|
|
|
@ -36,18 +36,39 @@
|
|
|
|
|
#define CPU_CFG_CHIP_REV_B 0x3
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
|
* Wait up to 1s for mask to be clear in given reg.
|
|
|
|
|
* Wait up to 1s for value to be set in given part of reg.
|
|
|
|
|
*/
|
|
|
|
|
static void await_completion(u32 *reg, u32 mask)
|
|
|
|
|
static void await_completion(u32 *reg, u32 mask, u32 val)
|
|
|
|
|
{
|
|
|
|
|
unsigned long tmo = timer_get_us() + 1000000;
|
|
|
|
|
|
|
|
|
|
while (readl(reg) & mask) {
|
|
|
|
|
while ((readl(reg) & mask) != val) {
|
|
|
|
|
if (timer_get_us() > tmo)
|
|
|
|
|
panic("Timeout initialising DRAM\n");
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
|
* Wait up to 1s for mask to be clear in given reg.
|
|
|
|
|
*/
|
|
|
|
|
static inline void await_bits_clear(u32 *reg, u32 mask)
|
|
|
|
|
{
|
|
|
|
|
await_completion(reg, mask, 0);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
|
* Wait up to 1s for mask to be set in given reg.
|
|
|
|
|
*/
|
|
|
|
|
static inline void await_bits_set(u32 *reg, u32 mask)
|
|
|
|
|
{
|
|
|
|
|
await_completion(reg, mask, mask);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
|
* This performs the external DRAM reset by driving the RESET pin low and
|
|
|
|
|
* then high again. According to the DDR3 spec, the RESET pin needs to be
|
|
|
|
|
* kept low for at least 200 us.
|
|
|
|
|
*/
|
|
|
|
|
static void mctl_ddr3_reset(void)
|
|
|
|
|
{
|
|
|
|
|
struct sunxi_dram_reg *dram =
|
|
|
|
@ -64,15 +85,28 @@ static void mctl_ddr3_reset(void)
|
|
|
|
|
if ((reg_val & CPU_CFG_CHIP_VER_MASK) !=
|
|
|
|
|
CPU_CFG_CHIP_VER(CPU_CFG_CHIP_REV_A)) {
|
|
|
|
|
setbits_le32(&dram->mcr, DRAM_MCR_RESET);
|
|
|
|
|
udelay(2);
|
|
|
|
|
udelay(200);
|
|
|
|
|
clrbits_le32(&dram->mcr, DRAM_MCR_RESET);
|
|
|
|
|
} else
|
|
|
|
|
#endif
|
|
|
|
|
{
|
|
|
|
|
clrbits_le32(&dram->mcr, DRAM_MCR_RESET);
|
|
|
|
|
udelay(2);
|
|
|
|
|
udelay(200);
|
|
|
|
|
setbits_le32(&dram->mcr, DRAM_MCR_RESET);
|
|
|
|
|
}
|
|
|
|
|
/* After the RESET pin is de-asserted, the DDR3 spec requires to wait
|
|
|
|
|
* for additional 500 us before driving the CKE pin (Clock Enable)
|
|
|
|
|
* high. The duration of this delay can be configured in the SDR_IDCR
|
|
|
|
|
* (Initialization Delay Configuration Register) and applied
|
|
|
|
|
* automatically by the DRAM controller during the DDR3 initialization
|
|
|
|
|
* step. But SDR_IDCR has limited range on sun4i/sun5i hardware and
|
|
|
|
|
* can't provide sufficient delay at DRAM clock frequencies higher than
|
|
|
|
|
* 524 MHz (while Allwinner A13 supports DRAM clock frequency up to
|
|
|
|
|
* 533 MHz according to the datasheet). Additionally, there is no
|
|
|
|
|
* official documentation for the SDR_IDCR register anywhere, and
|
|
|
|
|
* there is always a chance that we are interpreting it wrong.
|
|
|
|
|
* Better be safe than sorry, so add an explicit delay here. */
|
|
|
|
|
udelay(500);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
static void mctl_set_drive(void)
|
|
|
|
@ -102,6 +136,14 @@ static void mctl_itm_enable(void)
|
|
|
|
|
clrbits_le32(&dram->ccr, DRAM_CCR_ITM_OFF);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
static void mctl_itm_reset(void)
|
|
|
|
|
{
|
|
|
|
|
mctl_itm_disable();
|
|
|
|
|
udelay(1); /* ITM reset needs a bit of delay */
|
|
|
|
|
mctl_itm_enable();
|
|
|
|
|
udelay(1);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
static void mctl_enable_dll0(u32 phase)
|
|
|
|
|
{
|
|
|
|
|
struct sunxi_dram_reg *dram = (struct sunxi_dram_reg *)SUNXI_DRAMC_BASE;
|
|
|
|
@ -118,23 +160,28 @@ static void mctl_enable_dll0(u32 phase)
|
|
|
|
|
udelay(22);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Get the number of DDR byte lanes */
|
|
|
|
|
static u32 mctl_get_number_of_lanes(void)
|
|
|
|
|
{
|
|
|
|
|
struct sunxi_dram_reg *dram = (struct sunxi_dram_reg *)SUNXI_DRAMC_BASE;
|
|
|
|
|
if ((readl(&dram->dcr) & DRAM_DCR_BUS_WIDTH_MASK) ==
|
|
|
|
|
DRAM_DCR_BUS_WIDTH(DRAM_DCR_BUS_WIDTH_32BIT))
|
|
|
|
|
return 4;
|
|
|
|
|
else
|
|
|
|
|
return 2;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
|
* Note: This differs from pm/standby in that it checks the bus width
|
|
|
|
|
*/
|
|
|
|
|
static void mctl_enable_dllx(u32 phase)
|
|
|
|
|
{
|
|
|
|
|
struct sunxi_dram_reg *dram = (struct sunxi_dram_reg *)SUNXI_DRAMC_BASE;
|
|
|
|
|
u32 i, n, bus_width;
|
|
|
|
|
u32 i, number_of_lanes;
|
|
|
|
|
|
|
|
|
|
bus_width = readl(&dram->dcr);
|
|
|
|
|
number_of_lanes = mctl_get_number_of_lanes();
|
|
|
|
|
|
|
|
|
|
if ((bus_width & DRAM_DCR_BUS_WIDTH_MASK) ==
|
|
|
|
|
DRAM_DCR_BUS_WIDTH(DRAM_DCR_BUS_WIDTH_32BIT))
|
|
|
|
|
n = DRAM_DCR_NR_DLLCR_32BIT;
|
|
|
|
|
else
|
|
|
|
|
n = DRAM_DCR_NR_DLLCR_16BIT;
|
|
|
|
|
|
|
|
|
|
for (i = 1; i < n; i++) {
|
|
|
|
|
for (i = 1; i <= number_of_lanes; i++) {
|
|
|
|
|
clrsetbits_le32(&dram->dllcr[i], 0xf << 14,
|
|
|
|
|
(phase & 0xf) << 14);
|
|
|
|
|
clrsetbits_le32(&dram->dllcr[i], DRAM_DLLCR_NRESET,
|
|
|
|
@ -143,12 +190,12 @@ static void mctl_enable_dllx(u32 phase)
|
|
|
|
|
}
|
|
|
|
|
udelay(2);
|
|
|
|
|
|
|
|
|
|
for (i = 1; i < n; i++)
|
|
|
|
|
for (i = 1; i <= number_of_lanes; i++)
|
|
|
|
|
clrbits_le32(&dram->dllcr[i], DRAM_DLLCR_NRESET |
|
|
|
|
|
DRAM_DLLCR_DISABLE);
|
|
|
|
|
udelay(22);
|
|
|
|
|
|
|
|
|
|
for (i = 1; i < n; i++)
|
|
|
|
|
for (i = 1; i <= number_of_lanes; i++)
|
|
|
|
|
clrsetbits_le32(&dram->dllcr[i], DRAM_DLLCR_DISABLE,
|
|
|
|
|
DRAM_DLLCR_NRESET);
|
|
|
|
|
udelay(22);
|
|
|
|
@ -201,11 +248,20 @@ static void mctl_configure_hostport(void)
|
|
|
|
|
writel(hpcr_value[i], &dram->hpcr[i]);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
static void mctl_setup_dram_clock(u32 clk)
|
|
|
|
|
static void mctl_setup_dram_clock(u32 clk, u32 mbus_clk)
|
|
|
|
|
{
|
|
|
|
|
u32 reg_val;
|
|
|
|
|
struct sunxi_ccm_reg *ccm = (struct sunxi_ccm_reg *)SUNXI_CCM_BASE;
|
|
|
|
|
|
|
|
|
|
/* PLL5P and PLL6 are the potential clock sources for MBUS */
|
|
|
|
|
u32 pll6x_div, pll5p_div;
|
|
|
|
|
u32 pll6x_clk = clock_get_pll6() / 1000000;
|
|
|
|
|
u32 pll5p_clk = clk / 24 * 48;
|
|
|
|
|
u32 pll5p_rate, pll6x_rate;
|
|
|
|
|
#ifdef CONFIG_SUN7I
|
|
|
|
|
pll6x_clk *= 2; /* sun7i uses PLL6*2, sun5i uses just PLL6 */
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
/* setup DRAM PLL */
|
|
|
|
|
reg_val = readl(&ccm->pll5_cfg);
|
|
|
|
|
reg_val &= ~CCM_PLL5_CTRL_M_MASK; /* set M to 0 (x1) */
|
|
|
|
@ -213,41 +269,40 @@ static void mctl_setup_dram_clock(u32 clk)
|
|
|
|
|
reg_val &= ~CCM_PLL5_CTRL_N_MASK; /* set N to 0 (x0) */
|
|
|
|
|
reg_val &= ~CCM_PLL5_CTRL_P_MASK; /* set P to 0 (x1) */
|
|
|
|
|
if (clk >= 540 && clk < 552) {
|
|
|
|
|
/* dram = 540MHz, pll5p = 540MHz */
|
|
|
|
|
/* dram = 540MHz, pll5p = 1080MHz */
|
|
|
|
|
pll5p_clk = 1080;
|
|
|
|
|
reg_val |= CCM_PLL5_CTRL_M(CCM_PLL5_CTRL_M_X(2));
|
|
|
|
|
reg_val |= CCM_PLL5_CTRL_K(CCM_PLL5_CTRL_K_X(3));
|
|
|
|
|
reg_val |= CCM_PLL5_CTRL_N(CCM_PLL5_CTRL_N_X(15));
|
|
|
|
|
reg_val |= CCM_PLL5_CTRL_P(1);
|
|
|
|
|
} else if (clk >= 512 && clk < 528) {
|
|
|
|
|
/* dram = 512MHz, pll5p = 384MHz */
|
|
|
|
|
/* dram = 512MHz, pll5p = 1536MHz */
|
|
|
|
|
pll5p_clk = 1536;
|
|
|
|
|
reg_val |= CCM_PLL5_CTRL_M(CCM_PLL5_CTRL_M_X(3));
|
|
|
|
|
reg_val |= CCM_PLL5_CTRL_K(CCM_PLL5_CTRL_K_X(4));
|
|
|
|
|
reg_val |= CCM_PLL5_CTRL_N(CCM_PLL5_CTRL_N_X(16));
|
|
|
|
|
reg_val |= CCM_PLL5_CTRL_P(2);
|
|
|
|
|
} else if (clk >= 496 && clk < 504) {
|
|
|
|
|
/* dram = 496MHz, pll5p = 372MHz */
|
|
|
|
|
/* dram = 496MHz, pll5p = 1488MHz */
|
|
|
|
|
pll5p_clk = 1488;
|
|
|
|
|
reg_val |= CCM_PLL5_CTRL_M(CCM_PLL5_CTRL_M_X(3));
|
|
|
|
|
reg_val |= CCM_PLL5_CTRL_K(CCM_PLL5_CTRL_K_X(2));
|
|
|
|
|
reg_val |= CCM_PLL5_CTRL_N(CCM_PLL5_CTRL_N_X(31));
|
|
|
|
|
reg_val |= CCM_PLL5_CTRL_P(2);
|
|
|
|
|
} else if (clk >= 468 && clk < 480) {
|
|
|
|
|
/* dram = 468MHz, pll5p = 468MHz */
|
|
|
|
|
/* dram = 468MHz, pll5p = 936MHz */
|
|
|
|
|
pll5p_clk = 936;
|
|
|
|
|
reg_val |= CCM_PLL5_CTRL_M(CCM_PLL5_CTRL_M_X(2));
|
|
|
|
|
reg_val |= CCM_PLL5_CTRL_K(CCM_PLL5_CTRL_K_X(3));
|
|
|
|
|
reg_val |= CCM_PLL5_CTRL_N(CCM_PLL5_CTRL_N_X(13));
|
|
|
|
|
reg_val |= CCM_PLL5_CTRL_P(1);
|
|
|
|
|
} else if (clk >= 396 && clk < 408) {
|
|
|
|
|
/* dram = 396MHz, pll5p = 396MHz */
|
|
|
|
|
/* dram = 396MHz, pll5p = 792MHz */
|
|
|
|
|
pll5p_clk = 792;
|
|
|
|
|
reg_val |= CCM_PLL5_CTRL_M(CCM_PLL5_CTRL_M_X(2));
|
|
|
|
|
reg_val |= CCM_PLL5_CTRL_K(CCM_PLL5_CTRL_K_X(3));
|
|
|
|
|
reg_val |= CCM_PLL5_CTRL_N(CCM_PLL5_CTRL_N_X(11));
|
|
|
|
|
reg_val |= CCM_PLL5_CTRL_P(1);
|
|
|
|
|
} else {
|
|
|
|
|
/* any other frequency that is a multiple of 24 */
|
|
|
|
|
reg_val |= CCM_PLL5_CTRL_M(CCM_PLL5_CTRL_M_X(2));
|
|
|
|
|
reg_val |= CCM_PLL5_CTRL_K(CCM_PLL5_CTRL_K_X(2));
|
|
|
|
|
reg_val |= CCM_PLL5_CTRL_N(CCM_PLL5_CTRL_N_X(clk / 24));
|
|
|
|
|
reg_val |= CCM_PLL5_CTRL_P(CCM_PLL5_CTRL_P_X(2));
|
|
|
|
|
}
|
|
|
|
|
reg_val &= ~CCM_PLL5_CTRL_VCO_GAIN; /* PLL VCO Gain off */
|
|
|
|
|
reg_val |= CCM_PLL5_CTRL_EN; /* PLL On */
|
|
|
|
@ -264,20 +319,30 @@ static void mctl_setup_dram_clock(u32 clk)
|
|
|
|
|
clrbits_le32(&ccm->ahb_gate0, CCM_AHB_GATE_GPS);
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
#if defined(CONFIG_SUN5I) || defined(CONFIG_SUN7I)
|
|
|
|
|
/* setup MBUS clock */
|
|
|
|
|
reg_val = CCM_MBUS_CTRL_GATE |
|
|
|
|
|
#ifdef CONFIG_SUN7I
|
|
|
|
|
CCM_MBUS_CTRL_CLK_SRC(CCM_MBUS_CTRL_CLK_SRC_PLL6) |
|
|
|
|
|
CCM_MBUS_CTRL_N(CCM_MBUS_CTRL_N_X(2)) |
|
|
|
|
|
CCM_MBUS_CTRL_M(CCM_MBUS_CTRL_M_X(2));
|
|
|
|
|
#else /* defined(CONFIG_SUN5I) */
|
|
|
|
|
CCM_MBUS_CTRL_CLK_SRC(CCM_MBUS_CTRL_CLK_SRC_PLL5) |
|
|
|
|
|
CCM_MBUS_CTRL_N(CCM_MBUS_CTRL_N_X(1)) |
|
|
|
|
|
CCM_MBUS_CTRL_M(CCM_MBUS_CTRL_M_X(2));
|
|
|
|
|
#endif
|
|
|
|
|
if (!mbus_clk)
|
|
|
|
|
mbus_clk = 300;
|
|
|
|
|
pll6x_div = DIV_ROUND_UP(pll6x_clk, mbus_clk);
|
|
|
|
|
pll5p_div = DIV_ROUND_UP(pll5p_clk, mbus_clk);
|
|
|
|
|
pll6x_rate = pll6x_clk / pll6x_div;
|
|
|
|
|
pll5p_rate = pll5p_clk / pll5p_div;
|
|
|
|
|
|
|
|
|
|
if (pll6x_div <= 16 && pll6x_rate > pll5p_rate) {
|
|
|
|
|
/* use PLL6 as the MBUS clock source */
|
|
|
|
|
reg_val = CCM_MBUS_CTRL_GATE |
|
|
|
|
|
CCM_MBUS_CTRL_CLK_SRC(CCM_MBUS_CTRL_CLK_SRC_PLL6) |
|
|
|
|
|
CCM_MBUS_CTRL_N(CCM_MBUS_CTRL_N_X(1)) |
|
|
|
|
|
CCM_MBUS_CTRL_M(CCM_MBUS_CTRL_M_X(pll6x_div));
|
|
|
|
|
} else if (pll5p_div <= 16) {
|
|
|
|
|
/* use PLL5P as the MBUS clock source */
|
|
|
|
|
reg_val = CCM_MBUS_CTRL_GATE |
|
|
|
|
|
CCM_MBUS_CTRL_CLK_SRC(CCM_MBUS_CTRL_CLK_SRC_PLL5) |
|
|
|
|
|
CCM_MBUS_CTRL_N(CCM_MBUS_CTRL_N_X(1)) |
|
|
|
|
|
CCM_MBUS_CTRL_M(CCM_MBUS_CTRL_M_X(pll5p_div));
|
|
|
|
|
} else {
|
|
|
|
|
panic("Bad mbus_clk\n");
|
|
|
|
|
}
|
|
|
|
|
writel(reg_val, &ccm->mbus_clk_cfg);
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
|
* open DRAMC AHB & DLL register clock
|
|
|
|
@ -299,19 +364,48 @@ static void mctl_setup_dram_clock(u32 clk)
|
|
|
|
|
udelay(22);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
|
* The data from rslrX and rdgrX registers (X=rank) is stored
|
|
|
|
|
* in a single 32-bit value using the following format:
|
|
|
|
|
* bits [31:26] - DQS gating system latency for byte lane 3
|
|
|
|
|
* bits [25:24] - DQS gating phase select for byte lane 3
|
|
|
|
|
* bits [23:18] - DQS gating system latency for byte lane 2
|
|
|
|
|
* bits [17:16] - DQS gating phase select for byte lane 2
|
|
|
|
|
* bits [15:10] - DQS gating system latency for byte lane 1
|
|
|
|
|
* bits [ 9:8 ] - DQS gating phase select for byte lane 1
|
|
|
|
|
* bits [ 7:2 ] - DQS gating system latency for byte lane 0
|
|
|
|
|
* bits [ 1:0 ] - DQS gating phase select for byte lane 0
|
|
|
|
|
*/
|
|
|
|
|
static void mctl_set_dqs_gating_delay(int rank, u32 dqs_gating_delay)
|
|
|
|
|
{
|
|
|
|
|
struct sunxi_dram_reg *dram = (struct sunxi_dram_reg *)SUNXI_DRAMC_BASE;
|
|
|
|
|
u32 lane, number_of_lanes = mctl_get_number_of_lanes();
|
|
|
|
|
/* rank0 gating system latency (3 bits per lane: cycles) */
|
|
|
|
|
u32 slr = readl(rank == 0 ? &dram->rslr0 : &dram->rslr1);
|
|
|
|
|
/* rank0 gating phase select (2 bits per lane: 90, 180, 270, 360) */
|
|
|
|
|
u32 dgr = readl(rank == 0 ? &dram->rdgr0 : &dram->rdgr1);
|
|
|
|
|
for (lane = 0; lane < number_of_lanes; lane++) {
|
|
|
|
|
u32 tmp = dqs_gating_delay >> (lane * 8);
|
|
|
|
|
slr &= ~(7 << (lane * 3));
|
|
|
|
|
slr |= ((tmp >> 2) & 7) << (lane * 3);
|
|
|
|
|
dgr &= ~(3 << (lane * 2));
|
|
|
|
|
dgr |= (tmp & 3) << (lane * 2);
|
|
|
|
|
}
|
|
|
|
|
writel(slr, rank == 0 ? &dram->rslr0 : &dram->rslr1);
|
|
|
|
|
writel(dgr, rank == 0 ? &dram->rdgr0 : &dram->rdgr1);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
static int dramc_scan_readpipe(void)
|
|
|
|
|
{
|
|
|
|
|
struct sunxi_dram_reg *dram = (struct sunxi_dram_reg *)SUNXI_DRAMC_BASE;
|
|
|
|
|
u32 reg_val;
|
|
|
|
|
|
|
|
|
|
/* data training trigger */
|
|
|
|
|
#ifdef CONFIG_SUN7I
|
|
|
|
|
clrbits_le32(&dram->csr, DRAM_CSR_FAILED);
|
|
|
|
|
#endif
|
|
|
|
|
setbits_le32(&dram->ccr, DRAM_CCR_DATA_TRAINING);
|
|
|
|
|
|
|
|
|
|
/* check whether data training process has completed */
|
|
|
|
|
await_completion(&dram->ccr, DRAM_CCR_DATA_TRAINING);
|
|
|
|
|
await_bits_clear(&dram->ccr, DRAM_CCR_DATA_TRAINING);
|
|
|
|
|
|
|
|
|
|
/* check data training result */
|
|
|
|
|
reg_val = readl(&dram->csr);
|
|
|
|
@ -321,117 +415,6 @@ static int dramc_scan_readpipe(void)
|
|
|
|
|
return 0;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
static int dramc_scan_dll_para(void)
|
|
|
|
|
{
|
|
|
|
|
struct sunxi_dram_reg *dram = (struct sunxi_dram_reg *)SUNXI_DRAMC_BASE;
|
|
|
|
|
const u32 dqs_dly[7] = {0x3, 0x2, 0x1, 0x0, 0xe, 0xd, 0xc};
|
|
|
|
|
const u32 clk_dly[15] = {0x07, 0x06, 0x05, 0x04, 0x03,
|
|
|
|
|
0x02, 0x01, 0x00, 0x08, 0x10,
|
|
|
|
|
0x18, 0x20, 0x28, 0x30, 0x38};
|
|
|
|
|
u32 clk_dqs_count[15];
|
|
|
|
|
u32 dqs_i, clk_i, cr_i;
|
|
|
|
|
u32 max_val, min_val;
|
|
|
|
|
u32 dqs_index, clk_index;
|
|
|
|
|
|
|
|
|
|
/* Find DQS_DLY Pass Count for every CLK_DLY */
|
|
|
|
|
for (clk_i = 0; clk_i < 15; clk_i++) {
|
|
|
|
|
clk_dqs_count[clk_i] = 0;
|
|
|
|
|
clrsetbits_le32(&dram->dllcr[0], 0x3f << 6,
|
|
|
|
|
(clk_dly[clk_i] & 0x3f) << 6);
|
|
|
|
|
for (dqs_i = 0; dqs_i < 7; dqs_i++) {
|
|
|
|
|
for (cr_i = 1; cr_i < 5; cr_i++) {
|
|
|
|
|
clrsetbits_le32(&dram->dllcr[cr_i],
|
|
|
|
|
0x4f << 14,
|
|
|
|
|
(dqs_dly[dqs_i] & 0x4f) << 14);
|
|
|
|
|
}
|
|
|
|
|
udelay(2);
|
|
|
|
|
if (dramc_scan_readpipe() == 0)
|
|
|
|
|
clk_dqs_count[clk_i]++;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
/* Test DQS_DLY Pass Count for every CLK_DLY from up to down */
|
|
|
|
|
for (dqs_i = 15; dqs_i > 0; dqs_i--) {
|
|
|
|
|
max_val = 15;
|
|
|
|
|
min_val = 15;
|
|
|
|
|
for (clk_i = 0; clk_i < 15; clk_i++) {
|
|
|
|
|
if (clk_dqs_count[clk_i] == dqs_i) {
|
|
|
|
|
max_val = clk_i;
|
|
|
|
|
if (min_val == 15)
|
|
|
|
|
min_val = clk_i;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
if (max_val < 15)
|
|
|
|
|
break;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Check if Find a CLK_DLY failed */
|
|
|
|
|
if (!dqs_i)
|
|
|
|
|
goto fail;
|
|
|
|
|
|
|
|
|
|
/* Find the middle index of CLK_DLY */
|
|
|
|
|
clk_index = (max_val + min_val) >> 1;
|
|
|
|
|
if ((max_val == (15 - 1)) && (min_val > 0))
|
|
|
|
|
/* if CLK_DLY[MCTL_CLK_DLY_COUNT] is very good, then the middle
|
|
|
|
|
* value can be more close to the max_val
|
|
|
|
|
*/
|
|
|
|
|
clk_index = (15 + clk_index) >> 1;
|
|
|
|
|
else if ((max_val < (15 - 1)) && (min_val == 0))
|
|
|
|
|
/* if CLK_DLY[0] is very good, then the middle value can be more
|
|
|
|
|
* close to the min_val
|
|
|
|
|
*/
|
|
|
|
|
clk_index >>= 1;
|
|
|
|
|
if (clk_dqs_count[clk_index] < dqs_i)
|
|
|
|
|
clk_index = min_val;
|
|
|
|
|
|
|
|
|
|
/* Find the middle index of DQS_DLY for the CLK_DLY got above, and Scan
|
|
|
|
|
* read pipe again
|
|
|
|
|
*/
|
|
|
|
|
clrsetbits_le32(&dram->dllcr[0], 0x3f << 6,
|
|
|
|
|
(clk_dly[clk_index] & 0x3f) << 6);
|
|
|
|
|
max_val = 7;
|
|
|
|
|
min_val = 7;
|
|
|
|
|
for (dqs_i = 0; dqs_i < 7; dqs_i++) {
|
|
|
|
|
clk_dqs_count[dqs_i] = 0;
|
|
|
|
|
for (cr_i = 1; cr_i < 5; cr_i++) {
|
|
|
|
|
clrsetbits_le32(&dram->dllcr[cr_i],
|
|
|
|
|
0x4f << 14,
|
|
|
|
|
(dqs_dly[dqs_i] & 0x4f) << 14);
|
|
|
|
|
}
|
|
|
|
|
udelay(2);
|
|
|
|
|
if (dramc_scan_readpipe() == 0) {
|
|
|
|
|
clk_dqs_count[dqs_i] = 1;
|
|
|
|
|
max_val = dqs_i;
|
|
|
|
|
if (min_val == 7)
|
|
|
|
|
min_val = dqs_i;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (max_val < 7) {
|
|
|
|
|
dqs_index = (max_val + min_val) >> 1;
|
|
|
|
|
if ((max_val == (7-1)) && (min_val > 0))
|
|
|
|
|
dqs_index = (7 + dqs_index) >> 1;
|
|
|
|
|
else if ((max_val < (7-1)) && (min_val == 0))
|
|
|
|
|
dqs_index >>= 1;
|
|
|
|
|
if (!clk_dqs_count[dqs_index])
|
|
|
|
|
dqs_index = min_val;
|
|
|
|
|
for (cr_i = 1; cr_i < 5; cr_i++) {
|
|
|
|
|
clrsetbits_le32(&dram->dllcr[cr_i],
|
|
|
|
|
0x4f << 14,
|
|
|
|
|
(dqs_dly[dqs_index] & 0x4f) << 14);
|
|
|
|
|
}
|
|
|
|
|
udelay(2);
|
|
|
|
|
return dramc_scan_readpipe();
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
fail:
|
|
|
|
|
clrbits_le32(&dram->dllcr[0], 0x3f << 6);
|
|
|
|
|
for (cr_i = 1; cr_i < 5; cr_i++)
|
|
|
|
|
clrbits_le32(&dram->dllcr[cr_i], 0x4f << 14);
|
|
|
|
|
udelay(2);
|
|
|
|
|
|
|
|
|
|
return dramc_scan_readpipe();
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
static void dramc_clock_output_en(u32 on)
|
|
|
|
|
{
|
|
|
|
|
#if defined(CONFIG_SUN5I) || defined(CONFIG_SUN7I)
|
|
|
|
@ -451,48 +434,164 @@ static void dramc_clock_output_en(u32 on)
|
|
|
|
|
#endif
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
static const u16 tRFC_table[2][6] = {
|
|
|
|
|
/* 256Mb 512Mb 1Gb 2Gb 4Gb 8Gb */
|
|
|
|
|
/* DDR2 75ns 105ns 127.5ns 195ns 327.5ns invalid */
|
|
|
|
|
{ 77, 108, 131, 200, 336, 336 },
|
|
|
|
|
/* DDR3 invalid 90ns 110ns 160ns 300ns 350ns */
|
|
|
|
|
{ 93, 93, 113, 164, 308, 359 }
|
|
|
|
|
/* tRFC in nanoseconds for different densities (from the DDR3 spec) */
|
|
|
|
|
static const u16 tRFC_DDR3_table[6] = {
|
|
|
|
|
/* 256Mb 512Mb 1Gb 2Gb 4Gb 8Gb */
|
|
|
|
|
90, 90, 110, 160, 300, 350
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
static void dramc_set_autorefresh_cycle(u32 clk, u32 type, u32 density)
|
|
|
|
|
static void dramc_set_autorefresh_cycle(u32 clk, u32 density)
|
|
|
|
|
{
|
|
|
|
|
struct sunxi_dram_reg *dram = (struct sunxi_dram_reg *)SUNXI_DRAMC_BASE;
|
|
|
|
|
u32 tRFC, tREFI;
|
|
|
|
|
|
|
|
|
|
tRFC = (tRFC_table[type][density] * clk + 1023) >> 10;
|
|
|
|
|
tRFC = (tRFC_DDR3_table[density] * clk + 999) / 1000;
|
|
|
|
|
tREFI = (7987 * clk) >> 10; /* <= 7.8us */
|
|
|
|
|
|
|
|
|
|
writel(DRAM_DRR_TREFI(tREFI) | DRAM_DRR_TRFC(tRFC), &dram->drr);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
unsigned long dramc_init(struct dram_para *para)
|
|
|
|
|
/* Calculate the value for A11, A10, A9 bits in MR0 (write recovery) */
|
|
|
|
|
static u32 ddr3_write_recovery(u32 clk)
|
|
|
|
|
{
|
|
|
|
|
u32 twr_ns = 15; /* DDR3 spec says that it is 15ns for all speed bins */
|
|
|
|
|
u32 twr_ck = (twr_ns * clk + 999) / 1000;
|
|
|
|
|
if (twr_ck < 5)
|
|
|
|
|
return 1;
|
|
|
|
|
else if (twr_ck <= 8)
|
|
|
|
|
return twr_ck - 4;
|
|
|
|
|
else if (twr_ck <= 10)
|
|
|
|
|
return 5;
|
|
|
|
|
else
|
|
|
|
|
return 6;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
|
* If the dram->ppwrsctl (SDR_DPCR) register has the lowest bit set to 1, this
|
|
|
|
|
* means that DRAM is currently in self-refresh mode and retaining the old
|
|
|
|
|
* data. Since we have no idea what to do in this situation yet, just set this
|
|
|
|
|
* register to 0 and initialize DRAM in the same way as on any normal reboot
|
|
|
|
|
* (discarding whatever was stored there).
|
|
|
|
|
*
|
|
|
|
|
* Note: on sun7i hardware, the highest 16 bits need to be set to 0x1651 magic
|
|
|
|
|
* value for this write operation to have any effect. On sun5i hadware this
|
|
|
|
|
* magic value is not necessary. And on sun4i hardware the writes to this
|
|
|
|
|
* register seem to have no effect at all.
|
|
|
|
|
*/
|
|
|
|
|
static void mctl_disable_power_save(void)
|
|
|
|
|
{
|
|
|
|
|
struct sunxi_dram_reg *dram = (struct sunxi_dram_reg *)SUNXI_DRAMC_BASE;
|
|
|
|
|
writel(0x16510000, &dram->ppwrsctl);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
|
* After the DRAM is powered up or reset, the DDR3 spec requires to wait at
|
|
|
|
|
* least 500 us before driving the CKE pin (Clock Enable) high. The dram->idct
|
|
|
|
|
* (SDR_IDCR) register appears to configure this delay, which gets applied
|
|
|
|
|
* right at the time when the DRAM initialization is activated in the
|
|
|
|
|
* 'mctl_ddr3_initialize' function.
|
|
|
|
|
*/
|
|
|
|
|
static void mctl_set_cke_delay(void)
|
|
|
|
|
{
|
|
|
|
|
struct sunxi_dram_reg *dram = (struct sunxi_dram_reg *)SUNXI_DRAMC_BASE;
|
|
|
|
|
|
|
|
|
|
/* The CKE delay is represented in DRAM clock cycles, multiplied by N
|
|
|
|
|
* (where N=2 for sun4i/sun5i and N=3 for sun7i). Here it is set to
|
|
|
|
|
* the maximum possible value 0x1ffff, just like in the Allwinner's
|
|
|
|
|
* boot0 bootloader. The resulting delay value is somewhere between
|
|
|
|
|
* ~0.4 ms (sun5i with 648 MHz DRAM clock speed) and ~1.1 ms (sun7i
|
|
|
|
|
* with 360 MHz DRAM clock speed). */
|
|
|
|
|
setbits_le32(&dram->idcr, 0x1ffff);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
|
* This triggers the DRAM initialization. It performs sending the mode registers
|
|
|
|
|
* to the DRAM among other things. Very likely the ZQCL command is also getting
|
|
|
|
|
* executed (to do the initial impedance calibration on the DRAM side of the
|
|
|
|
|
* wire). The memory controller and the PHY must be already configured before
|
|
|
|
|
* calling this function.
|
|
|
|
|
*/
|
|
|
|
|
static void mctl_ddr3_initialize(void)
|
|
|
|
|
{
|
|
|
|
|
struct sunxi_dram_reg *dram = (struct sunxi_dram_reg *)SUNXI_DRAMC_BASE;
|
|
|
|
|
setbits_le32(&dram->ccr, DRAM_CCR_INIT);
|
|
|
|
|
await_bits_clear(&dram->ccr, DRAM_CCR_INIT);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
|
* Perform impedance calibration on the DRAM controller side of the wire.
|
|
|
|
|
*/
|
|
|
|
|
static void mctl_set_impedance(u32 zq, u32 odt_en)
|
|
|
|
|
{
|
|
|
|
|
struct sunxi_dram_reg *dram = (struct sunxi_dram_reg *)SUNXI_DRAMC_BASE;
|
|
|
|
|
u32 reg_val;
|
|
|
|
|
u32 zprog = zq & 0xFF, zdata = (zq >> 8) & 0xFFFFF;
|
|
|
|
|
|
|
|
|
|
#ifndef CONFIG_SUN7I
|
|
|
|
|
/* Appears that some kind of automatically initiated default
|
|
|
|
|
* ZQ calibration is already in progress at this point on sun4i/sun5i
|
|
|
|
|
* hardware, but not on sun7i. So it is reasonable to wait for its
|
|
|
|
|
* completion before doing anything else. */
|
|
|
|
|
await_bits_set(&dram->zqsr, DRAM_ZQSR_ZDONE);
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
/* ZQ calibration is not really useful unless ODT is enabled */
|
|
|
|
|
if (!odt_en)
|
|
|
|
|
return;
|
|
|
|
|
|
|
|
|
|
#ifdef CONFIG_SUN7I
|
|
|
|
|
/* Enabling ODT in SDR_IOCR on sun7i hardware results in a deadlock
|
|
|
|
|
* unless bit 24 is set in SDR_ZQCR1. Not much is known about the
|
|
|
|
|
* SDR_ZQCR1 register, but there are hints indicating that it might
|
|
|
|
|
* be related to periodic impedance re-calibration. This particular
|
|
|
|
|
* magic value is borrowed from the Allwinner boot0 bootloader, and
|
|
|
|
|
* using it helps to avoid troubles */
|
|
|
|
|
writel((1 << 24) | (1 << 1), &dram->zqcr1);
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
/* Needed at least for sun5i, because it does not self clear there */
|
|
|
|
|
clrbits_le32(&dram->zqcr0, DRAM_ZQCR0_ZCAL);
|
|
|
|
|
|
|
|
|
|
if (zdata) {
|
|
|
|
|
/* Set the user supplied impedance data */
|
|
|
|
|
reg_val = DRAM_ZQCR0_ZDEN | zdata;
|
|
|
|
|
writel(reg_val, &dram->zqcr0);
|
|
|
|
|
/* no need to wait, this takes effect immediately */
|
|
|
|
|
} else {
|
|
|
|
|
/* Do the calibration using the external resistor */
|
|
|
|
|
reg_val = DRAM_ZQCR0_ZCAL | DRAM_ZQCR0_IMP_DIV(zprog);
|
|
|
|
|
writel(reg_val, &dram->zqcr0);
|
|
|
|
|
/* Wait for the new impedance configuration to settle */
|
|
|
|
|
await_bits_set(&dram->zqsr, DRAM_ZQSR_ZDONE);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Needed at least for sun5i, because it does not self clear there */
|
|
|
|
|
clrbits_le32(&dram->zqcr0, DRAM_ZQCR0_ZCAL);
|
|
|
|
|
|
|
|
|
|
/* Set I/O configure register */
|
|
|
|
|
writel(DRAM_IOCR_ODT_EN(odt_en), &dram->iocr);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
static unsigned long dramc_init_helper(struct dram_para *para)
|
|
|
|
|
{
|
|
|
|
|
struct sunxi_dram_reg *dram = (struct sunxi_dram_reg *)SUNXI_DRAMC_BASE;
|
|
|
|
|
u32 reg_val;
|
|
|
|
|
u32 density;
|
|
|
|
|
int ret_val;
|
|
|
|
|
|
|
|
|
|
/* check input dram parameter structure */
|
|
|
|
|
if (!para)
|
|
|
|
|
/*
|
|
|
|
|
* only single rank DDR3 is supported by this code even though the
|
|
|
|
|
* hardware can theoretically support DDR2 and up to two ranks
|
|
|
|
|
*/
|
|
|
|
|
if (para->type != DRAM_MEMORY_TYPE_DDR3 || para->rank_num != 1)
|
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
|
|
/* setup DRAM relative clock */
|
|
|
|
|
mctl_setup_dram_clock(para->clock);
|
|
|
|
|
mctl_setup_dram_clock(para->clock, para->mbus_clock);
|
|
|
|
|
|
|
|
|
|
#ifdef CONFIG_SUN5I
|
|
|
|
|
/* Disable any pad power save control */
|
|
|
|
|
writel(0, &dram->ppwrsctl);
|
|
|
|
|
#endif
|
|
|
|
|
mctl_disable_power_save();
|
|
|
|
|
|
|
|
|
|
/* reset external DRAM */
|
|
|
|
|
#ifndef CONFIG_SUN7I
|
|
|
|
|
mctl_ddr3_reset();
|
|
|
|
|
#endif
|
|
|
|
|
mctl_set_drive();
|
|
|
|
|
|
|
|
|
|
/* dram clock off */
|
|
|
|
@ -507,9 +606,7 @@ unsigned long dramc_init(struct dram_para *para)
|
|
|
|
|
mctl_enable_dll0(para->tpr3);
|
|
|
|
|
|
|
|
|
|
/* configure external DRAM */
|
|
|
|
|
reg_val = 0x0;
|
|
|
|
|
if (para->type == DRAM_MEMORY_TYPE_DDR3)
|
|
|
|
|
reg_val |= DRAM_DCR_TYPE_DDR3;
|
|
|
|
|
reg_val = DRAM_DCR_TYPE_DDR3;
|
|
|
|
|
reg_val |= DRAM_DCR_IO_WIDTH(para->io_width >> 3);
|
|
|
|
|
|
|
|
|
|
if (para->density == 256)
|
|
|
|
@ -534,85 +631,41 @@ unsigned long dramc_init(struct dram_para *para)
|
|
|
|
|
reg_val |= DRAM_DCR_MODE(DRAM_DCR_MODE_INTERLEAVE);
|
|
|
|
|
writel(reg_val, &dram->dcr);
|
|
|
|
|
|
|
|
|
|
#ifdef CONFIG_SUN7I
|
|
|
|
|
setbits_le32(&dram->zqcr1, (0x1 << 24) | (0x1 << 1));
|
|
|
|
|
if (para->tpr4 & 0x2)
|
|
|
|
|
clrsetbits_le32(&dram->zqcr1, (0x1 << 24), (0x1 << 1));
|
|
|
|
|
dramc_clock_output_en(1);
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
#if (defined(CONFIG_SUN5I) || defined(CONFIG_SUN7I))
|
|
|
|
|
/* set odt impendance divide ratio */
|
|
|
|
|
reg_val = ((para->zq) >> 8) & 0xfffff;
|
|
|
|
|
reg_val |= ((para->zq) & 0xff) << 20;
|
|
|
|
|
reg_val |= (para->zq) & 0xf0000000;
|
|
|
|
|
writel(reg_val, &dram->zqcr0);
|
|
|
|
|
#endif
|
|
|
|
|
mctl_set_impedance(para->zq, para->odt_en);
|
|
|
|
|
|
|
|
|
|
#ifdef CONFIG_SUN7I
|
|
|
|
|
/* Set CKE Delay to about 1ms */
|
|
|
|
|
setbits_le32(&dram->idcr, 0x1ffff);
|
|
|
|
|
#endif
|
|
|
|
|
mctl_set_cke_delay();
|
|
|
|
|
|
|
|
|
|
#ifdef CONFIG_SUN7I
|
|
|
|
|
if ((readl(&dram->ppwrsctl) & 0x1) != 0x1)
|
|
|
|
|
mctl_ddr3_reset();
|
|
|
|
|
else
|
|
|
|
|
setbits_le32(&dram->mcr, DRAM_MCR_RESET);
|
|
|
|
|
#else
|
|
|
|
|
/* dram clock on */
|
|
|
|
|
dramc_clock_output_en(1);
|
|
|
|
|
#endif
|
|
|
|
|
mctl_ddr3_reset();
|
|
|
|
|
|
|
|
|
|
udelay(1);
|
|
|
|
|
|
|
|
|
|
await_completion(&dram->ccr, DRAM_CCR_INIT);
|
|
|
|
|
await_bits_clear(&dram->ccr, DRAM_CCR_INIT);
|
|
|
|
|
|
|
|
|
|
mctl_enable_dllx(para->tpr3);
|
|
|
|
|
|
|
|
|
|
#ifdef CONFIG_SUN4I
|
|
|
|
|
/* set odt impedance divide ratio */
|
|
|
|
|
reg_val = ((para->zq) >> 8) & 0xfffff;
|
|
|
|
|
reg_val |= ((para->zq) & 0xff) << 20;
|
|
|
|
|
reg_val |= (para->zq) & 0xf0000000;
|
|
|
|
|
writel(reg_val, &dram->zqcr0);
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
#ifdef CONFIG_SUN4I
|
|
|
|
|
/* set I/O configure register */
|
|
|
|
|
reg_val = 0x00cc0000;
|
|
|
|
|
reg_val |= (para->odt_en) & 0x3;
|
|
|
|
|
reg_val |= ((para->odt_en) & 0x3) << 30;
|
|
|
|
|
writel(reg_val, &dram->iocr);
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
/* set refresh period */
|
|
|
|
|
dramc_set_autorefresh_cycle(para->clock, para->type - 2, density);
|
|
|
|
|
dramc_set_autorefresh_cycle(para->clock, density);
|
|
|
|
|
|
|
|
|
|
/* set timing parameters */
|
|
|
|
|
writel(para->tpr0, &dram->tpr0);
|
|
|
|
|
writel(para->tpr1, &dram->tpr1);
|
|
|
|
|
writel(para->tpr2, &dram->tpr2);
|
|
|
|
|
|
|
|
|
|
if (para->type == DRAM_MEMORY_TYPE_DDR3) {
|
|
|
|
|
reg_val = DRAM_MR_BURST_LENGTH(0x0);
|
|
|
|
|
reg_val = DRAM_MR_BURST_LENGTH(0x0);
|
|
|
|
|
#if (defined(CONFIG_SUN5I) || defined(CONFIG_SUN7I))
|
|
|
|
|
reg_val |= DRAM_MR_POWER_DOWN;
|
|
|
|
|
reg_val |= DRAM_MR_POWER_DOWN;
|
|
|
|
|
#endif
|
|
|
|
|
reg_val |= DRAM_MR_CAS_LAT(para->cas - 4);
|
|
|
|
|
reg_val |= DRAM_MR_WRITE_RECOVERY(0x5);
|
|
|
|
|
} else if (para->type == DRAM_MEMORY_TYPE_DDR2) {
|
|
|
|
|
reg_val = DRAM_MR_BURST_LENGTH(0x2);
|
|
|
|
|
reg_val |= DRAM_MR_CAS_LAT(para->cas);
|
|
|
|
|
reg_val |= DRAM_MR_WRITE_RECOVERY(0x5);
|
|
|
|
|
}
|
|
|
|
|
reg_val |= DRAM_MR_CAS_LAT(para->cas - 4);
|
|
|
|
|
reg_val |= DRAM_MR_WRITE_RECOVERY(ddr3_write_recovery(para->clock));
|
|
|
|
|
writel(reg_val, &dram->mr);
|
|
|
|
|
|
|
|
|
|
writel(para->emr1, &dram->emr);
|
|
|
|
|
writel(para->emr2, &dram->emr2);
|
|
|
|
|
writel(para->emr3, &dram->emr3);
|
|
|
|
|
|
|
|
|
|
/* set DQS window mode */
|
|
|
|
|
/* disable drift compensation and set passive DQS window mode */
|
|
|
|
|
clrsetbits_le32(&dram->ccr, DRAM_CCR_DQS_DRIFT_COMP, DRAM_CCR_DQS_GATE);
|
|
|
|
|
|
|
|
|
|
#ifdef CONFIG_SUN7I
|
|
|
|
@ -620,70 +673,78 @@ unsigned long dramc_init(struct dram_para *para)
|
|
|
|
|
if (para->tpr4 & 0x1)
|
|
|
|
|
setbits_le32(&dram->ccr, DRAM_CCR_COMMAND_RATE_1T);
|
|
|
|
|
#endif
|
|
|
|
|
/* reset external DRAM */
|
|
|
|
|
setbits_le32(&dram->ccr, DRAM_CCR_INIT);
|
|
|
|
|
await_completion(&dram->ccr, DRAM_CCR_INIT);
|
|
|
|
|
|
|
|
|
|
#ifdef CONFIG_SUN7I
|
|
|
|
|
/* setup zq calibration manual */
|
|
|
|
|
reg_val = readl(&dram->ppwrsctl);
|
|
|
|
|
if ((reg_val & 0x1) == 1) {
|
|
|
|
|
/* super_standby_flag = 1 */
|
|
|
|
|
|
|
|
|
|
reg_val = readl(0x01c20c00 + 0x120); /* rtc */
|
|
|
|
|
reg_val &= 0x000fffff;
|
|
|
|
|
reg_val |= 0x17b00000;
|
|
|
|
|
writel(reg_val, &dram->zqcr0);
|
|
|
|
|
|
|
|
|
|
/* exit self-refresh state */
|
|
|
|
|
clrsetbits_le32(&dram->dcr, 0x1f << 27, 0x12 << 27);
|
|
|
|
|
/* check whether command has been executed */
|
|
|
|
|
await_completion(&dram->dcr, 0x1 << 31);
|
|
|
|
|
|
|
|
|
|
udelay(2);
|
|
|
|
|
|
|
|
|
|
/* dram pad hold off */
|
|
|
|
|
setbits_le32(&dram->ppwrsctl, 0x16510000);
|
|
|
|
|
|
|
|
|
|
await_completion(&dram->ppwrsctl, 0x1);
|
|
|
|
|
|
|
|
|
|
/* exit self-refresh state */
|
|
|
|
|
clrsetbits_le32(&dram->dcr, 0x1f << 27, 0x12 << 27);
|
|
|
|
|
|
|
|
|
|
/* check whether command has been executed */
|
|
|
|
|
await_completion(&dram->dcr, 0x1 << 31);
|
|
|
|
|
|
|
|
|
|
udelay(2);
|
|
|
|
|
|
|
|
|
|
/* issue a refresh command */
|
|
|
|
|
clrsetbits_le32(&dram->dcr, 0x1f << 27, 0x13 << 27);
|
|
|
|
|
await_completion(&dram->dcr, 0x1 << 31);
|
|
|
|
|
|
|
|
|
|
udelay(2);
|
|
|
|
|
}
|
|
|
|
|
#endif
|
|
|
|
|
/* initialize external DRAM */
|
|
|
|
|
mctl_ddr3_initialize();
|
|
|
|
|
|
|
|
|
|
/* scan read pipe value */
|
|
|
|
|
mctl_itm_enable();
|
|
|
|
|
if (para->tpr3 & (0x1 << 31)) {
|
|
|
|
|
ret_val = dramc_scan_dll_para();
|
|
|
|
|
if (ret_val == 0)
|
|
|
|
|
para->tpr3 =
|
|
|
|
|
(((readl(&dram->dllcr[0]) >> 6) & 0x3f) << 16) |
|
|
|
|
|
(((readl(&dram->dllcr[1]) >> 14) & 0xf) << 0) |
|
|
|
|
|
(((readl(&dram->dllcr[2]) >> 14) & 0xf) << 4) |
|
|
|
|
|
(((readl(&dram->dllcr[3]) >> 14) & 0xf) << 8) |
|
|
|
|
|
(((readl(&dram->dllcr[4]) >> 14) & 0xf) << 12
|
|
|
|
|
);
|
|
|
|
|
} else {
|
|
|
|
|
ret_val = dramc_scan_readpipe();
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Hardware DQS gate training */
|
|
|
|
|
ret_val = dramc_scan_readpipe();
|
|
|
|
|
|
|
|
|
|
if (ret_val < 0)
|
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
|
|
/* allow to override the DQS training results with a custom delay */
|
|
|
|
|
if (para->dqs_gating_delay)
|
|
|
|
|
mctl_set_dqs_gating_delay(0, para->dqs_gating_delay);
|
|
|
|
|
|
|
|
|
|
/* set the DQS gating window type */
|
|
|
|
|
if (para->active_windowing)
|
|
|
|
|
clrbits_le32(&dram->ccr, DRAM_CCR_DQS_GATE);
|
|
|
|
|
else
|
|
|
|
|
setbits_le32(&dram->ccr, DRAM_CCR_DQS_GATE);
|
|
|
|
|
|
|
|
|
|
mctl_itm_reset();
|
|
|
|
|
|
|
|
|
|
/* configure all host port */
|
|
|
|
|
mctl_configure_hostport();
|
|
|
|
|
|
|
|
|
|
return get_ram_size((long *)PHYS_SDRAM_0, PHYS_SDRAM_0_SIZE);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
unsigned long dramc_init(struct dram_para *para)
|
|
|
|
|
{
|
|
|
|
|
unsigned long dram_size, actual_density;
|
|
|
|
|
|
|
|
|
|
/* If the dram configuration is not provided, use a default */
|
|
|
|
|
if (!para)
|
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
|
|
/* if everything is known, then autodetection is not necessary */
|
|
|
|
|
if (para->io_width && para->bus_width && para->density)
|
|
|
|
|
return dramc_init_helper(para);
|
|
|
|
|
|
|
|
|
|
/* try to autodetect the DRAM bus width and density */
|
|
|
|
|
para->io_width = 16;
|
|
|
|
|
para->bus_width = 32;
|
|
|
|
|
#if defined(CONFIG_SUN4I) || defined(CONFIG_SUN5I)
|
|
|
|
|
/* only A0-A14 address lines on A10/A13, limiting max density to 4096 */
|
|
|
|
|
para->density = 4096;
|
|
|
|
|
#else
|
|
|
|
|
/* all A0-A15 address lines on A20, which allow density 8192 */
|
|
|
|
|
para->density = 8192;
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
dram_size = dramc_init_helper(para);
|
|
|
|
|
if (!dram_size) {
|
|
|
|
|
/* if 32-bit bus width failed, try 16-bit bus width instead */
|
|
|
|
|
para->bus_width = 16;
|
|
|
|
|
dram_size = dramc_init_helper(para);
|
|
|
|
|
if (!dram_size) {
|
|
|
|
|
/* if 16-bit bus width also failed, then bail out */
|
|
|
|
|
return dram_size;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* check if we need to adjust the density */
|
|
|
|
|
actual_density = (dram_size >> 17) * para->io_width / para->bus_width;
|
|
|
|
|
|
|
|
|
|
if (actual_density != para->density) {
|
|
|
|
|
/* update the density and re-initialize DRAM again */
|
|
|
|
|
para->density = actual_density;
|
|
|
|
|
dram_size = dramc_init_helper(para);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
return dram_size;
|
|
|
|
|
}
|
|
|
|
|