acpi: Add support for a generic power sequence

Add a way for devices to enable and disable themselves using ACPI code
that updates GPIOs. This takes several timing parameters and supports
enable, reset and stop.

Signed-off-by: Simon Glass <sjg@chromium.org>
Reviewed-by: Wolfgang Wallner <wolfgang.wallner@br-automation.com>
Reviewed-by: Bin Meng <bmeng.cn@gmail.com>
This commit is contained in:
Simon Glass 2020-07-07 13:12:02 -06:00 committed by Bin Meng
parent f8054dd8ba
commit 740630ba73
3 changed files with 209 additions and 0 deletions

View file

@ -342,4 +342,46 @@ int acpi_device_write_i2c_dev(struct acpi_ctx *ctx, const struct udevice *dev);
*/ */
int acpi_device_write_spi_dev(struct acpi_ctx *ctx, const struct udevice *dev); int acpi_device_write_spi_dev(struct acpi_ctx *ctx, const struct udevice *dev);
/**
* acpi_device_add_power_res() - Add a basic PowerResource block for a device
*
* This includes GPIOs to control enable, reset and stop operation of the
* device. Each GPIO is optional, but at least one must be provided.
* This can be applied to any device that has power control, so is fairly
* generic.
*
* Reset - Put the device into / take the device out of reset.
* Enable - Enable / disable power to device.
* Stop - Stop / start operation of device.
*
* @ctx: ACPI context pointer
* @tx_state_val: Mask to use to toggle the TX state on the GPIO pin, e,g.
* PAD_CFG0_TX_STATE
* @dw0_read: Name to use to read dw0, e.g. "\\_SB.GPC0"
* @dw0_write: Name to use to read dw0, e.g. "\\_SB.SPC0"
* @reset_gpio: GPIO used to take device out of reset or to put it into reset
* @reset_delay_ms: Delay to be inserted after device is taken out of reset
* (_ON method delay)
* @reset_off_delay_ms: Delay to be inserted after device is put into reset
* (_OFF method delay)
* @enable_gpio: GPIO used to enable device
* @enable_delay_ms: Delay to be inserted after device is enabled
* @enable_off_delay_ms: Delay to be inserted after device is disabled
* (_OFF method delay)
* @stop_gpio: GPIO used to stop operation of device
* @stop_delay_ms: Delay to be inserted after disabling stop (_ON method delay)
* @stop_off_delay_ms: Delay to be inserted after enabling stop.
* (_OFF method delay)
*
* @return 0 if OK, -ve if at least one GPIO is not provided
*/
int acpi_device_add_power_res(struct acpi_ctx *ctx, u32 tx_state_val,
const char *dw0_read, const char *dw0_write,
const struct gpio_desc *reset_gpio,
uint reset_delay_ms, uint reset_off_delay_ms,
const struct gpio_desc *enable_gpio,
uint enable_delay_ms, uint enable_off_delay_ms,
const struct gpio_desc *stop_gpio,
uint stop_delay_ms, uint stop_off_delay_ms);
#endif #endif

View file

@ -386,6 +386,105 @@ int acpi_device_write_interrupt_or_gpio(struct acpi_ctx *ctx,
return pin; return pin;
} }
/* PowerResource() with Enable and/or Reset control */
int acpi_device_add_power_res(struct acpi_ctx *ctx, u32 tx_state_val,
const char *dw0_read, const char *dw0_write,
const struct gpio_desc *reset_gpio,
uint reset_delay_ms, uint reset_off_delay_ms,
const struct gpio_desc *enable_gpio,
uint enable_delay_ms, uint enable_off_delay_ms,
const struct gpio_desc *stop_gpio,
uint stop_delay_ms, uint stop_off_delay_ms)
{
static const char *const power_res_dev_states[] = { "_PR0", "_PR3" };
struct acpi_gpio reset, enable, stop;
bool has_reset, has_enable, has_stop;
int ret;
gpio_get_acpi(reset_gpio, &reset);
gpio_get_acpi(enable_gpio, &enable);
gpio_get_acpi(stop_gpio, &stop);
has_reset = reset.pins[0];
has_enable = enable.pins[0];
has_stop = stop.pins[0];
if (!has_reset && !has_enable && !has_stop)
return -EINVAL;
/* PowerResource (PRIC, 0, 0) */
acpigen_write_power_res(ctx, "PRIC", 0, 0, power_res_dev_states,
ARRAY_SIZE(power_res_dev_states));
/* Method (_STA, 0, NotSerialized) { Return (0x1) } */
acpigen_write_sta(ctx, 0x1);
/* Method (_ON, 0, Serialized) */
acpigen_write_method_serialized(ctx, "_ON", 0);
if (reset_gpio) {
ret = acpigen_set_enable_tx_gpio(ctx, tx_state_val, dw0_read,
dw0_write, &reset, true);
if (ret)
return log_msg_ret("reset1", ret);
}
if (has_enable) {
ret = acpigen_set_enable_tx_gpio(ctx, tx_state_val, dw0_read,
dw0_write, &enable, true);
if (ret)
return log_msg_ret("enable1", ret);
if (enable_delay_ms)
acpigen_write_sleep(ctx, enable_delay_ms);
}
if (has_reset) {
ret = acpigen_set_enable_tx_gpio(ctx, tx_state_val, dw0_read,
dw0_write, &reset, false);
if (ret)
return log_msg_ret("reset2", ret);
if (reset_delay_ms)
acpigen_write_sleep(ctx, reset_delay_ms);
}
if (has_stop) {
ret = acpigen_set_enable_tx_gpio(ctx, tx_state_val, dw0_read,
dw0_write, &stop, false);
if (ret)
return log_msg_ret("stop1", ret);
if (stop_delay_ms)
acpigen_write_sleep(ctx, stop_delay_ms);
}
acpigen_pop_len(ctx); /* _ON method */
/* Method (_OFF, 0, Serialized) */
acpigen_write_method_serialized(ctx, "_OFF", 0);
if (has_stop) {
ret = acpigen_set_enable_tx_gpio(ctx, tx_state_val, dw0_read,
dw0_write, &stop, true);
if (ret)
return log_msg_ret("stop2", ret);
if (stop_off_delay_ms)
acpigen_write_sleep(ctx, stop_off_delay_ms);
}
if (has_reset) {
ret = acpigen_set_enable_tx_gpio(ctx, tx_state_val, dw0_read,
dw0_write, &reset, true);
if (ret)
return log_msg_ret("reset3", ret);
if (reset_off_delay_ms)
acpigen_write_sleep(ctx, reset_off_delay_ms);
}
if (has_enable) {
ret = acpigen_set_enable_tx_gpio(ctx, tx_state_val, dw0_read,
dw0_write, &enable, false);
if (ret)
return log_msg_ret("enable2", ret);
if (enable_off_delay_ms)
acpigen_write_sleep(ctx, enable_off_delay_ms);
}
acpigen_pop_len(ctx); /* _OFF method */
acpigen_pop_len(ctx); /* PowerResource PRIC */
return 0;
}
/* ACPI 6.3 section 6.4.3.8.2.1 - I2cSerialBus() */ /* ACPI 6.3 section 6.4.3.8.2.1 - I2cSerialBus() */
static void acpi_device_write_i2c(struct acpi_ctx *ctx, static void acpi_device_write_i2c(struct acpi_ctx *ctx,
const struct acpi_i2c *i2c) const struct acpi_i2c *i2c)

View file

@ -806,3 +806,71 @@ static int dm_test_acpi_gpio_toggle(struct unit_test_state *uts)
return 0; return 0;
} }
DM_TEST(dm_test_acpi_gpio_toggle, DM_TESTF_SCAN_PDATA | DM_TESTF_SCAN_FDT); DM_TEST(dm_test_acpi_gpio_toggle, DM_TESTF_SCAN_PDATA | DM_TESTF_SCAN_FDT);
/* Test writing ACPI code to output power-sequence info */
static int dm_test_acpi_power_seq(struct unit_test_state *uts)
{
struct gpio_desc reset, enable, stop;
const uint addr = 0xc00dc, addr_act_low = 0x80012;
const int txbit = BIT(2);
struct acpi_ctx *ctx;
struct udevice *dev;
u8 *ptr;
ut_assertok(acpi_test_alloc_context_size(&ctx, 400));
ut_assertok(uclass_get_device(UCLASS_TEST_FDT, 0, &dev));
ut_asserteq_str("a-test", dev->name);
ut_assertok(gpio_request_by_name(dev, "test2-gpios", 0, &reset, 0));
ut_assertok(gpio_request_by_name(dev, "test2-gpios", 1, &enable, 0));
ut_assertok(gpio_request_by_name(dev, "test2-gpios", 2, &stop, 0));
ptr = acpigen_get_current(ctx);
ut_assertok(acpi_device_add_power_res(ctx, txbit, "\\_SB.GPC0",
"\\_SB.SPC0", &reset, 2, 3,
&enable, 4, 5, &stop, 6, 7));
ut_asserteq(0x186, acpigen_get_current(ctx) - ptr);
ut_asserteq_strn("PRIC", (char *)ptr + 0x18);
/* First the 'ON' sequence - spot check */
ut_asserteq_strn("_ON_", (char *)ptr + 0x38);
/* reset set */
ut_asserteq(addr + reset.offset, get_unaligned((u32 *)(ptr + 0x49)));
ut_asserteq(OR_OP, ptr[0x52]);
/* enable set */
ut_asserteq(addr + enable.offset, get_unaligned((u32 *)(ptr + 0x72)));
ut_asserteq(OR_OP, ptr[0x7b]);
/* reset clear */
ut_asserteq(addr + reset.offset, get_unaligned((u32 *)(ptr + 0x9f)));
ut_asserteq(NOT_OP, ptr[0xa8]);
/* stop set (disable, active low) */
ut_asserteq(addr_act_low + stop.offset,
get_unaligned((u32 *)(ptr + 0xcf)));
ut_asserteq(OR_OP, ptr[0xd8]);
/* Now the 'OFF' sequence */
ut_asserteq_strn("_OFF", (char *)ptr + 0xf4);
/* stop clear (enable, active low) */
ut_asserteq(addr_act_low + stop.offset,
get_unaligned((u32 *)(ptr + 0x105)));
ut_asserteq(NOT_OP, ptr[0x10e]);
/* reset clear */
ut_asserteq(addr + reset.offset, get_unaligned((u32 *)(ptr + 0x135)));
ut_asserteq(OR_OP, ptr[0x13e]);
/* enable clear */
ut_asserteq(addr + enable.offset, get_unaligned((u32 *)(ptr + 0x162)));
ut_asserteq(NOT_OP, ptr[0x16b]);
free_context(&ctx);
return 0;
}
DM_TEST(dm_test_acpi_power_seq, DM_TESTF_SCAN_PDATA | DM_TESTF_SCAN_FDT);