Patch queue for rpi - 2018-05-24

Some minor fixes for the Raspberry Pi:
 
   - Fix SD writes on new sdhost controller
   - Sanitize default load addresses, allowing for better payload placement
 -----BEGIN PGP SIGNATURE-----
 Version: GnuPG v2
 
 iQIcBAABAgAGBQJbBnlXAAoJECszeR4D/txghsYP/2n48vz7VwWI/gAGLvEzZl2T
 ZPVX/RKgMrWcGmEZiJVTE02OovbU9ybECOZXOAqLToQAXcGAl0OHNi+h2F/AH9+S
 WUZbv1wQeHD42Q3ivNjtNZY0U5D7rvVRL+33FmrHuBiLq1mUbq3uHBn7NTrCORX5
 byZvQXis4JeUNefIrAynrelI7uuyaQEtwcOWbEFlh9S1tnXjbJkkaleU5TQs3tpl
 yjlCrFthhi9uOW/cKoqWs0GxxNsWF9/RDapTXkLvfGOS+0noHKfeYypmDuD3q1CM
 FmicN0t459s3H5ft/ACSa/HyAuxzkP4Zqn8vDMG+MsxYLOiklwKDLzRNj1GcvmYd
 Z6UmnWPII4ZRyEC8xjyL5e7ovb/RW+9g4ZVVctP+PHJCHjIMxiAdxGQ+DjYRn2Q5
 T25HPXH1KTqxGwMI1LcEWfHaI7FoBSyTHy7CQrMvb7cuSDSg1lyTYSwdzsAmTX1J
 4++DLpTAqi2XSNNt+DIb938xKYXwbfhSCMH3Z9oTsOfxcqiWIudqbPyMwdxsOJ73
 tn6Ql2aivq9TyP5tByszQbf3Y8KoXoCtufWg8Lj2fCgsC0wAtDpEEhWI8QT2zY7q
 Rs+UX+eWRWKO5UOLqG1aAhJayoP2/12f9oTbo+Q1VmCgqG696J2UkezMmUjDNv/D
 IAXemClUO1MMY7yax8Ls
 =te7/
 -----END PGP SIGNATURE-----

Merge tag 'signed-rpi-next' of git://github.com/agraf/u-boot

Patch queue for rpi - 2018-05-24

Some minor fixes for the Raspberry Pi:

  - Fix SD writes on new sdhost controller
  - Sanitize default load addresses, allowing for better payload placement
This commit is contained in:
Tom Rini 2018-05-24 09:54:14 -04:00
commit 7049f62000
2 changed files with 85 additions and 245 deletions

View file

@ -163,7 +163,6 @@ struct bcm2835_host {
int clock; /* Current clock speed */
unsigned int max_clk; /* Max possible freq */
unsigned int blocks; /* remaining PIO blocks */
int irq; /* Device IRQ */
u32 ns_per_fifo_word;
@ -173,14 +172,7 @@ struct bcm2835_host {
struct mmc_cmd *cmd; /* Current command */
struct mmc_data *data; /* Current data request */
bool data_complete:1;/* Data finished before cmd */
bool use_busy:1; /* Wait for busy interrupt */
bool wait_data_complete:1; /* Wait for data */
/* for threaded irq handler */
bool irq_block;
bool irq_busy;
bool irq_data;
struct udevice *dev;
struct mmc *mmc;
@ -240,17 +232,9 @@ static void bcm2835_reset_internal(struct bcm2835_host *host)
writel(host->cdiv, host->ioaddr + SDCDIV);
}
static int bcm2835_finish_command(struct bcm2835_host *host);
static void bcm2835_wait_transfer_complete(struct bcm2835_host *host)
static int bcm2835_wait_transfer_complete(struct bcm2835_host *host)
{
int timediff;
u32 alternate_idle;
alternate_idle = (host->data->flags & MMC_DATA_READ) ?
SDEDM_FSM_READWAIT : SDEDM_FSM_WRITESTART1;
timediff = 0;
int timediff = 0;
while (1) {
u32 edm, fsm;
@ -261,7 +245,10 @@ static void bcm2835_wait_transfer_complete(struct bcm2835_host *host)
if ((fsm == SDEDM_FSM_IDENTMODE) ||
(fsm == SDEDM_FSM_DATAMODE))
break;
if (fsm == alternate_idle) {
if ((fsm == SDEDM_FSM_READWAIT) ||
(fsm == SDEDM_FSM_WRITESTART1) ||
(fsm == SDEDM_FSM_READDATA)) {
writel(edm | SDEDM_FORCE_DATA_MODE,
host->ioaddr + SDEDM);
break;
@ -273,9 +260,11 @@ static void bcm2835_wait_transfer_complete(struct bcm2835_host *host)
"wait_transfer_complete - still waiting after %d retries\n",
timediff);
bcm2835_dumpregs(host);
return;
return -ETIMEDOUT;
}
}
return 0;
}
static int bcm2835_transfer_block_pio(struct bcm2835_host *host, bool is_read)
@ -322,6 +311,9 @@ static int bcm2835_transfer_block_pio(struct bcm2835_host *host, bool is_read)
fsm_state != SDEDM_FSM_READCRC)) ||
(!is_read &&
(fsm_state != SDEDM_FSM_WRITEDATA &&
fsm_state != SDEDM_FSM_WRITEWAIT1 &&
fsm_state != SDEDM_FSM_WRITEWAIT2 &&
fsm_state != SDEDM_FSM_WRITECRC &&
fsm_state != SDEDM_FSM_WRITESTART1 &&
fsm_state != SDEDM_FSM_WRITESTART2))) {
hsts = readl(host->ioaddr + SDHSTS);
@ -358,9 +350,8 @@ static int bcm2835_transfer_pio(struct bcm2835_host *host)
is_read = (host->data->flags & MMC_DATA_READ) != 0;
ret = bcm2835_transfer_block_pio(host, is_read);
if (host->wait_data_complete)
bcm2835_wait_transfer_complete(host);
if (ret)
return ret;
sdhsts = readl(host->ioaddr + SDHSTS);
if (sdhsts & (SDHSTS_CRC16_ERROR |
@ -379,20 +370,7 @@ static int bcm2835_transfer_pio(struct bcm2835_host *host)
return ret;
}
static void bcm2835_set_transfer_irqs(struct bcm2835_host *host)
{
u32 all_irqs = SDHCFG_DATA_IRPT_EN | SDHCFG_BLOCK_IRPT_EN |
SDHCFG_BUSY_IRPT_EN;
host->hcfg = (host->hcfg & ~all_irqs) |
SDHCFG_DATA_IRPT_EN |
SDHCFG_BUSY_IRPT_EN;
writel(host->hcfg, host->ioaddr + SDHCFG);
}
static
void bcm2835_prepare_data(struct bcm2835_host *host, struct mmc_cmd *cmd,
static void bcm2835_prepare_data(struct bcm2835_host *host, struct mmc_cmd *cmd,
struct mmc_data *data)
{
WARN_ON(host->data);
@ -401,14 +379,9 @@ void bcm2835_prepare_data(struct bcm2835_host *host, struct mmc_cmd *cmd,
if (!data)
return;
host->wait_data_complete = cmd->cmdidx != MMC_CMD_READ_MULTIPLE_BLOCK;
host->data_complete = false;
/* Use PIO */
host->blocks = data->blocks;
bcm2835_set_transfer_irqs(host);
writel(data->blocksize, host->ioaddr + SDHBCT);
writel(data->blocks, host->ioaddr + SDHBLC);
}
@ -483,36 +456,6 @@ static int bcm2835_send_command(struct bcm2835_host *host, struct mmc_cmd *cmd,
return 0;
}
static int bcm2835_transfer_complete(struct bcm2835_host *host)
{
int ret = 0;
WARN_ON(!host->data_complete);
host->data = NULL;
return ret;
}
static void bcm2835_finish_data(struct bcm2835_host *host)
{
host->hcfg &= ~(SDHCFG_DATA_IRPT_EN | SDHCFG_BLOCK_IRPT_EN);
writel(host->hcfg, host->ioaddr + SDHCFG);
host->data_complete = true;
if (host->cmd) {
/* Data managed to finish before the
* command completed. Make sure we do
* things in the proper order.
*/
dev_dbg(dev, "Finished early - HSTS %08x\n",
readl(host->ioaddr + SDHSTS));
} else {
bcm2835_transfer_complete(host);
}
}
static int bcm2835_finish_command(struct bcm2835_host *host)
{
struct mmc_cmd *cmd = host->cmd;
@ -562,8 +505,6 @@ static int bcm2835_finish_command(struct bcm2835_host *host)
/* Processed actual command. */
host->cmd = NULL;
if (host->data && host->data_complete)
ret = bcm2835_transfer_complete(host);
return ret;
}
@ -608,159 +549,44 @@ static int bcm2835_check_data_error(struct bcm2835_host *host, u32 intmask)
return ret;
}
static void bcm2835_busy_irq(struct bcm2835_host *host)
{
if (WARN_ON(!host->cmd)) {
bcm2835_dumpregs(host);
return;
}
if (WARN_ON(!host->use_busy)) {
bcm2835_dumpregs(host);
return;
}
host->use_busy = false;
bcm2835_finish_command(host);
}
static void bcm2835_data_irq(struct bcm2835_host *host, u32 intmask)
static int bcm2835_transmit(struct bcm2835_host *host)
{
u32 intmask = readl(host->ioaddr + SDHSTS);
int ret;
/*
* There are no dedicated data/space available interrupt
* status bits, so it is necessary to use the single shared
* data/space available FIFO status bits. It is therefore not
* an error to get here when there is no data transfer in
* progress.
*/
if (!host->data)
return;
/* Check for errors */
ret = bcm2835_check_data_error(host, intmask);
if (ret)
goto finished;
return ret;
if (host->data->flags & MMC_DATA_WRITE) {
/* Use the block interrupt for writes after the first block */
host->hcfg &= ~(SDHCFG_DATA_IRPT_EN);
host->hcfg |= SDHCFG_BLOCK_IRPT_EN;
writel(host->hcfg, host->ioaddr + SDHCFG);
bcm2835_transfer_pio(host);
} else {
bcm2835_transfer_pio(host);
ret = bcm2835_check_cmd_error(host, intmask);
if (ret)
return ret;
/* Handle wait for busy end */
if (host->use_busy && (intmask & SDHSTS_BUSY_IRPT)) {
writel(SDHSTS_BUSY_IRPT, host->ioaddr + SDHSTS);
host->use_busy = false;
bcm2835_finish_command(host);
}
/* Handle PIO data transfer */
if (host->data) {
ret = bcm2835_transfer_pio(host);
if (ret)
return ret;
host->blocks--;
if ((host->blocks == 0))
goto finished;
}
return;
finished:
host->hcfg &= ~(SDHCFG_DATA_IRPT_EN | SDHCFG_BLOCK_IRPT_EN);
writel(host->hcfg, host->ioaddr + SDHCFG);
}
static void bcm2835_data_threaded_irq(struct bcm2835_host *host)
{
if (!host->data)
return;
if ((host->blocks == 0))
bcm2835_finish_data(host);
}
static void bcm2835_block_irq(struct bcm2835_host *host)
{
if (WARN_ON(!host->data)) {
bcm2835_dumpregs(host);
return;
}
WARN_ON(!host->blocks);
if ((--host->blocks == 0))
bcm2835_finish_data(host);
else
bcm2835_transfer_pio(host);
}
static irqreturn_t bcm2835_irq(int irq, void *dev_id)
{
irqreturn_t result = IRQ_NONE;
struct bcm2835_host *host = dev_id;
u32 intmask;
intmask = readl(host->ioaddr + SDHSTS);
writel(SDHSTS_BUSY_IRPT |
SDHSTS_BLOCK_IRPT |
SDHSTS_SDIO_IRPT |
SDHSTS_DATA_FLAG,
host->ioaddr + SDHSTS);
if (intmask & SDHSTS_BLOCK_IRPT) {
bcm2835_check_data_error(host, intmask);
host->irq_block = true;
result = IRQ_WAKE_THREAD;
}
if (intmask & SDHSTS_BUSY_IRPT) {
if (!bcm2835_check_cmd_error(host, intmask)) {
host->irq_busy = true;
result = IRQ_WAKE_THREAD;
} else {
result = IRQ_HANDLED;
if (host->blocks == 0) {
/* Wait for command to complete for real */
ret = bcm2835_wait_transfer_complete(host);
if (ret)
return ret;
/* Transfer complete */
host->data = NULL;
}
}
/* There is no true data interrupt status bit, so it is
* necessary to qualify the data flag with the interrupt
* enable bit.
*/
if ((intmask & SDHSTS_DATA_FLAG) &&
(host->hcfg & SDHCFG_DATA_IRPT_EN)) {
bcm2835_data_irq(host, intmask);
host->irq_data = true;
result = IRQ_WAKE_THREAD;
}
return result;
}
static irqreturn_t bcm2835_threaded_irq(int irq, void *dev_id)
{
struct bcm2835_host *host = dev_id;
if (host->irq_block) {
host->irq_block = false;
bcm2835_block_irq(host);
}
if (host->irq_busy) {
host->irq_busy = false;
bcm2835_busy_irq(host);
}
if (host->irq_data) {
host->irq_data = false;
bcm2835_data_threaded_irq(host);
}
return IRQ_HANDLED;
}
static void bcm2835_irq_poll(struct bcm2835_host *host)
{
u32 intmask;
while (1) {
intmask = readl(host->ioaddr + SDHSTS);
if (intmask & (SDHSTS_BUSY_IRPT | SDHSTS_BLOCK_IRPT |
SDHSTS_SDIO_IRPT | SDHSTS_DATA_FLAG)) {
bcm2835_irq(0, host);
bcm2835_threaded_irq(0, host);
return;
}
}
return 0;
}
static void bcm2835_set_clock(struct bcm2835_host *host, unsigned int clock)
@ -864,8 +690,11 @@ static int bcm2835_send_cmd(struct udevice *dev, struct mmc_cmd *cmd,
}
/* Wait for completion of busy signal or data transfer */
while (host->use_busy || host->data)
bcm2835_irq_poll(host);
while (host->use_busy || host->data) {
ret = bcm2835_transmit(host);
if (ret)
break;
}
return ret;
}

View file

@ -95,39 +95,50 @@
*
* I suspect address 0 is used as the SMP pen on the RPi2, so avoid this.
*
* fdt_addr_r simply shouldn't overlap anything else. However, the RPi's
* binary firmware loads a DT to address 0x100, so we choose this address to
* match it. This allows custom boot scripts to pass this DT on to Linux
* simply by not over-writing the data at this address. When using U-Boot,
* U-Boot (and scripts it executes) typicaly ignore the DT loaded by the FW
* and loads its own DT from disk (triggered by boot.scr or extlinux.conf).
* Older versions of the boot firmware place the firmware-loaded DTB at 0x100,
* newer versions place it in high memory. So prevent U-Boot from doing its own
* DTB + initrd relocation so that we won't accidentally relocate the initrd
* over the firmware-loaded DTB and generally try to lay out things starting
* from the bottom of RAM.
*
* pxefile_addr_r can be pretty much anywhere that doesn't conflict with
* something else. Put it low in memory to avoid conflicts.
* kernel_addr_r has different constraints on ARM and Aarch64. For 32-bit ARM,
* it must be within the first 128M of RAM in order for the kernel's
* CONFIG_AUTO_ZRELADDR option to work. The kernel itself will be decompressed
* to 0x8000 but the decompressor clobbers 0x4000-0x8000 as well. The
* decompressor also likes to relocate itself to right past the end of the
* decompressed kernel, so in total the sum of the compressed and and
* decompressed kernel needs to be reserved.
*
* kernel_addr_r must be within the first 128M of RAM in order for the
* kernel's CONFIG_AUTO_ZRELADDR option to work. Since the kernel will
* decompress itself to 0x8000 after the start of RAM, kernel_addr_r
* should not overlap that area, or the kernel will have to copy itself
* somewhere else before decompression. Similarly, the address of any other
* data passed to the kernel shouldn't overlap the start of RAM. Pushing
* this up to 16M allows for a sizable kernel to be decompressed below the
* compressed load address.
* For Aarch64, the kernel image is uncompressed and must be loaded at
* text_offset bytes (specified in the header of the Image) into a 2MB
* boundary. The 'booti' command relocates the image if necessary. Linux uses
* a default text_offset of 0x80000. In summary, loading at 0x80000
* satisfies all these constraints and reserving memory up to 0x02400000
* permits fairly large (roughly 36M) kernels.
*
* scriptaddr can be pretty much anywhere that doesn't conflict with something
* else. Choosing 32M allows for the compressed kernel to be up to 16M.
* scriptaddr and pxefile_addr_r can be pretty much anywhere that doesn't
* conflict with something else. Reserving 1M for each of them at
* 0x02400000-0x02500000 and 0x02500000-0x02600000 should be plenty.
*
* ramdisk_addr_r simply shouldn't overlap anything else. Choosing 33M allows
* for any boot script to be up to 1M, which is hopefully plenty.
* On ARM, both the DTB and any possible initrd must be loaded such that they
* fit inside the lowmem mapping in Linux. In practice, this usually means not
* more than ~700M away from the start of the kernel image but this number can
* be larger OR smaller depending on e.g. the 'vmalloc=xxxM' command line
* parameter given to the kernel. So reserving memory from low to high
* satisfies this constraint again. Reserving 1M at 0x02600000-0x02700000 for
* the DTB leaves rest of the free RAM to the initrd starting at 0x02700000.
* Even with the smallest possible CPU-GPU memory split of the CPU getting
* only 64M, the remaining 25M starting at 0x02700000 should allow quite
* large initrds before they start colliding with U-Boot.
*/
#define ENV_MEM_LAYOUT_SETTINGS \
"fdt_high=ffffffff\0" \
"initrd_high=ffffffff\0" \
"fdt_addr_r=0x00000100\0" \
"pxefile_addr_r=0x00100000\0" \
"kernel_addr_r=0x01000000\0" \
"scriptaddr=0x02000000\0" \
"ramdisk_addr_r=0x02100000\0" \
"kernel_addr_r=0x00080000\0" \
"scriptaddr=0x02400000\0" \
"pxefile_addr_r=0x02500000\0" \
"fdt_addr_r=0x02600000\0" \
"ramdisk_addr_r=0x02700000\0"
#define BOOT_TARGET_DEVICES(func) \
func(MMC, mmc, 0) \