- dm: core: Don't show an ACPI warning if there is no ordering
- x86: Enhance MTRR functionality to support multiple CPUs
This commit is contained in:
Tom Rini 2020-07-20 09:25:32 -04:00
commit 7303ba10a4
13 changed files with 924 additions and 185 deletions

View file

@ -603,6 +603,13 @@ config SMP
only one CPU will be enabled regardless of the number of CPUs
available.
config SMP_AP_WORK
bool
depends on SMP
help
Allow APs to do other work after initialisation instead of going
to sleep.
config MAX_CPUS
int "Maximum number of CPUs permitted"
depends on SMP

View file

@ -60,7 +60,7 @@ ifndef CONFIG_SYS_COREBOOT
obj-$(CONFIG_$(SPL_TPL_)X86_32BIT_INIT) += irq.o
endif
ifndef CONFIG_$(SPL_)X86_64
obj-$(CONFIG_SMP) += mp_init.o
obj-$(CONFIG_$(SPL_)SMP) += mp_init.o
endif
obj-y += mtrr.o
obj-$(CONFIG_PCI) += pci.o

View file

@ -15,6 +15,7 @@ config INTEL_APOLLOLAKE
select TPL_PCH_SUPPORT
select PCH_SUPPORT
select P2SB
select SMP_AP_WORK
imply ENABLE_MRC_CACHE
imply AHCI_PCI
imply SCSI

View file

@ -67,10 +67,13 @@ static const char *const x86_vendor_name[] = {
int __weak x86_cleanup_before_linux(void)
{
#ifdef CONFIG_BOOTSTAGE_STASH
int ret;
ret = mp_park_aps();
if (ret)
return log_msg_ret("park", ret);
bootstage_stash((void *)CONFIG_BOOTSTAGE_STASH_ADDR,
CONFIG_BOOTSTAGE_STASH_SIZE);
#endif
return 0;
}
@ -201,18 +204,19 @@ int last_stage_init(void)
write_tables();
#ifdef CONFIG_GENERATE_ACPI_TABLE
fadt = acpi_find_fadt();
if (IS_ENABLED(CONFIG_GENERATE_ACPI_TABLE)) {
fadt = acpi_find_fadt();
/* Don't touch ACPI hardware on HW reduced platforms */
if (fadt && !(fadt->flags & ACPI_FADT_HW_REDUCED_ACPI)) {
/*
* Other than waiting for OSPM to request us to switch to ACPI
* mode, do it by ourselves, since SMI will not be triggered.
*/
enter_acpi_mode(fadt->pm1a_cnt_blk);
/* Don't touch ACPI hardware on HW reduced platforms */
if (fadt && !(fadt->flags & ACPI_FADT_HW_REDUCED_ACPI)) {
/*
* Other than waiting for OSPM to request us to switch
* to ACPI * mode, do it by ourselves, since SMI will
* not be triggered.
*/
enter_acpi_mode(fadt->pm1a_cnt_blk);
}
}
#endif
return 0;
}
@ -220,19 +224,20 @@ int last_stage_init(void)
static int x86_init_cpus(void)
{
#ifdef CONFIG_SMP
debug("Init additional CPUs\n");
x86_mp_init();
#else
struct udevice *dev;
if (IS_ENABLED(CONFIG_SMP)) {
debug("Init additional CPUs\n");
x86_mp_init();
} else {
struct udevice *dev;
/*
* This causes the cpu-x86 driver to be probed.
* We don't check return value here as we want to allow boards
* which have not been converted to use cpu uclass driver to boot.
*/
uclass_first_device(UCLASS_CPU, &dev);
#endif
/*
* This causes the cpu-x86 driver to be probed.
* We don't check return value here as we want to allow boards
* which have not been converted to use cpu uclass driver to
* boot.
*/
uclass_first_device(UCLASS_CPU, &dev);
}
return 0;
}
@ -276,9 +281,8 @@ int reserve_arch(void)
if (IS_ENABLED(CONFIG_ENABLE_MRC_CACHE))
mrccache_reserve();
#ifdef CONFIG_SEABIOS
high_table_reserve();
#endif
if (IS_ENABLED(CONFIG_SEABIOS))
high_table_reserve();
if (IS_ENABLED(CONFIG_HAVE_ACPI_RESUME)) {
acpi_s3_reserve();

View file

@ -21,6 +21,7 @@
#include <common.h>
#include <cpu_func.h>
#include <init.h>
#include <log.h>
#include <malloc.h>
#include <spl.h>
#include <asm/control_regs.h>
@ -630,32 +631,15 @@ int cpu_jump_to_64bit_uboot(ulong target)
return -EFAULT;
}
#ifdef CONFIG_SMP
static int enable_smis(struct udevice *cpu, void *unused)
{
return 0;
}
static struct mp_flight_record mp_steps[] = {
MP_FR_BLOCK_APS(mp_init_cpu, NULL, mp_init_cpu, NULL),
/* Wait for APs to finish initialization before proceeding */
MP_FR_BLOCK_APS(NULL, NULL, enable_smis, NULL),
};
int x86_mp_init(void)
{
struct mp_params mp_params;
int ret;
mp_params.parallel_microcode_load = 0,
mp_params.flight_plan = &mp_steps[0];
mp_params.num_records = ARRAY_SIZE(mp_steps);
mp_params.microcode_pointer = 0;
if (mp_init(&mp_params)) {
ret = mp_init();
if (ret) {
printf("Warning: MP init failure\n");
return -EIO;
return log_ret(ret);
}
return 0;
}
#endif

View file

@ -15,6 +15,7 @@
#include <asm/atomic.h>
#include <asm/cpu.h>
#include <asm/interrupt.h>
#include <asm/io.h>
#include <asm/lapic.h>
#include <asm/microcode.h>
#include <asm/mp.h>
@ -31,29 +32,132 @@
DECLARE_GLOBAL_DATA_PTR;
/* Total CPUs include BSP */
static int num_cpus;
/*
* Setting up multiprocessing
*
* See https://www.intel.com/content/www/us/en/intelligent-systems/intel-boot-loader-development-kit/minimal-intel-architecture-boot-loader-paper.html
*
* Note that this file refers to the boot CPU (the one U-Boot is running on) as
* the BSP (BootStrap Processor) and the others as APs (Application Processors).
*
* This module works by loading some setup code into RAM at AP_DEFAULT_BASE and
* telling each AP to execute it. The code that each AP runs is in
* sipi_vector.S (see ap_start16) which includes a struct sipi_params at the
* end of it. Those parameters are set up by the C code.
* Setting up is handled by load_sipi_vector(). It inits the common block of
* parameters (sipi_params) which tell the APs what to do. This block includes
* microcode and the MTTRs (Memory-Type-Range Registers) from the main CPU.
* There is also an ap_count which each AP increments as it starts up, so the
* BSP can tell how many checked in.
*
* The APs are started with a SIPI (Startup Inter-Processor Interrupt) which
* tells an AP to start executing at a particular address, in this case
* AP_DEFAULT_BASE which contains the code copied from ap_start16. This protocol
* is handled by start_aps().
*
* After being started, each AP runs the code in ap_start16, switches to 32-bit
* mode, runs the code at ap_start, then jumps to c_handler which is ap_init().
* This runs a very simple 'flight plan' described in mp_steps(). This sets up
* the CPU and waits for further instructions by looking at its entry in
* ap_callbacks[]. Note that the flight plan is only actually run for each CPU
* in bsp_do_flight_plan(): once the BSP completes each flight record, it sets
* mp_flight_record->barrier to 1 to allow the APs to executed the record one
* by one.
*
* CPUS are numbered sequentially from 0 using the device tree:
*
* cpus {
* u-boot,dm-pre-reloc;
* #address-cells = <1>;
* #size-cells = <0>;
*
* cpu@0 {
* u-boot,dm-pre-reloc;
* device_type = "cpu";
* compatible = "intel,apl-cpu";
* reg = <0>;
* intel,apic-id = <0>;
* };
*
* cpu@1 {
* device_type = "cpu";
* compatible = "intel,apl-cpu";
* reg = <1>;
* intel,apic-id = <2>;
* };
*
* Here the 'reg' property is the CPU number and then is placed in dev->req_seq
* so that we can index into ap_callbacks[] using that. The APIC ID is different
* and may not be sequential (it typically is if hyperthreading is supported).
*
* Once APs are inited they wait in ap_wait_for_instruction() for instructions.
* Instructions come in the form of a function to run. This logic is in
* mp_run_on_cpus() which supports running on any one AP, all APs, just the BSP
* or all CPUs. The BSP logic is handled directly in mp_run_on_cpus(), by
* calling the function. For the APs, callback information is stored in a
* single, common struct mp_callback and a pointer to this is written to each
* AP's slot in ap_callbacks[] by run_ap_work(). All APs get the message even
* if it is only for one of them. When an AP notices a message it checks whether
* it should call the function (see check in ap_wait_for_instruction()) and then
* does so if needed. After that it sets its slot to NULL to indicate it is
* done.
*
* While U-Boot is running it can use mp_run_on_cpus() to run code on the APs.
* An example of this is the 'mtrr' command which allows reading and changing
* the MTRRs on all CPUs.
*
* Before U-Boot exits it calls mp_park_aps() which tells all CPUs to halt by
* executing a 'hlt' instruction. That allows them to be used by Linux when it
* starts up.
*/
/* This also needs to match the sipi.S assembly code for saved MSR encoding */
struct saved_msr {
struct __packed saved_msr {
uint32_t index;
uint32_t lo;
uint32_t hi;
} __packed;
};
/**
* struct mp_flight_plan - Holds the flight plan
*
* @num_records: Number of flight records
* @records: Pointer to each record
*/
struct mp_flight_plan {
int num_records;
struct mp_flight_record *records;
};
/**
* struct mp_callback - Callback information for APs
*
* @func: Function to run
* @arg: Argument to pass to the function
* @logical_cpu_number: Either a CPU number (i.e. dev->req_seq) or a special
* value like MP_SELECT_BSP. It tells the AP whether it should process this
* callback
*/
struct mp_callback {
mp_run_func func;
void *arg;
int logical_cpu_number;
};
/* Stores the flight plan so that APs can find it */
static struct mp_flight_plan mp_info;
struct cpu_map {
struct udevice *dev;
int apic_id;
int err_code;
};
/*
* ap_callbacks - Callback mailbox array
*
* Array of callback, one entry for each available CPU, indexed by the CPU
* number, which is dev->req_seq. The entry for the main CPU is never used.
* When this is NULL, there is no pending work for the CPU to run. When
* non-NULL it points to the mp_callback structure. This is shared between all
* CPUs, so should only be written by the main CPU.
*/
static struct mp_callback **ap_callbacks;
static inline void barrier_wait(atomic_t *b)
{
@ -151,11 +255,12 @@ static void ap_init(unsigned int cpu_index)
debug("AP: slot %d apic_id %x, dev %s\n", cpu_index, apic_id,
dev ? dev->name : "(apic_id not found)");
/* Walk the flight plan */
/*
* Walk the flight plan, which only returns if CONFIG_SMP_AP_WORK is not
* enabled
*/
ap_do_flight_plan(dev);
/* Park the AP */
debug("parking\n");
done:
stop_this_cpu();
}
@ -309,13 +414,26 @@ static int apic_wait_timeout(int total_delay, const char *msg)
return 0;
}
static int start_aps(int ap_count, atomic_t *num_aps)
/**
* start_aps() - Start up the APs and count how many we find
*
* This is called on the boot processor to start up all the other processors
* (here called APs).
*
* @num_aps: Number of APs we expect to find
* @ap_count: Initially zero. Incremented by this function for each AP found
* @return 0 if all APs were set up correctly or there are none to set up,
* -ENOSPC if the SIPI vector is too high in memory,
* -ETIMEDOUT if the ICR is busy or the second SIPI fails to complete
* -EIO if not all APs check in correctly
*/
static int start_aps(int num_aps, atomic_t *ap_count)
{
int sipi_vector;
/* Max location is 4KiB below 1MiB */
const int max_vector_loc = ((1 << 20) - (1 << 12)) >> 12;
if (ap_count == 0)
if (num_aps == 0)
return 0;
/* The vector is sent as a 4k aligned address in one byte */
@ -327,7 +445,7 @@ static int start_aps(int ap_count, atomic_t *num_aps)
return -ENOSPC;
}
debug("Attempting to start %d APs\n", ap_count);
debug("Attempting to start %d APs\n", num_aps);
if (apic_wait_timeout(1000, "ICR not to be busy"))
return -ETIMEDOUT;
@ -350,7 +468,7 @@ static int start_aps(int ap_count, atomic_t *num_aps)
return -ETIMEDOUT;
/* Wait for CPUs to check in up to 200 us */
wait_for_aps(num_aps, ap_count, 200, 15);
wait_for_aps(ap_count, num_aps, 200, 15);
/* Send 2nd SIPI */
if (apic_wait_timeout(1000, "ICR not to be busy"))
@ -363,25 +481,35 @@ static int start_aps(int ap_count, atomic_t *num_aps)
return -ETIMEDOUT;
/* Wait for CPUs to check in */
if (wait_for_aps(num_aps, ap_count, 10000, 50)) {
if (wait_for_aps(ap_count, num_aps, 10000, 50)) {
debug("Not all APs checked in: %d/%d\n",
atomic_read(num_aps), ap_count);
atomic_read(ap_count), num_aps);
return -EIO;
}
return 0;
}
static int bsp_do_flight_plan(struct udevice *cpu, struct mp_params *mp_params)
/**
* bsp_do_flight_plan() - Do the flight plan on the BSP
*
* This runs the flight plan on the main CPU used to boot U-Boot
*
* @cpu: Device for the main CPU
* @plan: Flight plan to run
* @num_aps: Number of APs (CPUs other than the BSP)
* @returns 0 on success, -ETIMEDOUT if an AP failed to come up
*/
static int bsp_do_flight_plan(struct udevice *cpu, struct mp_flight_plan *plan,
int num_aps)
{
int i;
int ret = 0;
const int timeout_us = 100000;
const int step_us = 100;
int num_aps = num_cpus - 1;
for (i = 0; i < mp_params->num_records; i++) {
struct mp_flight_record *rec = &mp_params->flight_plan[i];
for (i = 0; i < plan->num_records; i++) {
struct mp_flight_record *rec = &plan->records[i];
/* Wait for APs if the record is not released */
if (atomic_read(&rec->barrier) == 0) {
@ -398,12 +526,22 @@ static int bsp_do_flight_plan(struct udevice *cpu, struct mp_params *mp_params)
release_barrier(&rec->barrier);
}
return ret;
}
static int init_bsp(struct udevice **devp)
/**
* get_bsp() - Get information about the bootstrap processor
*
* @devp: If non-NULL, returns CPU device corresponding to the BSP
* @cpu_countp: If non-NULL, returns the total number of CPUs
* @return CPU number of the BSP, or -ve on error. If multiprocessing is not
* enabled, returns 0
*/
static int get_bsp(struct udevice **devp, int *cpu_countp)
{
char processor_name[CPU_MAX_NAME_LEN];
struct udevice *dev;
int apic_id;
int ret;
@ -411,61 +549,333 @@ static int init_bsp(struct udevice **devp)
debug("CPU: %s\n", processor_name);
apic_id = lapicid();
ret = find_cpu_by_apic_id(apic_id, devp);
if (ret) {
ret = find_cpu_by_apic_id(apic_id, &dev);
if (ret < 0) {
printf("Cannot find boot CPU, APIC ID %d\n", apic_id);
return ret;
}
ret = cpu_get_count(dev);
if (ret < 0)
return log_msg_ret("count", ret);
if (devp)
*devp = dev;
if (cpu_countp)
*cpu_countp = ret;
return dev->req_seq >= 0 ? dev->req_seq : 0;
}
/**
* read_callback() - Read the pointer in a callback slot
*
* This is called by APs to read their callback slot to see if there is a
* pointer to new instructions
*
* @slot: Pointer to the AP's callback slot
* @return value of that pointer
*/
static struct mp_callback *read_callback(struct mp_callback **slot)
{
dmb();
return *slot;
}
/**
* store_callback() - Store a pointer to the callback slot
*
* This is called by APs to write NULL into the callback slot when they have
* finished the work requested by the BSP.
*
* @slot: Pointer to the AP's callback slot
* @val: Value to write (e.g. NULL)
*/
static void store_callback(struct mp_callback **slot, struct mp_callback *val)
{
*slot = val;
dmb();
}
/**
* run_ap_work() - Run a callback on selected APs
*
* This writes @callback to all APs and waits for them all to acknowledge it,
* Note that whether each AP actually calls the callback depends on the value
* of logical_cpu_number (see struct mp_callback). The logical CPU number is
* the CPU device's req->seq value.
*
* @callback: Callback information to pass to all APs
* @bsp: CPU device for the BSP
* @num_cpus: The number of CPUs in the system (= number of APs + 1)
* @expire_ms: Timeout to wait for all APs to finish, in milliseconds, or 0 for
* no timeout
* @return 0 if OK, -ETIMEDOUT if one or more APs failed to respond in time
*/
static int run_ap_work(struct mp_callback *callback, struct udevice *bsp,
int num_cpus, uint expire_ms)
{
int cur_cpu = bsp->req_seq;
int num_aps = num_cpus - 1; /* number of non-BSPs to get this message */
int cpus_accepted;
ulong start;
int i;
if (!IS_ENABLED(CONFIG_SMP_AP_WORK)) {
printf("APs already parked. CONFIG_SMP_AP_WORK not enabled\n");
return -ENOTSUPP;
}
/* Signal to all the APs to run the func. */
for (i = 0; i < num_cpus; i++) {
if (cur_cpu != i)
store_callback(&ap_callbacks[i], callback);
}
mfence();
/* Wait for all the APs to signal back that call has been accepted. */
start = get_timer(0);
do {
mdelay(1);
cpus_accepted = 0;
for (i = 0; i < num_cpus; i++) {
if (cur_cpu == i)
continue;
if (!read_callback(&ap_callbacks[i]))
cpus_accepted++;
}
if (expire_ms && get_timer(start) >= expire_ms) {
log(UCLASS_CPU, LOGL_CRIT,
"AP call expired; %d/%d CPUs accepted\n",
cpus_accepted, num_aps);
return -ETIMEDOUT;
}
} while (cpus_accepted != num_aps);
/* Make sure we can see any data written by the APs */
mfence();
return 0;
}
/**
* ap_wait_for_instruction() - Wait for and process requests from the main CPU
*
* This is called by APs (here, everything other than the main boot CPU) to
* await instructions. They arrive in the form of a function call and argument,
* which is then called. This uses a simple mailbox with atomic read/set
*
* @cpu: CPU that is waiting
* @unused: Optional argument provided by struct mp_flight_record, not used here
* @return Does not return
*/
static int ap_wait_for_instruction(struct udevice *cpu, void *unused)
{
struct mp_callback lcb;
struct mp_callback **per_cpu_slot;
if (!IS_ENABLED(CONFIG_SMP_AP_WORK))
return 0;
per_cpu_slot = &ap_callbacks[cpu->req_seq];
while (1) {
struct mp_callback *cb = read_callback(per_cpu_slot);
if (!cb) {
asm ("pause");
continue;
}
/* Copy to local variable before using the value */
memcpy(&lcb, cb, sizeof(lcb));
mfence();
if (lcb.logical_cpu_number == MP_SELECT_ALL ||
lcb.logical_cpu_number == MP_SELECT_APS ||
cpu->req_seq == lcb.logical_cpu_number)
lcb.func(lcb.arg);
/* Indicate we are finished */
store_callback(per_cpu_slot, NULL);
}
return 0;
}
int mp_init(struct mp_params *p)
static int mp_init_cpu(struct udevice *cpu, void *unused)
{
int num_aps;
atomic_t *ap_count;
struct udevice *cpu;
struct cpu_platdata *plat = dev_get_parent_platdata(cpu);
plat->ucode_version = microcode_read_rev();
plat->device_id = gd->arch.x86_device;
return device_probe(cpu);
}
static struct mp_flight_record mp_steps[] = {
MP_FR_BLOCK_APS(mp_init_cpu, NULL, mp_init_cpu, NULL),
MP_FR_BLOCK_APS(ap_wait_for_instruction, NULL, NULL, NULL),
};
int mp_run_on_cpus(int cpu_select, mp_run_func func, void *arg)
{
struct mp_callback lcb = {
.func = func,
.arg = arg,
.logical_cpu_number = cpu_select,
};
struct udevice *dev;
int num_cpus;
int ret;
/* This will cause the CPUs devices to be bound */
struct uclass *uc;
ret = uclass_get(UCLASS_CPU, &uc);
ret = get_bsp(&dev, &num_cpus);
if (ret < 0)
return log_msg_ret("bsp", ret);
if (cpu_select == MP_SELECT_ALL || cpu_select == MP_SELECT_BSP ||
cpu_select == ret) {
/* Run on BSP first */
func(arg);
}
if (!IS_ENABLED(CONFIG_SMP_AP_WORK) ||
!(gd->flags & GD_FLG_SMP_READY)) {
/* Allow use of this function on the BSP only */
if (cpu_select == MP_SELECT_BSP || !cpu_select)
return 0;
return -ENOTSUPP;
}
/* Allow up to 1 second for all APs to finish */
ret = run_ap_work(&lcb, dev, num_cpus, 1000 /* ms */);
if (ret)
return log_msg_ret("aps", ret);
return 0;
}
static void park_this_cpu(void *unused)
{
stop_this_cpu();
}
int mp_park_aps(void)
{
int ret;
ret = mp_run_on_cpus(MP_SELECT_APS, park_this_cpu, NULL);
if (ret)
return log_ret(ret);
return 0;
}
int mp_first_cpu(int cpu_select)
{
struct udevice *dev;
int num_cpus;
int ret;
/*
* This assumes that CPUs are numbered from 0. This function tries to
* avoid assuming the CPU 0 is the boot CPU
*/
if (cpu_select == MP_SELECT_ALL)
return 0; /* start with the first one */
ret = get_bsp(&dev, &num_cpus);
if (ret < 0)
return log_msg_ret("bsp", ret);
/* Return boot CPU if requested */
if (cpu_select == MP_SELECT_BSP)
return ret;
/* Return something other than the boot CPU, if APs requested */
if (cpu_select == MP_SELECT_APS && num_cpus > 1)
return ret == 0 ? 1 : 0;
/* Try to check for an invalid value */
if (cpu_select < 0 || cpu_select >= num_cpus)
return -EINVAL;
return cpu_select; /* return the only selected one */
}
int mp_next_cpu(int cpu_select, int prev_cpu)
{
struct udevice *dev;
int num_cpus;
int ret;
int bsp;
/* If we selected the BSP or a particular single CPU, we are done */
if (!IS_ENABLED(CONFIG_SMP_AP_WORK) || cpu_select == MP_SELECT_BSP ||
cpu_select >= 0)
return -EFBIG;
/* Must be doing MP_SELECT_ALL or MP_SELECT_APS; return the next CPU */
ret = get_bsp(&dev, &num_cpus);
if (ret < 0)
return log_msg_ret("bsp", ret);
bsp = ret;
/* Move to the next CPU */
assert(prev_cpu >= 0);
ret = prev_cpu + 1;
/* Skip the BSP if needed */
if (cpu_select == MP_SELECT_APS && ret == bsp)
ret++;
if (ret >= num_cpus)
return -EFBIG;
return ret;
}
int mp_init(void)
{
int num_aps, num_cpus;
atomic_t *ap_count;
struct udevice *cpu;
struct uclass *uc;
int ret;
if (IS_ENABLED(CONFIG_QFW)) {
ret = qemu_cpu_fixup();
if (ret)
return ret;
}
ret = init_bsp(&cpu);
if (ret) {
/*
* Multiple APs are brought up simultaneously and they may get the same
* seq num in the uclass_resolve_seq() during device_probe(). To avoid
* this, set req_seq to the reg number in the device tree in advance.
*/
uclass_id_foreach_dev(UCLASS_CPU, cpu, uc)
cpu->req_seq = dev_read_u32_default(cpu, "reg", -1);
ret = get_bsp(&cpu, &num_cpus);
if (ret < 0) {
debug("Cannot init boot CPU: err=%d\n", ret);
return ret;
}
if (p == NULL || p->flight_plan == NULL || p->num_records < 1) {
printf("Invalid MP parameters\n");
return -EINVAL;
}
num_cpus = cpu_get_count(cpu);
if (num_cpus < 0) {
debug("Cannot get number of CPUs: err=%d\n", num_cpus);
return num_cpus;
}
if (num_cpus < 2)
debug("Warning: Only 1 CPU is detected\n");
ret = check_cpu_devices(num_cpus);
if (ret)
debug("Warning: Device tree does not describe all CPUs. Extra ones will not be started correctly\n");
log_warning("Warning: Device tree does not describe all CPUs. Extra ones will not be started correctly\n");
ap_callbacks = calloc(num_cpus, sizeof(struct mp_callback *));
if (!ap_callbacks)
return -ENOMEM;
/* Copy needed parameters so that APs have a reference to the plan */
mp_info.num_records = p->num_records;
mp_info.records = p->flight_plan;
mp_info.num_records = ARRAY_SIZE(mp_steps);
mp_info.records = mp_steps;
/* Load the SIPI vector */
ret = load_sipi_vector(&ap_count, num_cpus);
@ -489,28 +899,12 @@ int mp_init(struct mp_params *p)
}
/* Walk the flight plan for the BSP */
ret = bsp_do_flight_plan(cpu, p);
ret = bsp_do_flight_plan(cpu, &mp_info, num_aps);
if (ret) {
debug("CPU init failed: err=%d\n", ret);
return ret;
}
gd->flags |= GD_FLG_SMP_READY;
return 0;
}
int mp_init_cpu(struct udevice *cpu, void *unused)
{
struct cpu_platdata *plat = dev_get_parent_platdata(cpu);
/*
* Multiple APs are brought up simultaneously and they may get the same
* seq num in the uclass_resolve_seq() during device_probe(). To avoid
* this, set req_seq to the reg number in the device tree in advance.
*/
cpu->req_seq = fdtdec_get_int(gd->fdt_blob, dev_of_offset(cpu), "reg",
-1);
plat->ucode_version = microcode_read_rev();
plat->device_id = gd->arch.x86_device;
return device_probe(cpu);
}

View file

@ -21,6 +21,7 @@
#include <log.h>
#include <asm/cache.h>
#include <asm/io.h>
#include <asm/mp.h>
#include <asm/msr.h>
#include <asm/mtrr.h>
@ -63,10 +64,71 @@ static void set_var_mtrr(uint reg, uint type, uint64_t start, uint64_t size)
wrmsrl(MTRR_PHYS_MASK_MSR(reg), mask | MTRR_PHYS_MASK_VALID);
}
void mtrr_read_all(struct mtrr_info *info)
{
int i;
for (i = 0; i < MTRR_COUNT; i++) {
info->mtrr[i].base = native_read_msr(MTRR_PHYS_BASE_MSR(i));
info->mtrr[i].mask = native_read_msr(MTRR_PHYS_MASK_MSR(i));
}
}
void mtrr_write_all(struct mtrr_info *info)
{
struct mtrr_state state;
int i;
for (i = 0; i < MTRR_COUNT; i++) {
mtrr_open(&state, true);
wrmsrl(MTRR_PHYS_BASE_MSR(i), info->mtrr[i].base);
wrmsrl(MTRR_PHYS_MASK_MSR(i), info->mtrr[i].mask);
mtrr_close(&state, true);
}
}
static void write_mtrrs(void *arg)
{
struct mtrr_info *info = arg;
mtrr_write_all(info);
}
static void read_mtrrs(void *arg)
{
struct mtrr_info *info = arg;
mtrr_read_all(info);
}
/**
* mtrr_copy_to_aps() - Copy the MTRRs from the boot CPU to other CPUs
*
* @return 0 on success, -ve on failure
*/
static int mtrr_copy_to_aps(void)
{
struct mtrr_info info;
int ret;
ret = mp_run_on_cpus(MP_SELECT_BSP, read_mtrrs, &info);
if (ret == -ENXIO)
return 0;
else if (ret)
return log_msg_ret("bsp", ret);
ret = mp_run_on_cpus(MP_SELECT_APS, write_mtrrs, &info);
if (ret)
return log_msg_ret("bsp", ret);
return 0;
}
int mtrr_commit(bool do_caches)
{
struct mtrr_request *req = gd->arch.mtrr_req;
struct mtrr_state state;
int ret;
int i;
debug("%s: enabled=%d, count=%d\n", __func__, gd->arch.has_mtrr,
@ -88,6 +150,12 @@ int mtrr_commit(bool do_caches)
mtrr_close(&state, do_caches);
debug("mtrr done\n");
if (gd->flags & GD_FLG_RELOC) {
ret = mtrr_copy_to_aps();
if (ret)
return log_msg_ret("copy", ret);
}
return 0;
}
@ -153,3 +221,84 @@ int mtrr_set_next_var(uint type, uint64_t start, uint64_t size)
return 0;
}
/** enum mtrr_opcode - supported operations for mtrr_do_oper() */
enum mtrr_opcode {
MTRR_OP_SET,
MTRR_OP_SET_VALID,
};
/**
* struct mtrr_oper - An MTRR operation to perform on a CPU
*
* @opcode: Indicates operation to perform
* @reg: MTRR reg number to select (0-7, -1 = all)
* @valid: Valid value to write for MTRR_OP_SET_VALID
* @base: Base value to write for MTRR_OP_SET
* @mask: Mask value to write for MTRR_OP_SET
*/
struct mtrr_oper {
enum mtrr_opcode opcode;
int reg;
bool valid;
u64 base;
u64 mask;
};
static void mtrr_do_oper(void *arg)
{
struct mtrr_oper *oper = arg;
u64 mask;
switch (oper->opcode) {
case MTRR_OP_SET_VALID:
mask = native_read_msr(MTRR_PHYS_MASK_MSR(oper->reg));
if (oper->valid)
mask |= MTRR_PHYS_MASK_VALID;
else
mask &= ~MTRR_PHYS_MASK_VALID;
wrmsrl(MTRR_PHYS_MASK_MSR(oper->reg), mask);
break;
case MTRR_OP_SET:
wrmsrl(MTRR_PHYS_BASE_MSR(oper->reg), oper->base);
wrmsrl(MTRR_PHYS_MASK_MSR(oper->reg), oper->mask);
break;
}
}
static int mtrr_start_op(int cpu_select, struct mtrr_oper *oper)
{
struct mtrr_state state;
int ret;
mtrr_open(&state, true);
ret = mp_run_on_cpus(cpu_select, mtrr_do_oper, oper);
mtrr_close(&state, true);
if (ret)
return log_msg_ret("run", ret);
return 0;
}
int mtrr_set_valid(int cpu_select, int reg, bool valid)
{
struct mtrr_oper oper;
oper.opcode = MTRR_OP_SET_VALID;
oper.reg = reg;
oper.valid = valid;
return mtrr_start_op(cpu_select, &oper);
}
int mtrr_set(int cpu_select, int reg, u64 base, u64 mask)
{
struct mtrr_oper oper;
oper.opcode = MTRR_OP_SET;
oper.reg = reg;
oper.base = base;
oper.mask = mask;
return mtrr_start_op(cpu_select, &oper);
}

View file

@ -11,6 +11,17 @@
#include <asm/atomic.h>
#include <asm/cache.h>
enum {
/* Indicates that the function should run on all CPUs */
MP_SELECT_ALL = -1,
/* Run on boot CPUs */
MP_SELECT_BSP = -2,
/* Run on non-boot CPUs */
MP_SELECT_APS = -3,
};
typedef int (*mp_callback_t)(struct udevice *cpu, void *arg);
/*
@ -25,6 +36,14 @@ typedef int (*mp_callback_t)(struct udevice *cpu, void *arg);
*
* Note that ap_call() and bsp_call() can be NULL. In the NULL case the
* callback will just not be called.
*
* @barrier: Ensures that the BSP and AP don't run the flight record at the same
* time
* @cpus_entered: Counts the number of APs that have run this record
* @ap_call: Function for the APs to call
* @ap_arg: Argument to pass to @ap_call
* @bsp_call: Function for the BSP to call
* @bsp_arg: Argument to pass to @bsp_call
*/
struct mp_flight_record {
atomic_t barrier;
@ -51,21 +70,6 @@ struct mp_flight_record {
#define MP_FR_NOBLOCK_APS(ap_func, ap_arg, bsp_func, bsp_arg) \
MP_FLIGHT_RECORD(1, ap_func, ap_arg, bsp_func, bsp_arg)
/*
* The mp_params structure provides the arguments to the mp subsystem
* for bringing up APs.
*
* At present this is overkill for U-Boot, but it may make it easier to add
* SMM support.
*/
struct mp_params {
int parallel_microcode_load;
const void *microcode_pointer;
/* Flight plan for APs and BSP */
struct mp_flight_record *flight_plan;
int num_records;
};
/*
* mp_init() will set up the SIPI vector and bring up the APs according to
* mp_params. Each flight record will be executed according to the plan. Note
@ -85,12 +89,105 @@ struct mp_params {
*
* mp_init() returns < 0 on error, 0 on success.
*/
int mp_init(struct mp_params *params);
int mp_init(void);
/* Probes the CPU device */
int mp_init_cpu(struct udevice *cpu, void *unused);
/* Set up additional CPUs */
/**
* x86_mp_init() - Set up additional CPUs
*
* @returns < 0 on error, 0 on success.
*/
int x86_mp_init(void);
/**
* mp_run_func() - Function to call on the AP
*
* @arg: Argument to pass
*/
typedef void (*mp_run_func)(void *arg);
#if CONFIG_IS_ENABLED(SMP) && !CONFIG_IS_ENABLED(X86_64)
/**
* mp_run_on_cpus() - Run a function on one or all CPUs
*
* This does not return until all CPUs have completed the work
*
* Running on anything other than the boot CPU is only supported if
* CONFIG_SMP_AP_WORK is enabled
*
* @cpu_select: CPU to run on (its dev->req_seq value), or MP_SELECT_ALL for
* all, or MP_SELECT_BSP for BSP
* @func: Function to run
* @arg: Argument to pass to the function
* @return 0 on success, -ve on error
*/
int mp_run_on_cpus(int cpu_select, mp_run_func func, void *arg);
/**
* mp_park_aps() - Park the APs ready for the OS
*
* This halts all CPUs except the main one, ready for the OS to use them
*
* @return 0 if OK, -ve on error
*/
int mp_park_aps(void);
/**
* mp_first_cpu() - Get the first CPU to process, from a selection
*
* This is used to iterate through selected CPUs. Call this function first, then
* call mp_next_cpu() repeatedly (with the same @cpu_select) until it returns
* -EFBIG.
*
* @cpu_select: Selected CPUs (either a CPU number or MP_SELECT_...)
* @return next CPU number to run on (e.g. 0)
*/
int mp_first_cpu(int cpu_select);
/**
* mp_next_cpu() - Get the next CPU to process, from a selection
*
* This is used to iterate through selected CPUs. After first calling
* mp_first_cpu() once, call this function repeatedly until it returns -EFBIG.
*
* The value of @cpu_select must be the same for all calls and must match the
* value passed to mp_first_cpu(), otherwise the behaviour is undefined.
*
* @cpu_select: Selected CPUs (either a CPU number or MP_SELECT_...)
* @prev_cpu: Previous value returned by mp_first_cpu()/mp_next_cpu()
* @return next CPU number to run on (e.g. 0)
*/
int mp_next_cpu(int cpu_select, int prev_cpu);
#else
static inline int mp_run_on_cpus(int cpu_select, mp_run_func func, void *arg)
{
/* There is only one CPU, so just call the function here */
func(arg);
return 0;
}
static inline int mp_park_aps(void)
{
/* No APs to park */
return 0;
}
static inline int mp_first_cpu(int cpu_select)
{
/* We cannot run on any APs, nor a selected CPU */
return cpu_select == MP_SELECT_APS ? -EFBIG : MP_SELECT_BSP;
}
static inline int mp_next_cpu(int cpu_select, int prev_cpu)
{
/*
* When MP is not enabled, there is only one CPU and we did it in
* mp_first_cpu()
*/
return -EFBIG;
}
#endif
#endif /* _X86_MP_H_ */

View file

@ -70,6 +70,26 @@ struct mtrr_state {
bool enable_cache;
};
/**
* struct mtrr - Information about a single MTRR
*
* @base: Base address and MTRR_BASE_TYPE_MASK
* @mask: Mask and MTRR_PHYS_MASK_VALID
*/
struct mtrr {
u64 base;
u64 mask;
};
/**
* struct mtrr_info - Information about all MTRRs
*
* @mtrr: Information about each mtrr
*/
struct mtrr_info {
struct mtrr mtrr[MTRR_COUNT];
};
/**
* mtrr_open() - Prepare to adjust MTRRs
*
@ -129,6 +149,37 @@ int mtrr_commit(bool do_caches);
*/
int mtrr_set_next_var(uint type, uint64_t base, uint64_t size);
/**
* mtrr_read_all() - Save all the MTRRs
*
* This reads all MTRRs from the boot CPU into a struct so they can be loaded
* onto other CPUs
*
* @info: Place to put the MTRR info
*/
void mtrr_read_all(struct mtrr_info *info);
/**
* mtrr_set_valid() - Set the valid flag for a selected MTRR and CPU(s)
*
* @cpu_select: Selected CPUs (either a CPU number or MP_SELECT_...)
* @reg: MTRR register to write (0-7)
* @valid: Valid flag to write
* @return 0 on success, -ve on error
*/
int mtrr_set_valid(int cpu_select, int reg, bool valid);
/**
* mtrr_set() - Set the valid flag for a selected MTRR and CPU(s)
*
* @cpu_select: Selected CPUs (either a CPU number or MP_SELECT_...)
* @reg: MTRR register to write (0-7)
* @base: Base address and MTRR_BASE_TYPE_MASK
* @mask: Mask and MTRR_PHYS_MASK_VALID
* @return 0 on success, -ve on error
*/
int mtrr_set(int cpu_select, int reg, u64 base, u64 mask);
#endif
#if ((CONFIG_XIP_ROM_SIZE & (CONFIG_XIP_ROM_SIZE - 1)) != 0)

View file

@ -5,7 +5,9 @@
#include <common.h>
#include <command.h>
#include <log.h>
#include <asm/msr.h>
#include <asm/mp.h>
#include <asm/mtrr.h>
static const char *const mtrr_type_name[MTRR_TYPE_COUNT] = {
@ -18,19 +20,32 @@ static const char *const mtrr_type_name[MTRR_TYPE_COUNT] = {
"Back",
};
static int do_mtrr_list(void)
static void read_mtrrs(void *arg)
{
struct mtrr_info *info = arg;
mtrr_read_all(info);
}
static int do_mtrr_list(int cpu_select)
{
struct mtrr_info info;
int ret;
int i;
printf("Reg Valid Write-type %-16s %-16s %-16s\n", "Base ||",
"Mask ||", "Size ||");
memset(&info, '\0', sizeof(info));
ret = mp_run_on_cpus(cpu_select, read_mtrrs, &info);
if (ret)
return log_msg_ret("run", ret);
for (i = 0; i < MTRR_COUNT; i++) {
const char *type = "Invalid";
uint64_t base, mask, size;
bool valid;
base = native_read_msr(MTRR_PHYS_BASE_MSR(i));
mask = native_read_msr(MTRR_PHYS_MASK_MSR(i));
base = info.mtrr[i].base;
mask = info.mtrr[i].mask;
size = ~mask & ((1ULL << CONFIG_CPU_ADDR_BITS) - 1);
size |= (1 << 12) - 1;
size += 1;
@ -44,14 +59,14 @@ static int do_mtrr_list(void)
return 0;
}
static int do_mtrr_set(uint reg, int argc, char *const argv[])
static int do_mtrr_set(int cpu_select, uint reg, int argc, char *const argv[])
{
const char *typename = argv[0];
struct mtrr_state state;
uint32_t start, size;
uint64_t base, mask;
int i, type = -1;
bool valid;
int ret;
if (argc < 3)
return CMD_RET_USAGE;
@ -73,27 +88,9 @@ static int do_mtrr_set(uint reg, int argc, char *const argv[])
if (valid)
mask |= MTRR_PHYS_MASK_VALID;
mtrr_open(&state, true);
wrmsrl(MTRR_PHYS_BASE_MSR(reg), base);
wrmsrl(MTRR_PHYS_MASK_MSR(reg), mask);
mtrr_close(&state, true);
return 0;
}
static int mtrr_set_valid(int reg, bool valid)
{
struct mtrr_state state;
uint64_t mask;
mtrr_open(&state, true);
mask = native_read_msr(MTRR_PHYS_MASK_MSR(reg));
if (valid)
mask |= MTRR_PHYS_MASK_VALID;
else
mask &= ~MTRR_PHYS_MASK_VALID;
wrmsrl(MTRR_PHYS_MASK_MSR(reg), mask);
mtrr_close(&state, true);
ret = mtrr_set(cpu_select, reg, base, mask);
if (ret)
return CMD_RET_FAILURE;
return 0;
}
@ -101,39 +98,92 @@ static int mtrr_set_valid(int reg, bool valid)
static int do_mtrr(struct cmd_tbl *cmdtp, int flag, int argc,
char *const argv[])
{
const char *cmd;
int cmd;
int cpu_select;
uint reg;
int ret;
cmd = argv[1];
if (argc < 2 || *cmd == 'l')
return do_mtrr_list();
argc -= 2;
argv += 2;
if (argc <= 0)
return CMD_RET_USAGE;
reg = simple_strtoul(argv[0], NULL, 16);
if (reg >= MTRR_COUNT) {
printf("Invalid register number\n");
return CMD_RET_USAGE;
cpu_select = MP_SELECT_BSP;
if (argc >= 3 && !strcmp("-c", argv[1])) {
const char *cpustr;
cpustr = argv[2];
if (*cpustr == 'a')
cpu_select = MP_SELECT_ALL;
else
cpu_select = simple_strtol(cpustr, NULL, 16);
argc -= 2;
argv += 2;
}
argc--;
argv++;
cmd = argv[0] ? *argv[0] : 0;
if (argc < 1 || !cmd) {
cmd = 'l';
reg = 0;
} else {
if (argc < 2)
return CMD_RET_USAGE;
reg = simple_strtoul(argv[1], NULL, 16);
if (reg >= MTRR_COUNT) {
printf("Invalid register number\n");
return CMD_RET_USAGE;
}
}
if (cmd == 'l') {
bool first;
int i;
i = mp_first_cpu(cpu_select);
if (i < 0) {
printf("Invalid CPU (err=%d)\n", i);
return CMD_RET_FAILURE;
}
first = true;
for (; i >= 0; i = mp_next_cpu(cpu_select, i)) {
if (!first)
printf("\n");
printf("CPU %d:\n", i);
ret = do_mtrr_list(i);
if (ret) {
printf("Failed to read CPU %d (err=%d)\n", i,
ret);
return CMD_RET_FAILURE;
}
first = false;
}
} else {
switch (cmd) {
case 'e':
ret = mtrr_set_valid(cpu_select, reg, true);
break;
case 'd':
ret = mtrr_set_valid(cpu_select, reg, false);
break;
case 's':
ret = do_mtrr_set(cpu_select, reg, argc - 2, argv + 2);
break;
default:
return CMD_RET_USAGE;
}
if (ret) {
printf("Operation failed (err=%d)\n", ret);
return CMD_RET_FAILURE;
}
}
if (*cmd == 'e')
return mtrr_set_valid(reg, true);
else if (*cmd == 'd')
return mtrr_set_valid(reg, false);
else if (*cmd == 's')
return do_mtrr_set(reg, argc - 1, argv + 1);
else
return CMD_RET_USAGE;
return 0;
}
U_BOOT_CMD(
mtrr, 6, 1, do_mtrr,
mtrr, 8, 1, do_mtrr,
"Use x86 memory type range registers (32-bit only)",
"[list] - list current registers\n"
"set <reg> <type> <start> <size> - set a register\n"
"\t<type> is Uncacheable, Combine, Through, Protect, Back\n"
"disable <reg> - disable a register\n"
"ensable <reg> - enable a register"
"enable <reg> - enable a register\n"
"\n"
"Precede command with '-c <n>|all' to access a particular hex CPU, e.g.\n"
" mtrr -c all list; mtrr -c 2e list"
);

View file

@ -188,6 +188,7 @@ Partial memory map
fef00000 1000 CONFIG_BOOTSTAGE_STASH_ADDR
fef00000 Base of CAR region
30000 AP_DEFAULT_BASE (used to start up additional CPUs)
f0000 CONFIG_ROM_TABLE_ADDR
120000 BSS (defined in u-boot-spl.lds)
200000 FSP-S (which is run after U-Boot is relocated)

View file

@ -195,7 +195,7 @@ static int sort_acpi_item_type(struct acpi_ctx *ctx, void *start,
"u-boot,acpi-dsdt-order" :
"u-boot,acpi-ssdt-order", &size);
if (!order) {
log_warning("Failed to find ordering, leaving as is\n");
log_debug("Failed to find ordering, leaving as is\n");
return 0;
}

View file

@ -167,5 +167,6 @@ typedef struct global_data {
#define GD_FLG_LOG_READY 0x08000 /* Log system is ready for use */
#define GD_FLG_WDT_READY 0x10000 /* Watchdog is ready for use */
#define GD_FLG_SKIP_LL_INIT 0x20000 /* Don't perform low-level init */
#define GD_FLG_SMP_READY 0x40000 /* SMP init is complete */
#endif /* __ASM_GENERIC_GBL_DATA_H */