mirror of
https://github.com/AsahiLinux/u-boot
synced 2024-11-25 14:10:43 +00:00
NAND: DaVinci: V2 Adding 4 BIT ECC support
This patch adds 4 BIT ECC support in the DaVinci NAND driver. Tested on both the DM355 and DM365. Signed-off-by: Sandeep Paulraj <s-paulraj@ti.com> Signed-off-by: Scott Wood <scottwood@freescale.com>
This commit is contained in:
parent
f83b7f9e8a
commit
77b351cd0f
2 changed files with 292 additions and 2 deletions
|
@ -47,6 +47,16 @@
|
||||||
#include <asm/arch/nand_defs.h>
|
#include <asm/arch/nand_defs.h>
|
||||||
#include <asm/arch/emif_defs.h>
|
#include <asm/arch/emif_defs.h>
|
||||||
|
|
||||||
|
/* Definitions for 4-bit hardware ECC */
|
||||||
|
#define NAND_TIMEOUT 10240
|
||||||
|
#define NAND_ECC_BUSY 0xC
|
||||||
|
#define NAND_4BITECC_MASK 0x03FF03FF
|
||||||
|
#define EMIF_NANDFSR_ECC_STATE_MASK 0x00000F00
|
||||||
|
#define ECC_STATE_NO_ERR 0x0
|
||||||
|
#define ECC_STATE_TOO_MANY_ERRS 0x1
|
||||||
|
#define ECC_STATE_ERR_CORR_COMP_P 0x2
|
||||||
|
#define ECC_STATE_ERR_CORR_COMP_N 0x3
|
||||||
|
|
||||||
static emif_registers *const emif_regs = (void *) DAVINCI_ASYNC_EMIF_CNTRL_BASE;
|
static emif_registers *const emif_regs = (void *) DAVINCI_ASYNC_EMIF_CNTRL_BASE;
|
||||||
|
|
||||||
static void nand_davinci_hwcontrol(struct mtd_info *mtd, int cmd, unsigned int ctrl)
|
static void nand_davinci_hwcontrol(struct mtd_info *mtd, int cmd, unsigned int ctrl)
|
||||||
|
@ -170,6 +180,268 @@ static int nand_davinci_correct_data(struct mtd_info *mtd, u_char *dat, u_char *
|
||||||
}
|
}
|
||||||
#endif /* CONFIG_SYS_NAND_HW_ECC */
|
#endif /* CONFIG_SYS_NAND_HW_ECC */
|
||||||
|
|
||||||
|
#ifdef CONFIG_SYS_NAND_4BIT_HW_ECC_OOBFIRST
|
||||||
|
static struct nand_ecclayout nand_davinci_4bit_layout_oobfirst = {
|
||||||
|
/*
|
||||||
|
* TI uses a different layout for 4K page deviecs. Since the
|
||||||
|
* eccpos filed can hold only a limited number of entries, adding
|
||||||
|
* support for 4K page will result in compilation warnings
|
||||||
|
* 4K Support will be added later
|
||||||
|
*/
|
||||||
|
#ifdef CONFIG_SYS_NAND_PAGE_2K
|
||||||
|
.eccbytes = 40,
|
||||||
|
.eccpos = {
|
||||||
|
24, 25, 26, 27, 28,
|
||||||
|
29, 30, 31, 32, 33, 34, 35, 36, 37, 38,
|
||||||
|
39, 40, 41, 42, 43, 44, 45, 46, 47, 48,
|
||||||
|
49, 50, 51, 52, 53, 54, 55, 56, 57, 58,
|
||||||
|
59, 60, 61, 62, 63,
|
||||||
|
},
|
||||||
|
.oobfree = {
|
||||||
|
{.offset = 2, .length = 22, },
|
||||||
|
},
|
||||||
|
#endif
|
||||||
|
};
|
||||||
|
#endif
|
||||||
|
|
||||||
|
static void nand_davinci_4bit_enable_hwecc(struct mtd_info *mtd, int mode)
|
||||||
|
{
|
||||||
|
u32 val;
|
||||||
|
|
||||||
|
switch (mode) {
|
||||||
|
case NAND_ECC_WRITE:
|
||||||
|
case NAND_ECC_READ:
|
||||||
|
/*
|
||||||
|
* Start a new ECC calculation for reading or writing 512 bytes
|
||||||
|
* of data.
|
||||||
|
*/
|
||||||
|
val = (emif_regs->NANDFCR & ~(3 << 4)) | (1 << 12);
|
||||||
|
emif_regs->NANDFCR = val;
|
||||||
|
break;
|
||||||
|
case NAND_ECC_READSYN:
|
||||||
|
val = emif_regs->NAND4BITECC1;
|
||||||
|
break;
|
||||||
|
default:
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
static u32 nand_davinci_4bit_readecc(struct mtd_info *mtd, unsigned int ecc[4])
|
||||||
|
{
|
||||||
|
ecc[0] = emif_regs->NAND4BITECC1 & NAND_4BITECC_MASK;
|
||||||
|
ecc[1] = emif_regs->NAND4BITECC2 & NAND_4BITECC_MASK;
|
||||||
|
ecc[2] = emif_regs->NAND4BITECC3 & NAND_4BITECC_MASK;
|
||||||
|
ecc[3] = emif_regs->NAND4BITECC4 & NAND_4BITECC_MASK;
|
||||||
|
|
||||||
|
return 0;
|
||||||
|
}
|
||||||
|
|
||||||
|
static int nand_davinci_4bit_calculate_ecc(struct mtd_info *mtd,
|
||||||
|
const uint8_t *dat,
|
||||||
|
uint8_t *ecc_code)
|
||||||
|
{
|
||||||
|
unsigned int hw_4ecc[4] = { 0, 0, 0, 0 };
|
||||||
|
unsigned int const1 = 0, const2 = 0;
|
||||||
|
unsigned char count1 = 0;
|
||||||
|
|
||||||
|
nand_davinci_4bit_readecc(mtd, hw_4ecc);
|
||||||
|
|
||||||
|
/*Convert 10 bit ecc value to 8 bit */
|
||||||
|
for (count1 = 0; count1 < 2; count1++) {
|
||||||
|
const2 = count1 * 5;
|
||||||
|
const1 = count1 * 2;
|
||||||
|
|
||||||
|
/* Take first 8 bits from val1 (count1=0) or val5 (count1=1) */
|
||||||
|
ecc_code[const2] = hw_4ecc[const1] & 0xFF;
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Take 2 bits as LSB bits from val1 (count1=0) or val5
|
||||||
|
* (count1=1) and 6 bits from val2 (count1=0) or
|
||||||
|
* val5 (count1=1)
|
||||||
|
*/
|
||||||
|
ecc_code[const2 + 1] =
|
||||||
|
((hw_4ecc[const1] >> 8) & 0x3) | ((hw_4ecc[const1] >> 14) &
|
||||||
|
0xFC);
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Take 4 bits from val2 (count1=0) or val5 (count1=1) and
|
||||||
|
* 4 bits from val3 (count1=0) or val6 (count1=1)
|
||||||
|
*/
|
||||||
|
ecc_code[const2 + 2] =
|
||||||
|
((hw_4ecc[const1] >> 22) & 0xF) |
|
||||||
|
((hw_4ecc[const1 + 1] << 4) & 0xF0);
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Take 6 bits from val3(count1=0) or val6 (count1=1) and
|
||||||
|
* 2 bits from val4 (count1=0) or val7 (count1=1)
|
||||||
|
*/
|
||||||
|
ecc_code[const2 + 3] =
|
||||||
|
((hw_4ecc[const1 + 1] >> 4) & 0x3F) |
|
||||||
|
((hw_4ecc[const1 + 1] >> 10) & 0xC0);
|
||||||
|
|
||||||
|
/* Take 8 bits from val4 (count1=0) or val7 (count1=1) */
|
||||||
|
ecc_code[const2 + 4] = (hw_4ecc[const1 + 1] >> 18) & 0xFF;
|
||||||
|
}
|
||||||
|
return 0;
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
static int nand_davinci_4bit_correct_data(struct mtd_info *mtd, uint8_t *dat,
|
||||||
|
uint8_t *read_ecc, uint8_t *calc_ecc)
|
||||||
|
{
|
||||||
|
struct nand_chip *this = mtd->priv;
|
||||||
|
unsigned short ecc_10bit[8] = { 0, 0, 0, 0, 0, 0, 0, 0 };
|
||||||
|
int i;
|
||||||
|
unsigned int hw_4ecc[4] = { 0, 0, 0, 0 }, iserror = 0;
|
||||||
|
unsigned short *pspare = NULL, *pspare1 = NULL;
|
||||||
|
unsigned int numerrors, erroraddress, errorvalue;
|
||||||
|
u32 val;
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Check for an ECC where all bytes are 0xFF. If this is the case, we
|
||||||
|
* will assume we are looking at an erased page and we should ignore
|
||||||
|
* the ECC.
|
||||||
|
*/
|
||||||
|
for (i = 0; i < 10; i++) {
|
||||||
|
if (read_ecc[i] != 0xFF)
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
if (i == 10)
|
||||||
|
return 0;
|
||||||
|
|
||||||
|
/* Convert 8 bit in to 10 bit */
|
||||||
|
pspare = (unsigned short *)&read_ecc[2];
|
||||||
|
pspare1 = (unsigned short *)&read_ecc[0];
|
||||||
|
|
||||||
|
/* Take 10 bits from 0th and 1st bytes */
|
||||||
|
ecc_10bit[0] = (*pspare1) & 0x3FF;
|
||||||
|
|
||||||
|
/* Take 6 bits from 1st byte and 4 bits from 2nd byte */
|
||||||
|
ecc_10bit[1] = (((*pspare1) >> 10) & 0x3F)
|
||||||
|
| (((pspare[0]) << 6) & 0x3C0);
|
||||||
|
|
||||||
|
/* Take 4 bits form 2nd bytes and 6 bits from 3rd bytes */
|
||||||
|
ecc_10bit[2] = ((pspare[0]) >> 4) & 0x3FF;
|
||||||
|
|
||||||
|
/*Take 2 bits from 3rd byte and 8 bits from 4th byte */
|
||||||
|
ecc_10bit[3] = (((pspare[0]) >> 14) & 0x3)
|
||||||
|
| ((((pspare[1])) << 2) & 0x3FC);
|
||||||
|
|
||||||
|
/* Take 8 bits from 5th byte and 2 bits from 6th byte */
|
||||||
|
ecc_10bit[4] = ((pspare[1]) >> 8)
|
||||||
|
| ((((pspare[2])) << 8) & 0x300);
|
||||||
|
|
||||||
|
/* Take 6 bits from 6th byte and 4 bits from 7th byte */
|
||||||
|
ecc_10bit[5] = (pspare[2] >> 2) & 0x3FF;
|
||||||
|
|
||||||
|
/* Take 4 bits from 7th byte and 6 bits from 8th byte */
|
||||||
|
ecc_10bit[6] = (((pspare[2]) >> 12) & 0xF)
|
||||||
|
| ((((pspare[3])) << 4) & 0x3F0);
|
||||||
|
|
||||||
|
/*Take 2 bits from 8th byte and 8 bits from 9th byte */
|
||||||
|
ecc_10bit[7] = ((pspare[3]) >> 6) & 0x3FF;
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Write the parity values in the NAND Flash 4-bit ECC Load register.
|
||||||
|
* Write each parity value one at a time starting from 4bit_ecc_val8
|
||||||
|
* to 4bit_ecc_val1.
|
||||||
|
*/
|
||||||
|
for (i = 7; i >= 0; i--)
|
||||||
|
emif_regs->NAND4BITECCLOAD = ecc_10bit[i];
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Perform a dummy read to the EMIF Revision Code and Status register.
|
||||||
|
* This is required to ensure time for syndrome calculation after
|
||||||
|
* writing the ECC values in previous step.
|
||||||
|
*/
|
||||||
|
|
||||||
|
val = emif_regs->NANDFSR;
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Read the syndrome from the NAND Flash 4-Bit ECC 1-4 registers.
|
||||||
|
* A syndrome value of 0 means no bit errors. If the syndrome is
|
||||||
|
* non-zero then go further otherwise return.
|
||||||
|
*/
|
||||||
|
nand_davinci_4bit_readecc(mtd, hw_4ecc);
|
||||||
|
|
||||||
|
if (hw_4ecc[0] == ECC_STATE_NO_ERR && hw_4ecc[1] == ECC_STATE_NO_ERR &&
|
||||||
|
hw_4ecc[2] == ECC_STATE_NO_ERR && hw_4ecc[3] == ECC_STATE_NO_ERR)
|
||||||
|
return 0;
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Clear any previous address calculation by doing a dummy read of an
|
||||||
|
* error address register.
|
||||||
|
*/
|
||||||
|
val = emif_regs->NANDERRADD1;
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Set the addr_calc_st bit(bit no 13) in the NAND Flash Control
|
||||||
|
* register to 1.
|
||||||
|
*/
|
||||||
|
emif_regs->NANDFCR |= 1 << 13;
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Wait for the corr_state field (bits 8 to 11)in the
|
||||||
|
* NAND Flash Status register to be equal to 0x0, 0x1, 0x2, or 0x3.
|
||||||
|
*/
|
||||||
|
i = NAND_TIMEOUT;
|
||||||
|
do {
|
||||||
|
val = emif_regs->NANDFSR;
|
||||||
|
val &= 0xc00;
|
||||||
|
i--;
|
||||||
|
} while ((i > 0) && val);
|
||||||
|
|
||||||
|
iserror = emif_regs->NANDFSR;
|
||||||
|
iserror &= EMIF_NANDFSR_ECC_STATE_MASK;
|
||||||
|
iserror = iserror >> 8;
|
||||||
|
|
||||||
|
/*
|
||||||
|
* ECC_STATE_TOO_MANY_ERRS (0x1) means errors cannot be
|
||||||
|
* corrected (five or more errors). The number of errors
|
||||||
|
* calculated (err_num field) differs from the number of errors
|
||||||
|
* searched. ECC_STATE_ERR_CORR_COMP_P (0x2) means error
|
||||||
|
* correction complete (errors on bit 8 or 9).
|
||||||
|
* ECC_STATE_ERR_CORR_COMP_N (0x3) means error correction
|
||||||
|
* complete (error exists).
|
||||||
|
*/
|
||||||
|
|
||||||
|
if (iserror == ECC_STATE_NO_ERR) {
|
||||||
|
val = emif_regs->NANDERRVAL1;
|
||||||
|
return 0;
|
||||||
|
} else if (iserror == ECC_STATE_TOO_MANY_ERRS) {
|
||||||
|
val = emif_regs->NANDERRVAL1;
|
||||||
|
return -1;
|
||||||
|
}
|
||||||
|
|
||||||
|
numerrors = ((emif_regs->NANDFSR >> 16) & 0x3) + 1;
|
||||||
|
|
||||||
|
/* Read the error address, error value and correct */
|
||||||
|
for (i = 0; i < numerrors; i++) {
|
||||||
|
if (i > 1) {
|
||||||
|
erroraddress =
|
||||||
|
((emif_regs->NANDERRADD2 >>
|
||||||
|
(16 * (i & 1))) & 0x3FF);
|
||||||
|
erroraddress = ((512 + 7) - erroraddress);
|
||||||
|
errorvalue =
|
||||||
|
((emif_regs->NANDERRVAL2 >>
|
||||||
|
(16 * (i & 1))) & 0xFF);
|
||||||
|
} else {
|
||||||
|
erroraddress =
|
||||||
|
((emif_regs->NANDERRADD1 >>
|
||||||
|
(16 * (i & 1))) & 0x3FF);
|
||||||
|
erroraddress = ((512 + 7) - erroraddress);
|
||||||
|
errorvalue =
|
||||||
|
((emif_regs->NANDERRVAL1 >>
|
||||||
|
(16 * (i & 1))) & 0xFF);
|
||||||
|
}
|
||||||
|
/* xor the corrupt data with error value */
|
||||||
|
if (erroraddress < 512)
|
||||||
|
dat[erroraddress] ^= errorvalue;
|
||||||
|
}
|
||||||
|
|
||||||
|
return numerrors;
|
||||||
|
}
|
||||||
|
|
||||||
static int nand_davinci_dev_ready(struct mtd_info *mtd)
|
static int nand_davinci_dev_ready(struct mtd_info *mtd)
|
||||||
{
|
{
|
||||||
return emif_regs->NANDFSR & 0x1;
|
return emif_regs->NANDFSR & 0x1;
|
||||||
|
@ -215,7 +487,7 @@ void davinci_nand_init(struct nand_chip *nand)
|
||||||
{
|
{
|
||||||
nand->chip_delay = 0;
|
nand->chip_delay = 0;
|
||||||
#ifdef CONFIG_SYS_NAND_USE_FLASH_BBT
|
#ifdef CONFIG_SYS_NAND_USE_FLASH_BBT
|
||||||
nand->options = NAND_USE_FLASH_BBT;
|
nand->options |= NAND_USE_FLASH_BBT;
|
||||||
#endif
|
#endif
|
||||||
#ifdef CONFIG_SYS_NAND_HW_ECC
|
#ifdef CONFIG_SYS_NAND_HW_ECC
|
||||||
nand->ecc.mode = NAND_ECC_HW;
|
nand->ecc.mode = NAND_ECC_HW;
|
||||||
|
@ -227,7 +499,15 @@ void davinci_nand_init(struct nand_chip *nand)
|
||||||
#else
|
#else
|
||||||
nand->ecc.mode = NAND_ECC_SOFT;
|
nand->ecc.mode = NAND_ECC_SOFT;
|
||||||
#endif /* CONFIG_SYS_NAND_HW_ECC */
|
#endif /* CONFIG_SYS_NAND_HW_ECC */
|
||||||
|
#ifdef CONFIG_SYS_NAND_4BIT_HW_ECC_OOBFIRST
|
||||||
|
nand->ecc.mode = NAND_ECC_HW_OOB_FIRST;
|
||||||
|
nand->ecc.size = 512;
|
||||||
|
nand->ecc.bytes = 10;
|
||||||
|
nand->ecc.calculate = nand_davinci_4bit_calculate_ecc;
|
||||||
|
nand->ecc.correct = nand_davinci_4bit_correct_data;
|
||||||
|
nand->ecc.hwctl = nand_davinci_4bit_enable_hwecc;
|
||||||
|
nand->ecc.layout = &nand_davinci_4bit_layout_oobfirst;
|
||||||
|
#endif
|
||||||
/* Set address of hardware control function */
|
/* Set address of hardware control function */
|
||||||
nand->cmd_ctrl = nand_davinci_hwcontrol;
|
nand->cmd_ctrl = nand_davinci_hwcontrol;
|
||||||
|
|
||||||
|
|
|
@ -55,6 +55,16 @@ typedef struct {
|
||||||
dv_reg NANDF2ECC;
|
dv_reg NANDF2ECC;
|
||||||
dv_reg NANDF3ECC;
|
dv_reg NANDF3ECC;
|
||||||
dv_reg NANDF4ECC;
|
dv_reg NANDF4ECC;
|
||||||
|
u_int8_t RSVD2[60];
|
||||||
|
dv_reg NAND4BITECCLOAD;
|
||||||
|
dv_reg NAND4BITECC1;
|
||||||
|
dv_reg NAND4BITECC2;
|
||||||
|
dv_reg NAND4BITECC3;
|
||||||
|
dv_reg NAND4BITECC4;
|
||||||
|
dv_reg NANDERRADD1;
|
||||||
|
dv_reg NANDERRADD2;
|
||||||
|
dv_reg NANDERRVAL1;
|
||||||
|
dv_reg NANDERRVAL2;
|
||||||
} emif_registers;
|
} emif_registers;
|
||||||
|
|
||||||
typedef emif_registers *emifregs;
|
typedef emif_registers *emifregs;
|
||||||
|
|
Loading…
Reference in a new issue