; struct cadence_spi_platdata *plat = bus->platdata;
struct cadence_spi_priv *priv = dev_get_priv(bus); struct cadence_spi_priv *priv = dev_get_priv(bus);
struct dm_spi_slave_platdata *dm_plat = dev_get_parent_platdata(dev);
void *base = priv->regbase; void *base = priv->regbase;
u8 *cmd_buf = priv->cmd_buf;
size_t data_bytes;
int err = 0; int err = 0;
u32 mode = CQSPI_STIG_WRITE; u32 mode;
if (flags & SPI_XFER_BEGIN) {
/* copy command to local buffer */
priv->cmd_len = bitlen / 8;
memcpy(cmd_buf, dout, priv->cmd_len);
}
if (flags == (SPI_XFER_BEGIN | SPI_XFER_END)) {
/* if start and end bit are set, the data bytes is 0. */
data_bytes = 0;
} else {
data_bytes = bitlen / 8;
}
debug("%s: len=%zu [bytes]\n", __func__, data_bytes);
/* Set Chip select */ /* Set Chip select */
cadence_qspi_apb_chipselect(base, spi_chip_select(dev), cadence_qspi_apb_chipselect(base, spi_chip_select(spi->dev),
plat->is_decoded_cs); plat->is_decoded_cs);
if ((flags & SPI_XFER_END) || (flags == 0)) { if (op->data.dir == SPI_MEM_DATA_IN && op->data.buf.in) {
if (priv->cmd_len == 0) { if (!op->addr.nbytes)
printf("QSPI: Error, command is empty.\n");
return -1;
}
if (din && data_bytes) {
/* read */
/* Use STIG if no address. */
if (!CQSPI_IS_ADDR(priv->cmd_len))
mode = CQSPI_STIG_READ; mode = CQSPI_STIG_READ;
else else
mode = CQSPI_INDIRECT_READ; mode = CQSPI_READ;
} else if (dout && !(flags & SPI_XFER_BEGIN)) { } else {
/* write */ if (!op->addr.nbytes || !op->data.buf.out)
if (!CQSPI_IS_ADDR(priv->cmd_len))
mode = CQSPI_STIG_WRITE; mode = CQSPI_STIG_WRITE;
else else
mode = CQSPI_INDIRECT_WRITE; mode = CQSPI_WRITE;
} }
switch (mode) { switch (mode) {
case CQSPI_STIG_READ: case CQSPI_STIG_READ:
err = cadence_qspi_apb_command_read( err = cadence_qspi_apb_command_read(base, op);
base, priv->cmd_len, cmd_buf,
data_bytes, din);
break; break;
case CQSPI_STIG_WRITE: case CQSPI_STIG_WRITE:
err = cadence_qspi_apb_command_write(base, err = cadence_qspi_apb_command_write(base, op);
priv->cmd_len, cmd_buf,
data_bytes, dout);
break; break;
case CQSPI_INDIRECT_READ: case CQSPI_READ:
err = cadence_qspi_apb_indirect_read_setup(plat, err = cadence_qspi_apb_read_setup(plat, op);
priv->cmd_len, dm_plat->mode, cmd_buf); if (!err)
if (!err) { err = cadence_qspi_apb_read_execute(plat, op);
err = cadence_qspi_apb_indirect_read_execute
(plat, data_bytes, din);
}
break; break;
case CQSPI_INDIRECT_WRITE: case CQSPI_WRITE:
err = cadence_qspi_apb_indirect_write_setup err = cadence_qspi_apb_write_setup(plat, op);
(plat, priv->cmd_len, dm_plat->mode, cmd_buf); if (!err)
if (!err) { err = cadence_qspi_apb_write_execute(plat, op);
err = cadence_qspi_apb_indirect_write_execute
(plat, data_bytes, dout);
}
break; break;
default: default:
err = -1; err = -1;
break; break;
} }
if (flags & SPI_XFER_END) {
/* clear command buffer */
memset(cmd_buf, 0, sizeof(priv->cmd_buf));
priv->cmd_len = 0;
}
}
return err; return err;
} }
@ -299,13 +270,17 @@ static int cadence_spi_ofdata_to_platdata(struct udevice *bus)
int ret; int ret;
plat->regbase = (void *)devfdt_get_addr_index(bus, 0); plat->regbase = (void *)devfdt_get_addr_index(bus, 0);
plat->ahbbase = (void *)devfdt_get_addr_index(bus, 1); plat->ahbbase = (void *)devfdt_get_addr_size_index(bus, 1,
&plat->ahbsize);
plat->is_decoded_cs = dev_read_bool(bus, "cdns,is-decoded-cs"); plat->is_decoded_cs = dev_read_bool(bus, "cdns,is-decoded-cs");
plat->fifo_depth = dev_read_u32_default(bus, "cdns,fifo-depth", 128); plat->fifo_depth = dev_read_u32_default(bus, "cdns,fifo-depth", 128);
plat->fifo_width = dev_read_u32_default(bus, "cdns,fifo-width", 4); plat->fifo_width = dev_read_u32_default(bus, "cdns,fifo-width", 4);
plat->trigger_address = dev_read_u32_default(bus, plat->trigger_address = dev_read_u32_default(bus,
"cdns,trigger-address", "cdns,trigger-address",
0); 0);
/* Use DAC mode only when MMIO window is at least 8M wide */
if (plat->ahbsize >= SZ_8M)
plat->use_dac_mode = true;
/* All other paramters are embedded in the child node */ /* All other paramters are embedded in the child node */
subnode = dev_read_first_subnode(bus); subnode = dev_read_first_subnode(bus);
@ -349,10 +324,14 @@ static int cadence_spi_ofdata_to_platdata(struct udevice *bus)
return 0; return 0;
} }
static const struct spi_controller_mem_ops cadence_spi_mem_ops = {
.exec_op = cadence_spi_mem_exec_op,
};
static const struct dm_spi_ops cadence_spi_ops = { static const struct dm_spi_ops cadence_spi_ops = {
.xfer = cadence_spi_xfer,
.set_speed = cadence_spi_set_speed, .set_speed = cadence_spi_set_speed,
.set_mode = cadence_spi_set_mode, .set_mode = cadence_spi_set_mode,
.mem_ops = &cadence_spi_mem_ops,
/* /*
* cs_info is not needed, since we require all chip selects to be * cs_info is not needed, since we require all chip selects to be
* in the device tree explicitly * in the device tree explicitly
@ -361,6 +340,7 @@ static const struct dm_spi_ops cadence_spi_ops = {
static const struct udevice_id cadence_spi_ids[] = { static const struct udevice_id cadence_spi_ids[] = {
{ .compatible = "cdns,qspi-nor" }, { .compatible = "cdns,qspi-nor" },
{ .compatible = "ti,am654-ospi" },
{ } { }
}; };

View file

@ -24,6 +24,8 @@ struct cadence_spi_platdata {
u32 fifo_depth; u32 fifo_depth;
u32 fifo_width; u32 fifo_width;
u32 trigger_address; u32 trigger_address;
fdt_addr_t ahbsize;
bool use_dac_mode;
/* Flash parameters */ /* Flash parameters */
u32 page_size; u32 page_size;
@ -53,21 +55,21 @@ struct cadence_spi_priv {
void cadence_qspi_apb_controller_init(struct cadence_spi_platdata *plat); void cadence_qspi_apb_controller_init(struct cadence_spi_platdata *plat);
void cadence_qspi_apb_controller_enable(void *reg_base_addr); void cadence_qspi_apb_controller_enable(void *reg_base_addr);
void cadence_qspi_apb_controller_disable(void *reg_base_addr); void cadence_qspi_apb_controller_disable(void *reg_base_addr);
void cadence_qspi_apb_dac_mode_enable(void *reg_base);
int cadence_qspi_apb_command_read(void *reg_base_addr, int cadence_qspi_apb_command_read(void *reg_base_addr,
unsigned int cmdlen, const u8 *cmdbuf, unsigned int rxlen, u8 *rxbuf); const struct spi_mem_op *op);
int cadence_qspi_apb_command_write(void *reg_base_addr, int cadence_qspi_apb_command_write(void *reg_base_addr,
unsigned int cmdlen, const u8 *cmdbuf, const struct spi_mem_op *op);
unsigned int txlen, const u8 *txbuf);
int cadence_qspi_apb_indirect_read_setup(struct cadence_spi_platdata *plat, int cadence_qspi_apb_read_setup(struct cadence_spi_platdata *plat,
unsigned int cmdlen, unsigned int rx_width, const u8 *cmdbuf); const struct spi_mem_op *op);
int cadence_qspi_apb_indirect_read_execute(struct cadence_spi_platdata *plat, int cadence_qspi_apb_read_execute(struct cadence_spi_platdata *plat,
unsigned int rxlen, u8 *rxbuf); const struct spi_mem_op *op);
int cadence_qspi_apb_indirect_write_setup(struct cadence_spi_platdata *plat, int cadence_qspi_apb_write_setup(struct cadence_spi_platdata *plat,
unsigned int cmdlen, unsigned int tx_width, const u8 *cmdbuf); const struct spi_mem_op *op);
int cadence_qspi_apb_indirect_write_execute(struct cadence_spi_platdata *plat, int cadence_qspi_apb_write_execute(struct cadence_spi_platdata *plat,
unsigned int txlen, const u8 *txbuf); const struct spi_mem_op *op);
void cadence_qspi_apb_chipselect(void *reg_base, void cadence_qspi_apb_chipselect(void *reg_base,
unsigned int chip_select, unsigned int decoder_enable); unsigned int chip_select, unsigned int decoder_enable);

View file

@ -27,9 +27,11 @@
#include <common.h> #include <common.h>
#include <asm/io.h> #include <asm/io.h>
#include <dma.h>
#include <linux/errno.h> #include <linux/errno.h>
#include <wait_bit.h> #include <wait_bit.h>
#include <spi.h> #include <spi.h>
#include <spi-mem.h>
#include <malloc.h> #include <malloc.h>
#include "cadence_qspi.h" #include "cadence_qspi.h"
@ -41,6 +43,7 @@
#define CQSPI_INST_TYPE_SINGLE 0 #define CQSPI_INST_TYPE_SINGLE 0
#define CQSPI_INST_TYPE_DUAL 1 #define CQSPI_INST_TYPE_DUAL 1
#define CQSPI_INST_TYPE_QUAD 2 #define CQSPI_INST_TYPE_QUAD 2
#define CQSPI_INST_TYPE_OCTAL 3
#define CQSPI_STIG_DATA_LEN_MAX 8 #define CQSPI_STIG_DATA_LEN_MAX 8
@ -172,19 +175,6 @@
(((readl(reg_base + CQSPI_REG_SDRAMLEVEL)) >> \ (((readl(reg_base + CQSPI_REG_SDRAMLEVEL)) >> \
CQSPI_REG_SDRAMLEVEL_WR_LSB) & CQSPI_REG_SDRAMLEVEL_WR_MASK) CQSPI_REG_SDRAMLEVEL_WR_LSB) & CQSPI_REG_SDRAMLEVEL_WR_MASK)
static unsigned int cadence_qspi_apb_cmd2addr(const unsigned char *addr_buf,
unsigned int addr_width)
{
unsigned int addr;
addr = (addr_buf[0] << 16) | (addr_buf[1] << 8) | addr_buf[2];
if (addr_width == 4)
addr = (addr << 8) | addr_buf[3];
return addr;
}
void cadence_qspi_apb_controller_enable(void *reg_base) void cadence_qspi_apb_controller_enable(void *reg_base)
{ {
unsigned int reg; unsigned int reg;
@ -201,6 +191,15 @@ void cadence_qspi_apb_controller_disable(void *reg_base)
writel(reg, reg_base + CQSPI_REG_CONFIG); writel(reg, reg_base + CQSPI_REG_CONFIG);
} }
void cadence_qspi_apb_dac_mode_enable(void *reg_base)
{
unsigned int reg;
reg = readl(reg_base + CQSPI_REG_CONFIG);
reg |= CQSPI_REG_CONFIG_DIRECT;
writel(reg, reg_base + CQSPI_REG_CONFIG);
}
/* Return 1 if idle, otherwise return 0 (busy). */ /* Return 1 if idle, otherwise return 0 (busy). */
static unsigned int cadence_qspi_wait_idle(void *reg_base) static unsigned int cadence_qspi_wait_idle(void *reg_base)
{ {
@ -433,21 +432,20 @@ static int cadence_qspi_apb_exec_flash_cmd(void *reg_base,
} }
/* For command RDID, RDSR. */ /* For command RDID, RDSR. */
int cadence_qspi_apb_command_read(void *reg_base, int cadence_qspi_apb_command_read(void *reg_base, const struct spi_mem_op *op)
unsigned int cmdlen, const u8 *cmdbuf, unsigned int rxlen,
u8 *rxbuf)
{ {
unsigned int reg; unsigned int reg;
unsigned int read_len; unsigned int read_len;
int status; int status;
unsigned int rxlen = op->data.nbytes;
void *rxbuf = op->data.buf.in;
if (!cmdlen || rxlen > CQSPI_STIG_DATA_LEN_MAX || rxbuf == NULL) { if (rxlen > CQSPI_STIG_DATA_LEN_MAX || !rxbuf) {
printf("QSPI: Invalid input arguments cmdlen %d rxlen %d\n", printf("QSPI: Invalid input arguments rxlen %u\n", rxlen);
cmdlen, rxlen);
return -EINVAL; return -EINVAL;
} }
reg = cmdbuf[0] << CQSPI_REG_CMDCTRL_OPCODE_LSB; reg = op->cmd.opcode << CQSPI_REG_CMDCTRL_OPCODE_LSB;
reg |= (0x1 << CQSPI_REG_CMDCTRL_RD_EN_LSB); reg |= (0x1 << CQSPI_REG_CMDCTRL_RD_EN_LSB);
@ -475,34 +473,30 @@ int cadence_qspi_apb_command_read(void *reg_base,
} }
/* For commands: WRSR, WREN, WRDI, CHIP_ERASE, BE, etc. */ /* For commands: WRSR, WREN, WRDI, CHIP_ERASE, BE, etc. */
int cadence_qspi_apb_command_write(void *reg_base, unsigned int cmdlen, int cadence_qspi_apb_command_write(void *reg_base, const struct spi_mem_op *op)
const u8 *cmdbuf, unsigned int txlen, const u8 *txbuf)
{ {
unsigned int reg = 0; unsigned int reg = 0;
unsigned int addr_value;
unsigned int wr_data; unsigned int wr_data;
unsigned int wr_len; unsigned int wr_len;
unsigned int txlen = op->data.nbytes;
const void *txbuf = op->data.buf.out;
u32 addr;
if (!cmdlen || cmdlen > 5 || txlen > 8 || cmdbuf == NULL) { /* Reorder address to SPI bus order if only transferring address */
printf("QSPI: Invalid input arguments cmdlen %d txlen %d\n", if (!txlen) {
cmdlen, txlen); addr = cpu_to_be32(op->addr.val);
if (op->addr.nbytes == 3)
addr >>= 8;
txbuf = &addr;
txlen = op->addr.nbytes;
}
if (txlen > CQSPI_STIG_DATA_LEN_MAX) {
printf("QSPI: Invalid input arguments txlen %u\n", txlen);
return -EINVAL; return -EINVAL;
} }
reg |= cmdbuf[0] << CQSPI_REG_CMDCTRL_OPCODE_LSB; reg |= op->cmd.opcode << CQSPI_REG_CMDCTRL_OPCODE_LSB;
if (cmdlen == 4 || cmdlen == 5) {
/* Command with address */
reg |= (0x1 << CQSPI_REG_CMDCTRL_ADDR_EN_LSB);
/* Number of bytes to write. */
reg |= ((cmdlen - 2) & CQSPI_REG_CMDCTRL_ADD_BYTES_MASK)
<< CQSPI_REG_CMDCTRL_ADD_BYTES_LSB;
/* Get address */
addr_value = cadence_qspi_apb_cmd2addr(&cmdbuf[1],
cmdlen >= 5 ? 4 : 3);
writel(addr_value, reg_base + CQSPI_REG_CMDADDRESS);
}
if (txlen) { if (txlen) {
/* writing data = yes */ /* writing data = yes */
@ -529,62 +523,36 @@ int cadence_qspi_apb_command_write(void *reg_base, unsigned int cmdlen,
} }
/* Opcode + Address (3/4 bytes) + dummy bytes (0-4 bytes) */ /* Opcode + Address (3/4 bytes) + dummy bytes (0-4 bytes) */
int cadence_qspi_apb_indirect_read_setup(struct cadence_spi_platdata *plat, int cadence_qspi_apb_read_setup(struct cadence_spi_platdata *plat,
unsigned int cmdlen, unsigned int rx_width, const u8 *cmdbuf) const struct spi_mem_op *op)
{ {
unsigned int reg; unsigned int reg;
unsigned int rd_reg; unsigned int rd_reg;
unsigned int addr_value;
unsigned int dummy_clk; unsigned int dummy_clk;
unsigned int dummy_bytes; unsigned int dummy_bytes = op->dummy.nbytes;
unsigned int addr_bytes;
/*
* Identify addr_byte. All NOR flash device drivers are using fast read
* which always expecting 1 dummy byte, 1 cmd byte and 3/4 addr byte.
* With that, the length is in value of 5 or 6. Only FRAM chip from
* ramtron using normal read (which won't need dummy byte).
* Unlikely NOR flash using normal read due to performance issue.
*/
if (cmdlen >= 5)
/* to cater fast read where cmd + addr + dummy */
addr_bytes = cmdlen - 2;
else
/* for normal read (only ramtron as of now) */
addr_bytes = cmdlen - 1;
/* Setup the indirect trigger address */ /* Setup the indirect trigger address */
writel(plat->trigger_address, writel(plat->trigger_address,
plat->regbase + CQSPI_REG_INDIRECTTRIGGER); plat->regbase + CQSPI_REG_INDIRECTTRIGGER);
/* Configure the opcode */ /* Configure the opcode */
rd_reg = cmdbuf[0] << CQSPI_REG_RD_INSTR_OPCODE_LSB; rd_reg = op->cmd.opcode << CQSPI_REG_RD_INSTR_OPCODE_LSB;
if (rx_width & SPI_RX_QUAD) if (op->data.buswidth == 8)
/* Instruction and address at DQ0, data at DQ0-7. */
rd_reg |= CQSPI_INST_TYPE_OCTAL << CQSPI_REG_RD_INSTR_TYPE_DATA_LSB;
else if (op->data.buswidth == 4)
/* Instruction and address at DQ0, data at DQ0-3. */ /* Instruction and address at DQ0, data at DQ0-3. */
rd_reg |= CQSPI_INST_TYPE_QUAD << CQSPI_REG_RD_INSTR_TYPE_DATA_LSB; rd_reg |= CQSPI_INST_TYPE_QUAD << CQSPI_REG_RD_INSTR_TYPE_DATA_LSB;
/* Get address */ writel(op->addr.val, plat->regbase + CQSPI_REG_INDIRECTRDSTARTADDR);
addr_value = cadence_qspi_apb_cmd2addr(&cmdbuf[1], addr_bytes);
writel(addr_value, plat->regbase + CQSPI_REG_INDIRECTRDSTARTADDR);
/* The remaining lenght is dummy bytes. */
dummy_bytes = cmdlen - addr_bytes - 1;
if (dummy_bytes) { if (dummy_bytes) {
if (dummy_bytes > CQSPI_DUMMY_BYTES_MAX) if (dummy_bytes > CQSPI_DUMMY_BYTES_MAX)
dummy_bytes = CQSPI_DUMMY_BYTES_MAX; dummy_bytes = CQSPI_DUMMY_BYTES_MAX;
rd_reg |= (1 << CQSPI_REG_RD_INSTR_MODE_EN_LSB);
#if defined(CONFIG_SPL_SPI_XIP) && defined(CONFIG_SPL_BUILD)
writel(0x0, plat->regbase + CQSPI_REG_MODE_BIT);
#else
writel(0xFF, plat->regbase + CQSPI_REG_MODE_BIT);
#endif
/* Convert to clock cycles. */ /* Convert to clock cycles. */
dummy_clk = dummy_bytes * CQSPI_DUMMY_CLKS_PER_BYTE; dummy_clk = dummy_bytes * CQSPI_DUMMY_CLKS_PER_BYTE;
/* Need to minus the mode byte (8 clocks). */
dummy_clk -= CQSPI_DUMMY_CLKS_PER_BYTE;
if (dummy_clk) if (dummy_clk)
rd_reg |= (dummy_clk & CQSPI_REG_RD_INSTR_DUMMY_MASK) rd_reg |= (dummy_clk & CQSPI_REG_RD_INSTR_DUMMY_MASK)
@ -596,7 +564,7 @@ int cadence_qspi_apb_indirect_read_setup(struct cadence_spi_platdata *plat,
/* set device size */ /* set device size */
reg = readl(plat->regbase + CQSPI_REG_SIZE); reg = readl(plat->regbase + CQSPI_REG_SIZE);
reg &= ~CQSPI_REG_SIZE_ADDRESS_MASK; reg &= ~CQSPI_REG_SIZE_ADDRESS_MASK;
reg |= (addr_bytes - 1); reg |= (op->addr.nbytes - 1);
writel(reg, plat->regbase + CQSPI_REG_SIZE); writel(reg, plat->regbase + CQSPI_REG_SIZE);
return 0; return 0;
} }
@ -623,7 +591,8 @@ static int cadence_qspi_wait_for_data(struct cadence_spi_platdata *plat)
return -ETIMEDOUT; return -ETIMEDOUT;
} }
int cadence_qspi_apb_indirect_read_execute(struct cadence_spi_platdata *plat, static int
cadence_qspi_apb_indirect_read_execute(struct cadence_spi_platdata *plat,
unsigned int n_rx, u8 *rxbuf) unsigned int n_rx, u8 *rxbuf)
{ {
unsigned int remaining = n_rx; unsigned int remaining = n_rx;
@ -685,42 +654,51 @@ failrd:
return ret; return ret;
} }
int cadence_qspi_apb_read_execute(struct cadence_spi_platdata *plat,
const struct spi_mem_op *op)
{
u64 from = op->addr.val;
void *buf = op->data.buf.in;
size_t len = op->data.nbytes;
if (plat->use_dac_mode && (from + len < plat->ahbsize)) {
if (len < 256 ||
dma_memcpy(buf, plat->ahbbase + from, len) < 0) {
memcpy_fromio(buf, plat->ahbbase + from, len);
}
if (!cadence_qspi_wait_idle(plat->regbase))
return -EIO;
return 0;
}
return cadence_qspi_apb_indirect_read_execute(plat, len, buf);
}
/* Opcode + Address (3/4 bytes) */ /* Opcode + Address (3/4 bytes) */
int cadence_qspi_apb_indirect_write_setup(struct cadence_spi_platdata *plat, int cadence_qspi_apb_write_setup(struct cadence_spi_platdata *plat,
unsigned int cmdlen, unsigned int tx_width, const u8 *cmdbuf) const struct spi_mem_op *op)
{ {
unsigned int reg; unsigned int reg;
unsigned int addr_bytes = cmdlen > 4 ? 4 : 3;
if (cmdlen < 4 || cmdbuf == NULL) {
printf("QSPI: Invalid input argument, len %d cmdbuf %p\n",
cmdlen, cmdbuf);
return -EINVAL;
}
/* Setup the indirect trigger address */ /* Setup the indirect trigger address */
writel(plat->trigger_address, writel(plat->trigger_address,
plat->regbase + CQSPI_REG_INDIRECTTRIGGER); plat->regbase + CQSPI_REG_INDIRECTTRIGGER);
/* Configure the opcode */ /* Configure the opcode */
reg = cmdbuf[0] << CQSPI_REG_WR_INSTR_OPCODE_LSB; reg = op->cmd.opcode << CQSPI_REG_WR_INSTR_OPCODE_LSB;
if (tx_width & SPI_TX_QUAD)
reg |= CQSPI_INST_TYPE_QUAD << CQSPI_REG_WR_INSTR_TYPE_DATA_LSB;
writel(reg, plat->regbase + CQSPI_REG_WR_INSTR); writel(reg, plat->regbase + CQSPI_REG_WR_INSTR);
/* Setup write address. */ writel(op->addr.val, plat->regbase + CQSPI_REG_INDIRECTWRSTARTADDR);
reg = cadence_qspi_apb_cmd2addr(&cmdbuf[1], addr_bytes);
writel(reg, plat->regbase + CQSPI_REG_INDIRECTWRSTARTADDR);
reg = readl(plat->regbase + CQSPI_REG_SIZE); reg = readl(plat->regbase + CQSPI_REG_SIZE);
reg &= ~CQSPI_REG_SIZE_ADDRESS_MASK; reg &= ~CQSPI_REG_SIZE_ADDRESS_MASK;
reg |= (addr_bytes - 1); reg |= (op->addr.nbytes - 1);
writel(reg, plat->regbase + CQSPI_REG_SIZE); writel(reg, plat->regbase + CQSPI_REG_SIZE);
return 0; return 0;
} }
int cadence_qspi_apb_indirect_write_execute(struct cadence_spi_platdata *plat, static int
cadence_qspi_apb_indirect_write_execute(struct cadence_spi_platdata *plat,
unsigned int n_tx, const u8 *txbuf) unsigned int n_tx, const u8 *txbuf)
{ {
unsigned int page_size = plat->page_size; unsigned int page_size = plat->page_size;
@ -793,6 +771,23 @@ failwr:
return ret; return ret;
} }
int cadence_qspi_apb_write_execute(struct cadence_spi_platdata *plat,
const struct spi_mem_op *op)
{
u32 to = op->addr.val;
const void *buf = op->data.buf.out;
size_t len = op->data.nbytes;
if (plat->use_dac_mode && (to + len < plat->ahbsize)) {
memcpy_toio(plat->ahbbase + to, buf, len);
if (!cadence_qspi_wait_idle(plat->regbase))
return -EIO;
return 0;
}
return cadence_qspi_apb_indirect_write_execute(plat, len, buf);
}
void cadence_qspi_apb_enter_xip(void *reg_base, char xip_dummy) void cadence_qspi_apb_enter_xip(void *reg_base, char xip_dummy)
{ {
unsigned int reg; unsigned int reg;

996
drivers/spi/nxp_fspi.c Normal file
View file

@ -0,0 +1,996 @@
// SPDX-License-Identifier: GPL-2.0+
/*
* NXP FlexSPI(FSPI) controller driver.
*
* Copyright (c) 2019 Michael Walle <michael@walle.cc>
* Copyright (c) 2019 NXP
*
* This driver was originally ported from the linux kernel v5.4-rc3, which had
* the following notes:
*
* FlexSPI is a flexsible SPI host controller which supports two SPI
* channels and up to 4 external devices. Each channel supports
* Single/Dual/Quad/Octal mode data transfer (1/2/4/8 bidirectional
* data lines).
*
* FlexSPI controller is driven by the LUT(Look-up Table) registers
* LUT registers are a look-up-table for sequences of instructions.
* A valid sequence consists of four LUT registers.
* Maximum 32 LUT sequences can be programmed simultaneously.
*
* LUTs are being created at run-time based on the commands passed
* from the spi-mem framework, thus using single LUT index.
*
* Software triggered Flash read/write access by IP Bus.
*
* Memory mapped read access by AHB Bus.
*
* Based on SPI MEM interface and spi-fsl-qspi.c driver.
*
* Author:
* Yogesh Narayan Gaur <yogeshnarayan.gaur@nxp.com>
* Boris Brezillon <bbrezillon@kernel.org>
* Frieder Schrempf <frieder.schrempf@kontron.de>
*/
#include <common.h>
#include <asm/io.h>
#include <malloc.h>
#include <spi.h>
#include <spi-mem.h>
#include <dm.h>
#include <clk.h>
#include <linux/kernel.h>
#include <linux/sizes.h>
#include <linux/iopoll.h>
#include <linux/bug.h>
/*
* The driver only uses one single LUT entry, that is updated on
* each call of exec_op(). Index 0 is preset at boot with a basic
* read operation, so let's use the last entry (31).
*/
#define SEQID_LUT 31
/* Registers used by the driver */
#define FSPI_MCR0 0x00
#define FSPI_MCR0_AHB_TIMEOUT(x) ((x) << 24)
#define FSPI_MCR0_IP_TIMEOUT(x) ((x) << 16)
#define FSPI_MCR0_LEARN_EN BIT(15)
#define FSPI_MCR0_SCRFRUN_EN BIT(14)
#define FSPI_MCR0_OCTCOMB_EN BIT(13)
#define FSPI_MCR0_DOZE_EN BIT(12)
#define FSPI_MCR0_HSEN BIT(11)
#define FSPI_MCR0_SERCLKDIV BIT(8)
#define FSPI_MCR0_ATDF_EN BIT(7)
#define FSPI_MCR0_ARDF_EN BIT(6)
#define FSPI_MCR0_RXCLKSRC(x) ((x) << 4)
#define FSPI_MCR0_END_CFG(x) ((x) << 2)
#define FSPI_MCR0_MDIS BIT(1)
#define FSPI_MCR0_SWRST BIT(0)
#define FSPI_MCR1 0x04
#define FSPI_MCR1_SEQ_TIMEOUT(x) ((x) << 16)
#define FSPI_MCR1_AHB_TIMEOUT(x) (x)
#define FSPI_MCR2 0x08
#define FSPI_MCR2_IDLE_WAIT(x) ((x) << 24)
#define FSPI_MCR2_SAMEDEVICEEN BIT(15)
#define FSPI_MCR2_CLRLRPHS BIT(14)
#define FSPI_MCR2_ABRDATSZ BIT(8)
#define FSPI_MCR2_ABRLEARN BIT(7)
#define FSPI_MCR2_ABR_READ BIT(6)
#define FSPI_MCR2_ABRWRITE BIT(5)
#define FSPI_MCR2_ABRDUMMY BIT(4)
#define FSPI_MCR2_ABR_MODE BIT(3)
#define FSPI_MCR2_ABRCADDR BIT(2)
#define FSPI_MCR2_ABRRADDR BIT(1)
#define FSPI_MCR2_ABR_CMD BIT(0)
#define FSPI_AHBCR 0x0c
#define FSPI_AHBCR_RDADDROPT BIT(6)
#define FSPI_AHBCR_PREF_EN BIT(5)
#define FSPI_AHBCR_BUFF_EN BIT(4)
#define FSPI_AHBCR_CACH_EN BIT(3)
#define FSPI_AHBCR_CLRTXBUF BIT(2)
#define FSPI_AHBCR_CLRRXBUF BIT(1)
#define FSPI_AHBCR_PAR_EN BIT(0)
#define FSPI_INTEN 0x10
#define FSPI_INTEN_SCLKSBWR BIT(9)
#define FSPI_INTEN_SCLKSBRD BIT(8)
#define FSPI_INTEN_DATALRNFL BIT(7)
#define FSPI_INTEN_IPTXWE BIT(6)
#define FSPI_INTEN_IPRXWA BIT(5)
#define FSPI_INTEN_AHBCMDERR BIT(4)
#define FSPI_INTEN_IPCMDERR BIT(3)
#define FSPI_INTEN_AHBCMDGE BIT(2)
#define FSPI_INTEN_IPCMDGE BIT(1)
#define FSPI_INTEN_IPCMDDONE BIT(0)
#define FSPI_INTR 0x14
#define FSPI_INTR_SCLKSBWR BIT(9)
#define FSPI_INTR_SCLKSBRD BIT(8)
#define FSPI_INTR_DATALRNFL BIT(7)
#define FSPI_INTR_IPTXWE BIT(6)
#define FSPI_INTR_IPRXWA BIT(5)
#define FSPI_INTR_AHBCMDERR BIT(4)
#define FSPI_INTR_IPCMDERR BIT(3)
#define FSPI_INTR_AHBCMDGE BIT(2)
#define FSPI_INTR_IPCMDGE BIT(1)
#define FSPI_INTR_IPCMDDONE BIT(0)
#define FSPI_LUTKEY 0x18
#define FSPI_LUTKEY_VALUE 0x5AF05AF0
#define FSPI_LCKCR 0x1C
#define FSPI_LCKER_LOCK 0x1
#define FSPI_LCKER_UNLOCK 0x2
#define FSPI_BUFXCR_INVALID_MSTRID 0xE
#define FSPI_AHBRX_BUF0CR0 0x20
#define FSPI_AHBRX_BUF1CR0 0x24
#define FSPI_AHBRX_BUF2CR0 0x28
#define FSPI_AHBRX_BUF3CR0 0x2C
#define FSPI_AHBRX_BUF4CR0 0x30
#define FSPI_AHBRX_BUF5CR0 0x34
#define FSPI_AHBRX_BUF6CR0 0x38
#define FSPI_AHBRX_BUF7CR0 0x3C
#define FSPI_AHBRXBUF0CR7_PREF BIT(31)
#define FSPI_AHBRX_BUF0CR1 0x40
#define FSPI_AHBRX_BUF1CR1 0x44
#define FSPI_AHBRX_BUF2CR1 0x48
#define FSPI_AHBRX_BUF3CR1 0x4C
#define FSPI_AHBRX_BUF4CR1 0x50
#define FSPI_AHBRX_BUF5CR1 0x54
#define FSPI_AHBRX_BUF6CR1 0x58
#define FSPI_AHBRX_BUF7CR1 0x5C
#define FSPI_FLSHA1CR0 0x60
#define FSPI_FLSHA2CR0 0x64
#define FSPI_FLSHB1CR0 0x68
#define FSPI_FLSHB2CR0 0x6C
#define FSPI_FLSHXCR0_SZ_KB 10
#define FSPI_FLSHXCR0_SZ(x) ((x) >> FSPI_FLSHXCR0_SZ_KB)
#define FSPI_FLSHA1CR1 0x70
#define FSPI_FLSHA2CR1 0x74
#define FSPI_FLSHB1CR1 0x78
#define FSPI_FLSHB2CR1 0x7C
#define FSPI_FLSHXCR1_CSINTR(x) ((x) << 16)
#define FSPI_FLSHXCR1_CAS(x) ((x) << 11)
#define FSPI_FLSHXCR1_WA BIT(10)
#define FSPI_FLSHXCR1_TCSH(x) ((x) << 5)
#define FSPI_FLSHXCR1_TCSS(x) (x)
#define FSPI_FLSHA1CR2 0x80
#define FSPI_FLSHA2CR2 0x84
#define FSPI_FLSHB1CR2 0x88
#define FSPI_FLSHB2CR2 0x8C
#define FSPI_FLSHXCR2_CLRINSP BIT(24)
#define FSPI_FLSHXCR2_AWRWAIT BIT(16)
#define FSPI_FLSHXCR2_AWRSEQN_SHIFT 13
#define FSPI_FLSHXCR2_AWRSEQI_SHIFT 8
#define FSPI_FLSHXCR2_ARDSEQN_SHIFT 5
#define FSPI_FLSHXCR2_ARDSEQI_SHIFT 0
#define FSPI_IPCR0 0xA0
#define FSPI_IPCR1 0xA4
#define FSPI_IPCR1_IPAREN BIT(31)
#define FSPI_IPCR1_SEQNUM_SHIFT 24
#define FSPI_IPCR1_SEQID_SHIFT 16
#define FSPI_IPCR1_IDATSZ(x) (x)
#define FSPI_IPCMD 0xB0
#define FSPI_IPCMD_TRG BIT(0)
#define FSPI_DLPR 0xB4
#define FSPI_IPRXFCR 0xB8
#define FSPI_IPRXFCR_CLR BIT(0)
#define FSPI_IPRXFCR_DMA_EN BIT(1)
#define FSPI_IPRXFCR_WMRK(x) ((x) << 2)
#define FSPI_IPTXFCR 0xBC
#define FSPI_IPTXFCR_CLR BIT(0)
#define FSPI_IPTXFCR_DMA_EN BIT(1)
#define FSPI_IPTXFCR_WMRK(x) ((x) << 2)
#define FSPI_DLLACR 0xC0
#define FSPI_DLLACR_OVRDEN BIT(8)
#define FSPI_DLLBCR 0xC4
#define FSPI_DLLBCR_OVRDEN BIT(8)
#define FSPI_STS0 0xE0
#define FSPI_STS0_DLPHB(x) ((x) << 8)
#define FSPI_STS0_DLPHA(x) ((x) << 4)
#define FSPI_STS0_CMD_SRC(x) ((x) << 2)
#define FSPI_STS0_ARB_IDLE BIT(1)
#define FSPI_STS0_SEQ_IDLE BIT(0)
#define FSPI_STS1 0xE4
#define FSPI_STS1_IP_ERRCD(x) ((x) << 24)
#define FSPI_STS1_IP_ERRID(x) ((x) << 16)
#define FSPI_STS1_AHB_ERRCD(x) ((x) << 8)
#define FSPI_STS1_AHB_ERRID(x) (x)
#define FSPI_AHBSPNST 0xEC
#define FSPI_AHBSPNST_DATLFT(x) ((x) << 16)
#define FSPI_AHBSPNST_BUFID(x) ((x) << 1)
#define FSPI_AHBSPNST_ACTIVE BIT(0)
#define FSPI_IPRXFSTS 0xF0
#define FSPI_IPRXFSTS_RDCNTR(x) ((x) << 16)
#define FSPI_IPRXFSTS_FILL(x) (x)
#define FSPI_IPTXFSTS 0xF4
#define FSPI_IPTXFSTS_WRCNTR(x) ((x) << 16)
#define FSPI_IPTXFSTS_FILL(x) (x)
#define FSPI_RFDR 0x100
#define FSPI_TFDR 0x180
#define FSPI_LUT_BASE 0x200
#define FSPI_LUT_OFFSET (SEQID_LUT * 4 * 4)
#define FSPI_LUT_REG(idx) \
(FSPI_LUT_BASE + FSPI_LUT_OFFSET + (idx) * 4)
/* register map end */
/* Instruction set for the LUT register. */
#define LUT_STOP 0x00
#define LUT_CMD 0x01
#define LUT_ADDR 0x02
#define LUT_CADDR_SDR 0x03
#define LUT_MODE 0x04
#define LUT_MODE2 0x05
#define LUT_MODE4 0x06
#define LUT_MODE8 0x07
#define LUT_NXP_WRITE 0x08
#define LUT_NXP_READ 0x09
#define LUT_LEARN_SDR 0x0A
#define LUT_DATSZ_SDR 0x0B
#define LUT_DUMMY 0x0C
#define LUT_DUMMY_RWDS_SDR 0x0D
#define LUT_JMP_ON_CS 0x1F
#define LUT_CMD_DDR 0x21
#define LUT_ADDR_DDR 0x22
#define LUT_CADDR_DDR 0x23
#define LUT_MODE_DDR 0x24
#define LUT_MODE2_DDR 0x25
#define LUT_MODE4_DDR 0x26
#define LUT_MODE8_DDR 0x27
#define LUT_WRITE_DDR 0x28
#define LUT_READ_DDR 0x29
#define LUT_LEARN_DDR 0x2A
#define LUT_DATSZ_DDR 0x2B
#define LUT_DUMMY_DDR 0x2C
#define LUT_DUMMY_RWDS_DDR 0x2D
/*
* Calculate number of required PAD bits for LUT register.
*
* The pad stands for the number of IO lines [0:7].
* For example, the octal read needs eight IO lines,
* so you should use LUT_PAD(8). This macro
* returns 3 i.e. use eight (2^3) IP lines for read.
*/
#define LUT_PAD(x) (fls(x) - 1)
/*
* Macro for constructing the LUT entries with the following
* register layout:
*
* ---------------------------------------------------
* | INSTR1 | PAD1 | OPRND1 | INSTR0 | PAD0 | OPRND0 |
* ---------------------------------------------------
*/
#define PAD_SHIFT 8
#define INSTR_SHIFT 10
#define OPRND_SHIFT 16
/* Macros for constructing the LUT register. */
#define LUT_DEF(idx, ins, pad, opr) \
((((ins) << INSTR_SHIFT) | ((pad) << PAD_SHIFT) | \
(opr)) << (((idx) % 2) * OPRND_SHIFT))
#define POLL_TOUT 5000
#define NXP_FSPI_MAX_CHIPSELECT 4
struct nxp_fspi_devtype_data {
unsigned int rxfifo;
unsigned int txfifo;
unsigned int ahb_buf_size;
unsigned int quirks;
bool little_endian;
};
static const struct nxp_fspi_devtype_data lx2160a_data = {
.rxfifo = SZ_512, /* (64 * 64 bits) */
.txfifo = SZ_1K, /* (128 * 64 bits) */
.ahb_buf_size = SZ_2K, /* (256 * 64 bits) */
.quirks = 0,
.little_endian = true, /* little-endian */
};
struct nxp_fspi {
struct udevice *dev;
void __iomem *iobase;
void __iomem *ahb_addr;
u32 memmap_phy;
u32 memmap_phy_size;
struct clk clk, clk_en;
const struct nxp_fspi_devtype_data *devtype_data;
};
/*
* R/W functions for big- or little-endian registers:
* The FSPI controller's endianness is independent of
* the CPU core's endianness. So far, although the CPU
* core is little-endian the FSPI controller can use
* big-endian or little-endian.
*/
static void fspi_writel(struct nxp_fspi *f, u32 val, void __iomem *addr)
{
if (f->devtype_data->little_endian)
out_le32(addr, val);
else
out_be32(addr, val);
}
static u32 fspi_readl(struct nxp_fspi *f, void __iomem *addr)
{
if (f->devtype_data->little_endian)
return in_le32(addr);
else
return in_be32(addr);
}
static int nxp_fspi_check_buswidth(struct nxp_fspi *f, u8 width)
{
switch (width) {
case 1:
case 2:
case 4:
case 8:
return 0;
}
return -ENOTSUPP;
}
static bool nxp_fspi_supports_op(struct spi_slave *slave,
const struct spi_mem_op *op)
{
struct nxp_fspi *f;
struct udevice *bus;
int ret;
bus = slave->dev->parent;
f = dev_get_priv(bus);
ret = nxp_fspi_check_buswidth(f, op->cmd.buswidth);
if (op->addr.nbytes)
ret |= nxp_fspi_check_buswidth(f, op->addr.buswidth);
if (op->dummy.nbytes)
ret |= nxp_fspi_check_buswidth(f, op->dummy.buswidth);
if (op->data.nbytes)
ret |= nxp_fspi_check_buswidth(f, op->data.buswidth);
if (ret)
return false;
/*
* The number of address bytes should be equal to or less than 4 bytes.
*/
if (op->addr.nbytes > 4)
return false;
/*
* If requested address value is greater than controller assigned
* memory mapped space, return error as it didn't fit in the range
* of assigned address space.
*/
if (op->addr.val >= f->memmap_phy_size)
return false;
/* Max 64 dummy clock cycles supported */
if (op->dummy.buswidth &&
(op->dummy.nbytes * 8 / op->dummy.buswidth > 64))
return false;
/* Max data length, check controller limits and alignment */
if (op->data.dir == SPI_MEM_DATA_IN &&
(op->data.nbytes > f->devtype_data->ahb_buf_size ||
(op->data.nbytes > f->devtype_data->rxfifo - 4 &&
!IS_ALIGNED(op->data.nbytes, 8))))
return false;
if (op->data.dir == SPI_MEM_DATA_OUT &&
op->data.nbytes > f->devtype_data->txfifo)
return false;
return true;
}
/* Instead of busy looping invoke readl_poll_timeout functionality. */
static int fspi_readl_poll_tout(struct nxp_fspi *f, void __iomem *base,
u32 mask, u32 delay_us,
u32 timeout_us, bool c)
{
u32 reg;
if (!f->devtype_data->little_endian)
mask = (u32)cpu_to_be32(mask);
if (c)
return readl_poll_timeout(base, reg, (reg & mask),
timeout_us);
else
return readl_poll_timeout(base, reg, !(reg & mask),
timeout_us);
}
/*
* If the slave device content being changed by Write/Erase, need to
* invalidate the AHB buffer. This can be achieved by doing the reset
* of controller after setting MCR0[SWRESET] bit.
*/
static inline void nxp_fspi_invalid(struct nxp_fspi *f)
{
u32 reg;
int ret;
reg = fspi_readl(f, f->iobase + FSPI_MCR0);
fspi_writel(f, reg | FSPI_MCR0_SWRST, f->iobase + FSPI_MCR0);
/* w1c register, wait unit clear */
ret = fspi_readl_poll_tout(f, f->iobase + FSPI_MCR0,
FSPI_MCR0_SWRST, 0, POLL_TOUT, false);
WARN_ON(ret);
}
static void nxp_fspi_prepare_lut(struct nxp_fspi *f,
const struct spi_mem_op *op)
{
void __iomem *base = f->iobase;
u32 lutval[4] = {};
int lutidx = 1, i;
/* cmd */
lutval[0] |= LUT_DEF(0, LUT_CMD, LUT_PAD(op->cmd.buswidth),
op->cmd.opcode);
/* addr bytes */
if (op->addr.nbytes) {
lutval[lutidx / 2] |= LUT_DEF(lutidx, LUT_ADDR,
LUT_PAD(op->addr.buswidth),
op->addr.nbytes * 8);
lutidx++;
}
/* dummy bytes, if needed */
if (op->dummy.nbytes) {
lutval[lutidx / 2] |= LUT_DEF(lutidx, LUT_DUMMY,
/*
* Due to FlexSPI controller limitation number of PAD for dummy
* buswidth needs to be programmed as equal to data buswidth.
*/
LUT_PAD(op->data.buswidth),
op->dummy.nbytes * 8 /
op->dummy.buswidth);
lutidx++;
}
/* read/write data bytes */
if (op->data.nbytes) {
lutval[lutidx / 2] |= LUT_DEF(lutidx,
op->data.dir == SPI_MEM_DATA_IN ?
LUT_NXP_READ : LUT_NXP_WRITE,
LUT_PAD(op->data.buswidth),
0);
lutidx++;
}
/* stop condition. */
lutval[lutidx / 2] |= LUT_DEF(lutidx, LUT_STOP, 0, 0);
/* unlock LUT */
fspi_writel(f, FSPI_LUTKEY_VALUE, f->iobase + FSPI_LUTKEY);
fspi_writel(f, FSPI_LCKER_UNLOCK, f->iobase + FSPI_LCKCR);
/* fill LUT */
for (i = 0; i < ARRAY_SIZE(lutval); i++)
fspi_writel(f, lutval[i], base + FSPI_LUT_REG(i));
dev_dbg(f->dev, "CMD[%x] lutval[0:%x \t 1:%x \t 2:%x \t 3:%x]\n",
op->cmd.opcode, lutval[0], lutval[1], lutval[2], lutval[3]);
/* lock LUT */
fspi_writel(f, FSPI_LUTKEY_VALUE, f->iobase + FSPI_LUTKEY);
fspi_writel(f, FSPI_LCKER_LOCK, f->iobase + FSPI_LCKCR);
}
#if CONFIG_IS_ENABLED(CONFIG_CLK)
static int nxp_fspi_clk_prep_enable(struct nxp_fspi *f)
{
int ret;
ret = clk_enable(&f->clk_en);
if (ret)
return ret;
ret = clk_enable(&f->clk);
if (ret) {
clk_disable(&f->clk_en);
return ret;
}
return 0;
}
static void nxp_fspi_clk_disable_unprep(struct nxp_fspi *f)
{
clk_disable(&f->clk);
clk_disable(&f->clk_en);
}
#endif
/*
* In FlexSPI controller, flash access is based on value of FSPI_FLSHXXCR0
* register and start base address of the slave device.
*
* (Higher address)
* -------- <-- FLSHB2CR0
* | B2 |
* | |
* B2 start address --> -------- <-- FLSHB1CR0
* | B1 |
* | |
* B1 start address --> -------- <-- FLSHA2CR0
* | A2 |
* | |
* A2 start address --> -------- <-- FLSHA1CR0
* | A1 |
* | |
* A1 start address --> -------- (Lower address)
*
*
* Start base address defines the starting address range for given CS and
* FSPI_FLSHXXCR0 defines the size of the slave device connected at given CS.
*
* But, different targets are having different combinations of number of CS,
* some targets only have single CS or two CS covering controller's full
* memory mapped space area.
* Thus, implementation is being done as independent of the size and number
* of the connected slave device.
* Assign controller memory mapped space size as the size to the connected
* slave device.
* Mark FLSHxxCR0 as zero initially and then assign value only to the selected
* chip-select Flash configuration register.
*
* For e.g. to access CS2 (B1), FLSHB1CR0 register would be equal to the
* memory mapped size of the controller.
* Value for rest of the CS FLSHxxCR0 register would be zero.
*
*/
static void nxp_fspi_select_mem(struct nxp_fspi *f, int chip_select)
{
u64 size_kb;
/* Reset FLSHxxCR0 registers */
fspi_writel(f, 0, f->iobase + FSPI_FLSHA1CR0);
fspi_writel(f, 0, f->iobase + FSPI_FLSHA2CR0);
fspi_writel(f, 0, f->iobase + FSPI_FLSHB1CR0);
fspi_writel(f, 0, f->iobase + FSPI_FLSHB2CR0);
/* Assign controller memory mapped space as size, KBytes, of flash. */
size_kb = FSPI_FLSHXCR0_SZ(f->memmap_phy_size);
fspi_writel(f, size_kb, f->iobase + FSPI_FLSHA1CR0 +
4 * chip_select);
dev_dbg(f->dev, "Slave device [CS:%x] selected\n", chip_select);
}
static void nxp_fspi_read_ahb(struct nxp_fspi *f, const struct spi_mem_op *op)
{
u32 len = op->data.nbytes;
/* Read out the data directly from the AHB buffer. */
memcpy_fromio(op->data.buf.in, (f->ahb_addr + op->addr.val), len);
}
static void nxp_fspi_fill_txfifo(struct nxp_fspi *f,
const struct spi_mem_op *op)
{
void __iomem *base = f->iobase;
int i, ret;
u8 *buf = (u8 *)op->data.buf.out;
/* clear the TX FIFO. */
fspi_writel(f, FSPI_IPTXFCR_CLR, base + FSPI_IPTXFCR);
/*
* Default value of water mark level is 8 bytes, hence in single
* write request controller can write max 8 bytes of data.
*/
for (i = 0; i < ALIGN_DOWN(op->data.nbytes, 8); i += 8) {
/* Wait for TXFIFO empty */
ret = fspi_readl_poll_tout(f, f->iobase + FSPI_INTR,
FSPI_INTR_IPTXWE, 0,
POLL_TOUT, true);
WARN_ON(ret);
fspi_writel(f, *(u32 *)(buf + i), base + FSPI_TFDR);
fspi_writel(f, *(u32 *)(buf + i + 4), base + FSPI_TFDR + 4);
fspi_writel(f, FSPI_INTR_IPTXWE, base + FSPI_INTR);
}
if (i < op->data.nbytes) {
u32 data = 0;
int j;
/* Wait for TXFIFO empty */
ret = fspi_readl_poll_tout(f, f->iobase + FSPI_INTR,
FSPI_INTR_IPTXWE, 0,
POLL_TOUT, true);
WARN_ON(ret);
for (j = 0; j < ALIGN(op->data.nbytes - i, 4); j += 4) {
memcpy(&data, buf + i + j, 4);
fspi_writel(f, data, base + FSPI_TFDR + j);
}
fspi_writel(f, FSPI_INTR_IPTXWE, base + FSPI_INTR);
}
}
static void nxp_fspi_read_rxfifo(struct nxp_fspi *f,
const struct spi_mem_op *op)
{
void __iomem *base = f->iobase;
int i, ret;
int len = op->data.nbytes;
u8 *buf = (u8 *)op->data.buf.in;
/*
* Default value of water mark level is 8 bytes, hence in single
* read request controller can read max 8 bytes of data.
*/
for (i = 0; i < ALIGN_DOWN(len, 8); i += 8) {
/* Wait for RXFIFO available */
ret = fspi_readl_poll_tout(f, f->iobase + FSPI_INTR,
FSPI_INTR_IPRXWA, 0,
POLL_TOUT, true);
WARN_ON(ret);
*(u32 *)(buf + i) = fspi_readl(f, base + FSPI_RFDR);
*(u32 *)(buf + i + 4) = fspi_readl(f, base + FSPI_RFDR + 4);
/* move the FIFO pointer */
fspi_writel(f, FSPI_INTR_IPRXWA, base + FSPI_INTR);
}
if (i < len) {
u32 tmp;
int size, j;
buf = op->data.buf.in + i;
/* Wait for RXFIFO available */
ret = fspi_readl_poll_tout(f, f->iobase + FSPI_INTR,
FSPI_INTR_IPRXWA, 0,
POLL_TOUT, true);
WARN_ON(ret);
len = op->data.nbytes - i;
for (j = 0; j < op->data.nbytes - i; j += 4) {
tmp = fspi_readl(f, base + FSPI_RFDR + j);
size = min(len, 4);
memcpy(buf + j, &tmp, size);
len -= size;
}
}
/* invalid the RXFIFO */
fspi_writel(f, FSPI_IPRXFCR_CLR, base + FSPI_IPRXFCR);
/* move the FIFO pointer */
fspi_writel(f, FSPI_INTR_IPRXWA, base + FSPI_INTR);
}
static int nxp_fspi_do_op(struct nxp_fspi *f, const struct spi_mem_op *op)
{
void __iomem *base = f->iobase;
int seqnum = 0;
int err = 0;
u32 reg;
reg = fspi_readl(f, base + FSPI_IPRXFCR);
/* invalid RXFIFO first */
reg &= ~FSPI_IPRXFCR_DMA_EN;
reg = reg | FSPI_IPRXFCR_CLR;
fspi_writel(f, reg, base + FSPI_IPRXFCR);
fspi_writel(f, op->addr.val, base + FSPI_IPCR0);
/*
* Always start the sequence at the same index since we update
* the LUT at each exec_op() call. And also specify the DATA
* length, since it's has not been specified in the LUT.
*/
fspi_writel(f, op->data.nbytes |
(SEQID_LUT << FSPI_IPCR1_SEQID_SHIFT) |
(seqnum << FSPI_IPCR1_SEQNUM_SHIFT),
base + FSPI_IPCR1);
/* Trigger the LUT now. */
fspi_writel(f, FSPI_IPCMD_TRG, base + FSPI_IPCMD);
/* Wait for the completion. */
err = fspi_readl_poll_tout(f, f->iobase + FSPI_STS0,
FSPI_STS0_ARB_IDLE, 1, 1000 * 1000, true);
/* Invoke IP data read, if request is of data read. */
if (!err && op->data.nbytes && op->data.dir == SPI_MEM_DATA_IN)
nxp_fspi_read_rxfifo(f, op);
return err;
}
static int nxp_fspi_exec_op(struct spi_slave *slave,
const struct spi_mem_op *op)
{
struct nxp_fspi *f;
struct udevice *bus;
int err = 0;
bus = slave->dev->parent;
f = dev_get_priv(bus);
/* Wait for controller being ready. */
err = fspi_readl_poll_tout(f, f->iobase + FSPI_STS0,
FSPI_STS0_ARB_IDLE, 1, POLL_TOUT, true);
WARN_ON(err);
nxp_fspi_prepare_lut(f, op);
/*
* If we have large chunks of data, we read them through the AHB bus
* by accessing the mapped memory. In all other cases we use
* IP commands to access the flash.
*/
if (op->data.nbytes > (f->devtype_data->rxfifo - 4) &&
op->data.dir == SPI_MEM_DATA_IN) {
nxp_fspi_read_ahb(f, op);
} else {
if (op->data.nbytes && op->data.dir == SPI_MEM_DATA_OUT)
nxp_fspi_fill_txfifo(f, op);
err = nxp_fspi_do_op(f, op);
}
/* Invalidate the data in the AHB buffer. */
nxp_fspi_invalid(f);
return err;
}
static int nxp_fspi_adjust_op_size(struct spi_slave *slave,
struct spi_mem_op *op)
{
struct nxp_fspi *f;
struct udevice *bus;
bus = slave->dev->parent;
f = dev_get_priv(bus);
if (op->data.dir == SPI_MEM_DATA_OUT) {
if (op->data.nbytes > f->devtype_data->txfifo)
op->data.nbytes = f->devtype_data->txfifo;
} else {
if (op->data.nbytes > f->devtype_data->ahb_buf_size)
op->data.nbytes = f->devtype_data->ahb_buf_size;
else if (op->data.nbytes > (f->devtype_data->rxfifo - 4))
op->data.nbytes = ALIGN_DOWN(op->data.nbytes, 8);
}
return 0;
}
static int nxp_fspi_default_setup(struct nxp_fspi *f)
{
void __iomem *base = f->iobase;
int ret, i;
u32 reg;
#if CONFIG_IS_ENABLED(CONFIG_CLK)
/* disable and unprepare clock to avoid glitch pass to controller */
nxp_fspi_clk_disable_unprep(f);
/* the default frequency, we will change it later if necessary. */
ret = clk_set_rate(&f->clk, 20000000);
if (ret)
return ret;
ret = nxp_fspi_clk_prep_enable(f);
if (ret)
return ret;
#endif
/* Reset the module */
/* w1c register, wait unit clear */
ret = fspi_readl_poll_tout(f, f->iobase + FSPI_MCR0,
FSPI_MCR0_SWRST, 0, POLL_TOUT, false);
WARN_ON(ret);
/* Disable the module */
fspi_writel(f, FSPI_MCR0_MDIS, base + FSPI_MCR0);
/* Reset the DLL register to default value */
fspi_writel(f, FSPI_DLLACR_OVRDEN, base + FSPI_DLLACR);
fspi_writel(f, FSPI_DLLBCR_OVRDEN, base + FSPI_DLLBCR);
/* enable module */
fspi_writel(f, FSPI_MCR0_AHB_TIMEOUT(0xFF) | FSPI_MCR0_IP_TIMEOUT(0xFF),
base + FSPI_MCR0);
/*
* Disable same device enable bit and configure all slave devices
* independently.
*/
reg = fspi_readl(f, f->iobase + FSPI_MCR2);
reg = reg & ~(FSPI_MCR2_SAMEDEVICEEN);
fspi_writel(f, reg, base + FSPI_MCR2);
/* AHB configuration for access buffer 0~7. */
for (i = 0; i < 7; i++)
fspi_writel(f, 0, base + FSPI_AHBRX_BUF0CR0 + 4 * i);
/*
* Set ADATSZ with the maximum AHB buffer size to improve the read
* performance.
*/
fspi_writel(f, (f->devtype_data->ahb_buf_size / 8 |
FSPI_AHBRXBUF0CR7_PREF), base + FSPI_AHBRX_BUF7CR0);
/* prefetch and no start address alignment limitation */
fspi_writel(f, FSPI_AHBCR_PREF_EN | FSPI_AHBCR_RDADDROPT,
base + FSPI_AHBCR);
/* AHB Read - Set lut sequence ID for all CS. */
fspi_writel(f, SEQID_LUT, base + FSPI_FLSHA1CR2);
fspi_writel(f, SEQID_LUT, base + FSPI_FLSHA2CR2);
fspi_writel(f, SEQID_LUT, base + FSPI_FLSHB1CR2);
fspi_writel(f, SEQID_LUT, base + FSPI_FLSHB2CR2);
return 0;
}
static int nxp_fspi_probe(struct udevice *bus)
{
struct nxp_fspi *f = dev_get_priv(bus);
f->devtype_data =
(struct nxp_fspi_devtype_data *)dev_get_driver_data(bus);
nxp_fspi_default_setup(f);
return 0;
}
static int nxp_fspi_claim_bus(struct udevice *dev)
{
struct nxp_fspi *f;
struct udevice *bus;
struct dm_spi_slave_platdata *slave_plat = dev_get_parent_platdata(dev);
bus = dev->parent;
f = dev_get_priv(bus);
nxp_fspi_select_mem(f, slave_plat->cs);
return 0;
}
static int nxp_fspi_set_speed(struct udevice *bus, uint speed)
{
#if CONFIG_IS_ENABLED(CONFIG_CLK)
struct nxp_fspi *f = dev_get_priv(bus);
int ret;
nxp_fspi_clk_disable_unprep(f);
ret = clk_set_rate(&f->clk, speed);
if (ret)
return ret;
ret = nxp_fspi_clk_prep_enable(f);
if (ret)
return ret;
#endif
return 0;
}
static int nxp_fspi_set_mode(struct udevice *bus, uint mode)
{
/* Nothing to do */
return 0;
}
static int nxp_fspi_ofdata_to_platdata(struct udevice *bus)
{
struct nxp_fspi *f = dev_get_priv(bus);
#if CONFIG_IS_ENABLED(CONFIG_CLK)
int ret;
#endif
fdt_addr_t iobase;
fdt_addr_t iobase_size;
fdt_addr_t ahb_addr;
fdt_addr_t ahb_size;
f->dev = bus;
iobase = devfdt_get_addr_size_name(bus, "fspi_base", &iobase_size);
if (iobase == FDT_ADDR_T_NONE) {
dev_err(bus, "fspi_base regs missing\n");
return -ENODEV;
}
f->iobase = map_physmem(iobase, iobase_size, MAP_NOCACHE);
ahb_addr = devfdt_get_addr_size_name(bus, "fspi_mmap", &ahb_size);
if (ahb_addr == FDT_ADDR_T_NONE) {
dev_err(bus, "fspi_mmap regs missing\n");
return -ENODEV;
}
f->ahb_addr = map_physmem(ahb_addr, ahb_size, MAP_NOCACHE);
f->memmap_phy_size = ahb_size;
#if CONFIG_IS_ENABLED(CONFIG_CLK)
ret = clk_get_by_name(bus, "fspi_en", &f->clk_en);
if (ret) {
dev_err(bus, "failed to get fspi_en clock\n");
return ret;
}
ret = clk_get_by_name(bus, "fspi", &f->clk);
if (ret) {
dev_err(bus, "failed to get fspi clock\n");
return ret;
}
#endif
dev_dbg(bus, "iobase=<0x%llx>, ahb_addr=<0x%llx>\n", iobase, ahb_addr);
return 0;
}
static const struct spi_controller_mem_ops nxp_fspi_mem_ops = {
.adjust_op_size = nxp_fspi_adjust_op_size,
.supports_op = nxp_fspi_supports_op,
.exec_op = nxp_fspi_exec_op,
};
static const struct dm_spi_ops nxp_fspi_ops = {
.claim_bus = nxp_fspi_claim_bus,
.set_speed = nxp_fspi_set_speed,
.set_mode = nxp_fspi_set_mode,
.mem_ops = &nxp_fspi_mem_ops,
};
static const struct udevice_id nxp_fspi_ids[] = {
{ .compatible = "nxp,lx2160a-fspi", .data = (ulong)&lx2160a_data, },
{ }
};
U_BOOT_DRIVER(nxp_fspi) = {
.name = "nxp_fspi",
.id = UCLASS_SPI,
.of_match = nxp_fspi_ids,
.ops = &nxp_fspi_ops,
.ofdata_to_platdata = nxp_fspi_ofdata_to_platdata,
.priv_auto_alloc_size = sizeof(struct nxp_fspi),
.probe = nxp_fspi_probe,
};

View file

@ -123,6 +123,12 @@ static int spi_check_buswidth_req(struct spi_slave *slave, u8 buswidth, bool tx)
return 0; return 0;
break; break;
case 8:
if ((tx && (mode & SPI_TX_OCTAL)) ||
(!tx && (mode & SPI_RX_OCTAL)))
return 0;
break;
default: default:
break; break;

View file

@ -224,7 +224,32 @@ int spi_chip_select(struct udevice *dev)
int spi_find_chip_select(struct udevice *bus, int cs, struct udevice **devp) int spi_find_chip_select(struct udevice *bus, int cs, struct udevice **devp)
{ {
struct dm_spi_ops *ops;
struct spi_cs_info info;
struct udevice *dev; struct udevice *dev;
int ret;
/*
* Ask the driver. For the moment we don't have CS info.
* When we do we could provide the driver with a helper function
* to figure out what chip selects are valid, or just handle the
* request.
*/
ops = spi_get_ops(bus);
if (ops->cs_info) {
ret = ops->cs_info(bus, cs, &info);
} else {
/*
* We could assume there is at least one valid chip select.
* The driver didn't care enough to tell us.
*/
ret = 0;
}
if (ret) {
printf("Invalid cs %d (err=%d)\n", cs, ret);
return ret;
}
for (device_find_first_child(bus, &dev); dev; for (device_find_first_child(bus, &dev); dev;
device_find_next_child(&dev)) { device_find_next_child(&dev)) {
@ -259,7 +284,6 @@ int spi_cs_is_valid(unsigned int busnum, unsigned int cs)
int spi_cs_info(struct udevice *bus, uint cs, struct spi_cs_info *info) int spi_cs_info(struct udevice *bus, uint cs, struct spi_cs_info *info)
{ {
struct spi_cs_info local_info; struct spi_cs_info local_info;
struct dm_spi_ops *ops;
int ret; int ret;
if (!info) if (!info)
@ -268,24 +292,7 @@ int spi_cs_info(struct udevice *bus, uint cs, struct spi_cs_info *info)
/* If there is a device attached, return it */ /* If there is a device attached, return it */
info->dev = NULL; info->dev = NULL;
ret = spi_find_chip_select(bus, cs, &info->dev); ret = spi_find_chip_select(bus, cs, &info->dev);
if (!ret) return ret == -ENODEV ? 0 : ret;
return 0;
/*
* Otherwise ask the driver. For the moment we don't have CS info.
* When we do we could provide the driver with a helper function
* to figure out what chip selects are valid, or just handle the
* request.
*/
ops = spi_get_ops(bus);
if (ops->cs_info)
return ops->cs_info(bus, cs, info);
/*
* We could assume there is at least one valid chip select.
* The driver didn't care enough to tell us.
*/
return 0;
} }
int spi_find_bus_and_cs(int busnum, int cs, struct udevice **busp, int spi_find_bus_and_cs(int busnum, int cs, struct udevice **busp,
@ -316,6 +323,7 @@ int spi_get_bus_and_cs(int busnum, int cs, int speed, int mode,
{ {
struct udevice *bus, *dev; struct udevice *bus, *dev;
struct dm_spi_slave_platdata *plat; struct dm_spi_slave_platdata *plat;
struct spi_slave *slave;
bool created = false; bool created = false;
int ret; int ret;
@ -371,19 +379,20 @@ int spi_get_bus_and_cs(int busnum, int cs, int speed, int mode,
slave->dev = dev; slave->dev = dev;
} }
plat = dev_get_parent_platdata(dev); slave = dev_get_parent_priv(dev);
/* get speed and mode from platdata when available */ /*
if (plat->max_hz) { * In case the operation speed is not yet established by
speed = plat->max_hz; * dm_spi_claim_bus() ensure the bus is configured properly.
mode = plat->mode; */
} if (!slave->speed) {
ret = spi_set_speed_mode(bus, speed, mode); ret = spi_claim_bus(slave);
if (ret) if (ret)
goto err; goto err;
}
*busp = bus; *busp = bus;
*devp = dev_get_parent_priv(dev); *devp = slave;
debug("%s: bus=%p, slave=%p\n", __func__, bus, *devp); debug("%s: bus=%p, slave=%p\n", __func__, bus, *devp);
return 0; return 0;
@ -452,6 +461,9 @@ int spi_slave_ofdata_to_platdata(struct udevice *dev,
case 4: case 4:
mode |= SPI_TX_QUAD; mode |= SPI_TX_QUAD;
break; break;
case 8:
mode |= SPI_TX_OCTAL;
break;
default: default:
warn_non_spl("spi-tx-bus-width %d not supported\n", value); warn_non_spl("spi-tx-bus-width %d not supported\n", value);
break; break;
@ -467,6 +479,9 @@ int spi_slave_ofdata_to_platdata(struct udevice *dev,
case 4: case 4:
mode |= SPI_RX_QUAD; mode |= SPI_RX_QUAD;
break; break;
case 8:
mode |= SPI_RX_OCTAL;
break;
default: default:
warn_non_spl("spi-rx-bus-width %d not supported\n", value); warn_non_spl("spi-rx-bus-width %d not supported\n", value);
break; break;

View file

@ -60,6 +60,8 @@ DECLARE_GLOBAL_DATA_PTR;
#define QSPI_SETUP0_ADDR_SHIFT (8) #define QSPI_SETUP0_ADDR_SHIFT (8)
#define QSPI_SETUP0_DBITS_SHIFT (10) #define QSPI_SETUP0_DBITS_SHIFT (10)
#define TI_QSPI_SETUP_REG(priv, cs) (&(priv)->base->setup0 + (cs))
/* ti qspi register set */ /* ti qspi register set */
struct ti_qspi_regs { struct ti_qspi_regs {
u32 pid; u32 pid;
@ -275,8 +277,8 @@ static void ti_qspi_copy_mmap(void *data, void *offset, size_t len)
*((unsigned int *)offset) += len; *((unsigned int *)offset) += len;
} }
static void ti_qspi_setup_mmap_read(struct ti_qspi_priv *priv, u8 opcode, static void ti_qspi_setup_mmap_read(struct ti_qspi_priv *priv, int cs,
u8 data_nbits, u8 addr_width, u8 opcode, u8 data_nbits, u8 addr_width,
u8 dummy_bytes) u8 dummy_bytes)
{ {
u32 memval = opcode; u32 memval = opcode;
@ -296,7 +298,7 @@ static void ti_qspi_setup_mmap_read(struct ti_qspi_priv *priv, u8 opcode,
memval |= ((addr_width - 1) << QSPI_SETUP0_ADDR_SHIFT | memval |= ((addr_width - 1) << QSPI_SETUP0_ADDR_SHIFT |
dummy_bytes << QSPI_SETUP0_DBITS_SHIFT); dummy_bytes << QSPI_SETUP0_DBITS_SHIFT);
writel(memval, &priv->base->setup0); writel(memval, TI_QSPI_SETUP_REG(priv, cs));
} }
static int ti_qspi_set_mode(struct udevice *bus, uint mode) static int ti_qspi_set_mode(struct udevice *bus, uint mode)
@ -317,13 +319,15 @@ static int ti_qspi_set_mode(struct udevice *bus, uint mode)
static int ti_qspi_exec_mem_op(struct spi_slave *slave, static int ti_qspi_exec_mem_op(struct spi_slave *slave,
const struct spi_mem_op *op) const struct spi_mem_op *op)
{ {
struct dm_spi_slave_platdata *slave_plat;
struct ti_qspi_priv *priv; struct ti_qspi_priv *priv;
struct udevice *bus; struct udevice *bus;
u32 from = 0;
int ret = 0;
bus = slave->dev->parent; bus = slave->dev->parent;
priv = dev_get_priv(bus); priv = dev_get_priv(bus);
u32 from = 0; slave_plat = dev_get_parent_platdata(slave->dev);
int ret = 0;
/* Only optimize read path. */ /* Only optimize read path. */
if (!op->data.nbytes || op->data.dir != SPI_MEM_DATA_IN || if (!op->data.nbytes || op->data.dir != SPI_MEM_DATA_IN ||
@ -335,8 +339,9 @@ static int ti_qspi_exec_mem_op(struct spi_slave *slave,
if (from + op->data.nbytes > priv->mmap_size) if (from + op->data.nbytes > priv->mmap_size)
return -ENOTSUPP; return -ENOTSUPP;
ti_qspi_setup_mmap_read(priv, op->cmd.opcode, op->data.buswidth, ti_qspi_setup_mmap_read(priv, slave_plat->cs, op->cmd.opcode,
op->addr.nbytes, op->dummy.nbytes); op->data.buswidth, op->addr.nbytes,
op->dummy.nbytes);
ti_qspi_copy_mmap((void *)op->data.buf.in, ti_qspi_copy_mmap((void *)op->data.buf.in,
(void *)priv->memory_map + from, op->data.nbytes); (void *)priv->memory_map + from, op->data.nbytes);
@ -390,7 +395,7 @@ static int ti_qspi_release_bus(struct udevice *dev)
writel(0, &priv->base->dc); writel(0, &priv->base->dc);
writel(0, &priv->base->cmd); writel(0, &priv->base->cmd);
writel(0, &priv->base->data); writel(0, &priv->base->data);
writel(0, &priv->base->setup0); writel(0, TI_QSPI_SETUP_REG(priv, slave_plat->cs));
return 0; return 0;
} }

View file

@ -47,9 +47,13 @@
#define SPINOR_OP_READ_1_2_2 0xbb /* Read data bytes (Dual I/O SPI) */ #define SPINOR_OP_READ_1_2_2 0xbb /* Read data bytes (Dual I/O SPI) */
#define SPINOR_OP_READ_1_1_4 0x6b /* Read data bytes (Quad Output SPI) */ #define SPINOR_OP_READ_1_1_4 0x6b /* Read data bytes (Quad Output SPI) */
#define SPINOR_OP_READ_1_4_4 0xeb /* Read data bytes (Quad I/O SPI) */ #define SPINOR_OP_READ_1_4_4 0xeb /* Read data bytes (Quad I/O SPI) */
#define SPINOR_OP_READ_1_1_8 0x8b /* Read data bytes (Octal Output SPI) */
#define SPINOR_OP_READ_1_8_8 0xcb /* Read data bytes (Octal I/O SPI) */
#define SPINOR_OP_PP 0x02 /* Page program (up to 256 bytes) */ #define SPINOR_OP_PP 0x02 /* Page program (up to 256 bytes) */
#define SPINOR_OP_PP_1_1_4 0x32 /* Quad page program */ #define SPINOR_OP_PP_1_1_4 0x32 /* Quad page program */
#define SPINOR_OP_PP_1_4_4 0x38 /* Quad page program */ #define SPINOR_OP_PP_1_4_4 0x38 /* Quad page program */
#define SPINOR_OP_PP_1_1_8 0x82 /* Octal page program */
#define SPINOR_OP_PP_1_8_8 0xc2 /* Octal page program */
#define SPINOR_OP_BE_4K 0x20 /* Erase 4KiB block */ #define SPINOR_OP_BE_4K 0x20 /* Erase 4KiB block */
#define SPINOR_OP_BE_4K_PMC 0xd7 /* Erase 4KiB block on PMC chips */ #define SPINOR_OP_BE_4K_PMC 0xd7 /* Erase 4KiB block on PMC chips */
#define SPINOR_OP_BE_32K 0x52 /* Erase 32KiB block */ #define SPINOR_OP_BE_32K 0x52 /* Erase 32KiB block */
@ -70,9 +74,13 @@
#define SPINOR_OP_READ_1_2_2_4B 0xbc /* Read data bytes (Dual I/O SPI) */ #define SPINOR_OP_READ_1_2_2_4B 0xbc /* Read data bytes (Dual I/O SPI) */
#define SPINOR_OP_READ_1_1_4_4B 0x6c /* Read data bytes (Quad Output SPI) */ #define SPINOR_OP_READ_1_1_4_4B 0x6c /* Read data bytes (Quad Output SPI) */
#define SPINOR_OP_READ_1_4_4_4B 0xec /* Read data bytes (Quad I/O SPI) */ #define SPINOR_OP_READ_1_4_4_4B 0xec /* Read data bytes (Quad I/O SPI) */
#define SPINOR_OP_READ_1_1_8_4B 0x7c /* Read data bytes (Octal Output SPI) */
#define SPINOR_OP_READ_1_8_8_4B 0xcc /* Read data bytes (Octal I/O SPI) */
#define SPINOR_OP_PP_4B 0x12 /* Page program (up to 256 bytes) */ #define SPINOR_OP_PP_4B 0x12 /* Page program (up to 256 bytes) */
#define SPINOR_OP_PP_1_1_4_4B 0x34 /* Quad page program */ #define SPINOR_OP_PP_1_1_4_4B 0x34 /* Quad page program */
#define SPINOR_OP_PP_1_4_4_4B 0x3e /* Quad page program */ #define SPINOR_OP_PP_1_4_4_4B 0x3e /* Quad page program */
#define SPINOR_OP_PP_1_1_8_4B 0x84 /* Octal page program */
#define SPINOR_OP_PP_1_8_8_4B 0x8e /* Octal page program */
#define SPINOR_OP_BE_4K_4B 0x21 /* Erase 4KiB block */ #define SPINOR_OP_BE_4K_4B 0x21 /* Erase 4KiB block */
#define SPINOR_OP_BE_32K_4B 0x5c /* Erase 32KiB block */ #define SPINOR_OP_BE_32K_4B 0x5c /* Erase 32KiB block */
#define SPINOR_OP_SE_4B 0xdc /* Sector erase (usually 64KiB) */ #define SPINOR_OP_SE_4B 0xdc /* Sector erase (usually 64KiB) */

View file

@ -30,6 +30,8 @@
#define SPI_RX_SLOW BIT(11) /* receive with 1 wire slow */ #define SPI_RX_SLOW BIT(11) /* receive with 1 wire slow */
#define SPI_RX_DUAL BIT(12) /* receive with 2 wires */ #define SPI_RX_DUAL BIT(12) /* receive with 2 wires */
#define SPI_RX_QUAD BIT(13) /* receive with 4 wires */ #define SPI_RX_QUAD BIT(13) /* receive with 4 wires */
#define SPI_TX_OCTAL BIT(14) /* transmit with 8 wires */
#define SPI_RX_OCTAL BIT(15) /* receive with 8 wires */
/* Header byte that marks the start of the message */ /* Header byte that marks the start of the message */
#define SPI_PREAMBLE_END_BYTE 0xec #define SPI_PREAMBLE_END_BYTE 0xec
@ -561,7 +563,8 @@ int spi_chip_select(struct udevice *slave);
* @bus: SPI bus to search * @bus: SPI bus to search
* @cs: Chip select to look for * @cs: Chip select to look for
* @devp: Returns the slave device if found * @devp: Returns the slave device if found
* @return 0 if found, -ENODEV on error * @return 0 if found, -EINVAL if cs is invalid, -ENODEV if no device attached,
* other -ve value on error
*/ */
int spi_find_chip_select(struct udevice *bus, int cs, struct udevice **devp); int spi_find_chip_select(struct udevice *bus, int cs, struct udevice **devp);

View file

@ -77,10 +77,10 @@ static int dm_test_spi_find(struct unit_test_state *uts)
/* We should be able to add something to another chip select */ /* We should be able to add something to another chip select */
ut_assertok(sandbox_sf_bind_emul(state, busnum, cs_b, bus, node, ut_assertok(sandbox_sf_bind_emul(state, busnum, cs_b, bus, node,
"name")); "name"));
ut_assertok(spi_get_bus_and_cs(busnum, cs_b, speed, mode, ut_asserteq(-EINVAL, spi_get_bus_and_cs(busnum, cs_b, speed, mode,
"spi_flash_std", "name", &bus, &slave)); "spi_flash_std", "name", &bus, &slave));
ut_assertok(spi_cs_info(bus, cs_b, &info)); ut_asserteq(-EINVAL, spi_cs_info(bus, cs_b, &info));
ut_asserteq_ptr(info.dev, slave->dev); ut_asserteq_ptr(NULL, info.dev);
/* /*
* Since we are about to destroy all devices, we must tell sandbox * Since we are about to destroy all devices, we must tell sandbox