mirror of
https://github.com/AsahiLinux/u-boot
synced 2024-11-10 07:04:28 +00:00
lib: rational: copy the rational fraction lib routines from Linux
Copy the best rational approximation calculation routines from Linux. Typical usecase for these routines is to calculate the M/N divider values for PLLs to reach a specific clock rate. This is based on linux kernel commit: "lib/math/rational.c: fix possible incorrect result from rational fractions helper" (sha1: 323dd2c3ed0641f49e89b4e420f9eef5d3d5a881) Signed-off-by: Tero Kristo <t-kristo@ti.com> Reviewed-by: Tom Rini <trini@konsulko.com> Signed-off-by: Tero Kristo <kristo@kernel.org>
This commit is contained in:
parent
08ea87a6de
commit
7d0f3fbb93
4 changed files with 128 additions and 0 deletions
20
include/linux/rational.h
Normal file
20
include/linux/rational.h
Normal file
|
@ -0,0 +1,20 @@
|
|||
/* SPDX-License-Identifier: GPL-2.0 */
|
||||
/*
|
||||
* rational fractions
|
||||
*
|
||||
* Copyright (C) 2009 emlix GmbH, Oskar Schirmer <oskar@scara.com>
|
||||
*
|
||||
* helper functions when coping with rational numbers,
|
||||
* e.g. when calculating optimum numerator/denominator pairs for
|
||||
* pll configuration taking into account restricted register size
|
||||
*/
|
||||
|
||||
#ifndef _LINUX_RATIONAL_H
|
||||
#define _LINUX_RATIONAL_H
|
||||
|
||||
void rational_best_approximation(
|
||||
unsigned long given_numerator, unsigned long given_denominator,
|
||||
unsigned long max_numerator, unsigned long max_denominator,
|
||||
unsigned long *best_numerator, unsigned long *best_denominator);
|
||||
|
||||
#endif /* _LINUX_RATIONAL_H */
|
|
@ -674,6 +674,13 @@ config GENERATE_SMBIOS_TABLE
|
|||
See also SMBIOS_SYSINFO which allows SMBIOS values to be provided in
|
||||
the devicetree.
|
||||
|
||||
config LIB_RATIONAL
|
||||
bool "enable continued fraction calculation routines"
|
||||
|
||||
config SPL_LIB_RATIONAL
|
||||
bool "enable continued fraction calculation routines for SPL"
|
||||
depends on SPL
|
||||
|
||||
endmenu
|
||||
|
||||
config ASN1_COMPILER
|
||||
|
|
|
@ -73,6 +73,8 @@ obj-$(CONFIG_$(SPL_)LZO) += lzo/
|
|||
obj-$(CONFIG_$(SPL_)LZMA) += lzma/
|
||||
obj-$(CONFIG_$(SPL_)LZ4) += lz4_wrapper.o
|
||||
|
||||
obj-$(CONFIG_$(SPL_)LIB_RATIONAL) += rational.o
|
||||
|
||||
obj-$(CONFIG_LIBAVB) += libavb/
|
||||
|
||||
obj-$(CONFIG_$(SPL_TPL_)OF_LIBFDT) += libfdt/
|
||||
|
|
99
lib/rational.c
Normal file
99
lib/rational.c
Normal file
|
@ -0,0 +1,99 @@
|
|||
// SPDX-License-Identifier: GPL-2.0
|
||||
/*
|
||||
* rational fractions
|
||||
*
|
||||
* Copyright (C) 2009 emlix GmbH, Oskar Schirmer <oskar@scara.com>
|
||||
* Copyright (C) 2019 Trent Piepho <tpiepho@gmail.com>
|
||||
*
|
||||
* helper functions when coping with rational numbers
|
||||
*/
|
||||
|
||||
#include <linux/rational.h>
|
||||
#include <linux/compiler.h>
|
||||
#include <linux/kernel.h>
|
||||
|
||||
/*
|
||||
* calculate best rational approximation for a given fraction
|
||||
* taking into account restricted register size, e.g. to find
|
||||
* appropriate values for a pll with 5 bit denominator and
|
||||
* 8 bit numerator register fields, trying to set up with a
|
||||
* frequency ratio of 3.1415, one would say:
|
||||
*
|
||||
* rational_best_approximation(31415, 10000,
|
||||
* (1 << 8) - 1, (1 << 5) - 1, &n, &d);
|
||||
*
|
||||
* you may look at given_numerator as a fixed point number,
|
||||
* with the fractional part size described in given_denominator.
|
||||
*
|
||||
* for theoretical background, see:
|
||||
* http://en.wikipedia.org/wiki/Continued_fraction
|
||||
*/
|
||||
|
||||
void rational_best_approximation(
|
||||
unsigned long given_numerator, unsigned long given_denominator,
|
||||
unsigned long max_numerator, unsigned long max_denominator,
|
||||
unsigned long *best_numerator, unsigned long *best_denominator)
|
||||
{
|
||||
/* n/d is the starting rational, which is continually
|
||||
* decreased each iteration using the Euclidean algorithm.
|
||||
*
|
||||
* dp is the value of d from the prior iteration.
|
||||
*
|
||||
* n2/d2, n1/d1, and n0/d0 are our successively more accurate
|
||||
* approximations of the rational. They are, respectively,
|
||||
* the current, previous, and two prior iterations of it.
|
||||
*
|
||||
* a is current term of the continued fraction.
|
||||
*/
|
||||
unsigned long n, d, n0, d0, n1, d1, n2, d2;
|
||||
n = given_numerator;
|
||||
d = given_denominator;
|
||||
n0 = d1 = 0;
|
||||
n1 = d0 = 1;
|
||||
|
||||
for (;;) {
|
||||
unsigned long dp, a;
|
||||
|
||||
if (d == 0)
|
||||
break;
|
||||
/* Find next term in continued fraction, 'a', via
|
||||
* Euclidean algorithm.
|
||||
*/
|
||||
dp = d;
|
||||
a = n / d;
|
||||
d = n % d;
|
||||
n = dp;
|
||||
|
||||
/* Calculate the current rational approximation (aka
|
||||
* convergent), n2/d2, using the term just found and
|
||||
* the two prior approximations.
|
||||
*/
|
||||
n2 = n0 + a * n1;
|
||||
d2 = d0 + a * d1;
|
||||
|
||||
/* If the current convergent exceeds the maxes, then
|
||||
* return either the previous convergent or the
|
||||
* largest semi-convergent, the final term of which is
|
||||
* found below as 't'.
|
||||
*/
|
||||
if ((n2 > max_numerator) || (d2 > max_denominator)) {
|
||||
unsigned long t = min((max_numerator - n0) / n1,
|
||||
(max_denominator - d0) / d1);
|
||||
|
||||
/* This tests if the semi-convergent is closer
|
||||
* than the previous convergent.
|
||||
*/
|
||||
if (2u * t > a || (2u * t == a && d0 * dp > d1 * d)) {
|
||||
n1 = n0 + t * n1;
|
||||
d1 = d0 + t * d1;
|
||||
}
|
||||
break;
|
||||
}
|
||||
n0 = n1;
|
||||
n1 = n2;
|
||||
d0 = d1;
|
||||
d1 = d2;
|
||||
}
|
||||
*best_numerator = n1;
|
||||
*best_denominator = d1;
|
||||
}
|
Loading…
Reference in a new issue