Refactor code for "i2c sdram" command

Signed-off-by: Larry Johnson <lrj@acm.org>
This commit is contained in:
Larry Johnson 2008-01-11 23:26:18 -05:00 committed by Wolfgang Denk
parent 0df6b8446c
commit 632de0672d

View file

@ -655,29 +655,120 @@ int do_i2c_loop(cmd_tbl_t *cmdtp, int flag, int argc, char *argv[])
* (most?) embedded boards don't use SDRAM DIMMs.
*/
#if defined(CONFIG_CMD_SDRAM)
static void print_ddr2_tcyc (u_char const b)
{
printf ("%d.", (b >> 4) & 0x0F);
switch (b & 0x0F) {
case 0x0:
case 0x1:
case 0x2:
case 0x3:
case 0x4:
case 0x5:
case 0x6:
case 0x7:
case 0x8:
case 0x9:
printf ("%d ns\n", b & 0x0F);
break;
case 0xA:
puts ("25 ns\n");
break;
case 0xB:
puts ("33 ns\n");
break;
case 0xC:
puts ("66 ns\n");
break;
case 0xD:
puts ("75 ns\n");
break;
default:
puts ("?? ns\n");
break;
}
}
static void decode_bits (u_char const b, char const *str[], int const do_once)
{
u_char mask;
for (mask = 0x80; mask != 0x00; mask >>= 1, ++str) {
if (b & mask) {
puts (*str);
if (do_once)
return;
}
}
}
/*
* Syntax:
* sdram {i2c_chip}
*/
int do_sdram ( cmd_tbl_t *cmdtp, int flag, int argc, char *argv[])
int do_sdram (cmd_tbl_t * cmdtp, int flag, int argc, char *argv[])
{
enum {unknown, EDO, SDRAM, DDR2} type;
enum { unknown, EDO, SDRAM, DDR2 } type;
u_char chip;
u_char data[128];
u_char cksum;
int j;
static const char *decode_CAS_DDR2[] = {
" TBD", " 6", " 5", " 4", " 3", " 2", " TBD", " TBD"
};
static const char *decode_CAS_default[] = {
" TBD", " 7", " 6", " 5", " 4", " 3", " 2", " 1"
};
static const char *decode_CS_WE_default[] = {
" TBD", " 6", " 5", " 4", " 3", " 2", " 1", " 0"
};
static const char *decode_byte21_default[] = {
" TBD (bit 7)\n",
" Redundant row address\n",
" Differential clock input\n",
" Registerd DQMB inputs\n",
" Buffered DQMB inputs\n",
" On-card PLL\n",
" Registered address/control lines\n",
" Buffered address/control lines\n"
};
static const char *decode_byte22_DDR2[] = {
" TBD (bit 7)\n",
" TBD (bit 6)\n",
" TBD (bit 5)\n",
" TBD (bit 4)\n",
" TBD (bit 3)\n",
" Supports partial array self refresh\n",
" Supports 50 ohm ODT\n",
" Supports weak driver\n"
};
static const char *decode_row_density_DDR2[] = {
"512 MiB", "256 MiB", "128 MiB", "16 GiB",
"8 GiB", "4 GiB", "2 GiB", "1 GiB"
};
static const char *decode_row_density_default[] = {
"512 MiB", "256 MiB", "128 MiB", "64 MiB",
"32 MiB", "16 MiB", "8 MiB", "4 MiB"
};
if (argc < 2) {
printf ("Usage:\n%s\n", cmdtp->usage);
return 1;
}
/*
* Chip is always specified.
*/
chip = simple_strtoul(argv[1], NULL, 16);
*/
chip = simple_strtoul (argv[1], NULL, 16);
if (i2c_read(chip, 0, 1, data, sizeof(data)) != 0) {
if (i2c_read (chip, 0, 1, data, sizeof (data)) != 0) {
puts ("No SDRAM Serial Presence Detect found.\n");
return 1;
}
@ -688,15 +779,15 @@ int do_sdram ( cmd_tbl_t *cmdtp, int flag, int argc, char *argv[])
}
if (cksum != data[63]) {
printf ("WARNING: Configuration data checksum failure:\n"
" is 0x%02x, calculated 0x%02x\n",
data[63], cksum);
" is 0x%02x, calculated 0x%02x\n", data[63], cksum);
}
printf("SPD data revision %d.%d\n",
printf ("SPD data revision %d.%d\n",
(data[62] >> 4) & 0x0F, data[62] & 0x0F);
printf("Bytes used 0x%02X\n", data[0]);
printf("Serial memory size 0x%02X\n", 1 << data[1]);
printf ("Bytes used 0x%02X\n", data[0]);
printf ("Serial memory size 0x%02X\n", 1 << data[1]);
puts ("Memory type ");
switch(data[2]) {
switch (data[2]) {
case 2:
type = EDO;
puts ("EDO\n");
@ -714,34 +805,36 @@ int do_sdram ( cmd_tbl_t *cmdtp, int flag, int argc, char *argv[])
puts ("unknown\n");
break;
}
puts ("Row address bits ");
if ((data[3] & 0x00F0) == 0)
printf("%d\n", data[3] & 0x0F);
printf ("%d\n", data[3] & 0x0F);
else
printf("%d/%d\n", data[3] & 0x0F, (data[3] >> 4) & 0x0F);
printf ("%d/%d\n", data[3] & 0x0F, (data[3] >> 4) & 0x0F);
puts ("Column address bits ");
if ((data[4] & 0x00F0) == 0)
printf("%d\n", data[4] & 0x0F);
printf ("%d\n", data[4] & 0x0F);
else
printf("%d/%d\n", data[4] & 0x0F, (data[4] >> 4) & 0x0F);
printf ("%d/%d\n", data[4] & 0x0F, (data[4] >> 4) & 0x0F);
switch (type) {
case DDR2:
printf("Number of ranks %d\n",
(data[5] & 0x07) + 1);
printf ("Number of ranks %d\n",
(data[5] & 0x07) + 1);
break;
default:
printf("Module rows %d\n", data[5]);
printf ("Module rows %d\n", data[5]);
break;
}
switch (type) {
case DDR2:
printf("Module data width %d bits\n", data[6]);
printf ("Module data width %d bits\n", data[6]);
break;
default:
printf("Module data width %d bits\n",
(data[7] << 8) | data[6]);
printf ("Module data width %d bits\n",
(data[7] << 8) | data[6]);
break;
}
@ -758,85 +851,58 @@ int do_sdram ( cmd_tbl_t *cmdtp, int flag, int argc, char *argv[])
switch (type) {
case DDR2:
printf("SDRAM cycle time %d.",
(data[9] >> 4) & 0x0F);
switch (data[9] & 0x0F) {
case 0x0:
case 0x1:
case 0x2:
case 0x3:
case 0x4:
case 0x5:
case 0x6:
case 0x7:
case 0x8:
case 0x9:
printf("%d ns\n", data[9] & 0x0F);
break;
case 0xA:
puts("25 ns\n");
break;
case 0xB:
puts("33 ns\n");
break;
case 0xC:
puts("66 ns\n");
break;
case 0xD:
puts("75 ns\n");
break;
default:
puts("?? ns\n");
break;
}
printf ("SDRAM cycle time ");
print_ddr2_tcyc (data[9]);
break;
default:
printf("SDRAM cycle time %d.%d nS\n",
(data[9] >> 4) & 0x0F, data[9] & 0x0F);
printf ("SDRAM cycle time %d.%d ns\n",
(data[9] >> 4) & 0x0F, data[9] & 0x0F);
break;
}
switch (type) {
case DDR2:
printf("SDRAM access time 0.%d%d ns\n",
(data[10] >> 4) & 0x0F, data[10] & 0x0F);
printf ("SDRAM access time 0.%d%d ns\n",
(data[10] >> 4) & 0x0F, data[10] & 0x0F);
break;
default:
printf("SDRAM access time %d.%d nS\n",
(data[10] >> 4) & 0x0F, data[10] & 0x0F);
printf ("SDRAM access time %d.%d ns\n",
(data[10] >> 4) & 0x0F, data[10] & 0x0F);
break;
}
puts ("EDC configuration ");
switch(data[11]) {
switch (data[11]) {
case 0: puts ("None\n"); break;
case 1: puts ("Parity\n"); break;
case 2: puts ("ECC\n"); break;
default: puts ("unknown\n"); break;
}
if ((data[12] & 0x80) == 0)
puts ("No self refresh, rate ");
else
puts ("Self refresh, rate ");
switch(data[12] & 0x7F) {
case 0: puts ("15.625 uS\n"); break;
case 1: puts ("3.9 uS\n"); break;
case 2: puts ("7.8 uS \n"); break;
case 3: puts ("31.3 uS\n"); break;
case 4: puts ("62.5 uS\n"); break;
case 5: puts ("125 uS\n"); break;
case 0: puts ("15.625 us\n"); break;
case 1: puts ("3.9 us\n"); break;
case 2: puts ("7.8 us\n"); break;
case 3: puts ("31.3 us\n"); break;
case 4: puts ("62.5 us\n"); break;
case 5: puts ("125 us\n"); break;
default: puts ("unknown\n"); break;
}
switch (type) {
case DDR2:
printf("SDRAM width (primary) %d\n", data[13]);
printf ("SDRAM width (primary) %d\n", data[13]);
break;
default:
printf("SDRAM width (primary) %d\n", data[13] & 0x7F);
printf ("SDRAM width (primary) %d\n", data[13] & 0x7F);
if ((data[13] & 0x80) != 0) {
printf(" (second bank) %d\n",
2 * (data[13] & 0x7F));
printf (" (second bank) %d\n",
2 * (data[13] & 0x7F));
}
break;
}
@ -844,24 +910,24 @@ int do_sdram ( cmd_tbl_t *cmdtp, int flag, int argc, char *argv[])
switch (type) {
case DDR2:
if (data[14] != 0)
printf("EDC width %d\n", data[14]);
printf ("EDC width %d\n", data[14]);
break;
default:
if (data[14] != 0) {
printf("EDC width %d\n",
data[14] & 0x7F);
printf ("EDC width %d\n",
data[14] & 0x7F);
if ((data[14] & 0x80) != 0) {
printf(" (second bank) %d\n",
2 * (data[14] & 0x7F));
printf (" (second bank) %d\n",
2 * (data[14] & 0x7F));
}
}
break;
}
if (DDR2 != type ) {
printf("Min clock delay, back-to-back random column addresses "
"%d\n", data[15]);
if (DDR2 != type) {
printf ("Min clock delay, back-to-back random column addresses "
"%d\n", data[15]);
}
puts ("Burst length(s) ");
@ -871,56 +937,30 @@ int do_sdram ( cmd_tbl_t *cmdtp, int flag, int argc, char *argv[])
if (data[16] & 0x02) puts (" 2");
if (data[16] & 0x01) puts (" 1");
putc ('\n');
printf("Number of banks %d\n", data[17]);
printf ("Number of banks %d\n", data[17]);
switch (type) {
case DDR2:
puts ("CAS latency(s) ");
if (data[18] & 0x83) puts (" TBD");
if (data[18] & 0x40) puts (" 6");
if (data[18] & 0x20) puts (" 5");
if (data[18] & 0x10) puts (" 4");
if (data[18] & 0x08) puts (" 3");
if (data[18] & 0x04) puts (" 2");
decode_bits (data[18], decode_CAS_DDR2, 0);
putc ('\n');
break;
default:
puts ("CAS latency(s) ");
if (data[18] & 0x80) puts (" TBD");
if (data[18] & 0x40) puts (" 7");
if (data[18] & 0x20) puts (" 6");
if (data[18] & 0x10) puts (" 5");
if (data[18] & 0x08) puts (" 4");
if (data[18] & 0x04) puts (" 3");
if (data[18] & 0x02) puts (" 2");
if (data[18] & 0x01) puts (" 1");
decode_bits (data[18], decode_CAS_default, 0);
putc ('\n');
break;
}
if (DDR2 != type) {
puts ("CS latency(s) ");
if (data[19] & 0x80) puts (" TBD");
if (data[19] & 0x40) puts (" 6");
if (data[19] & 0x20) puts (" 5");
if (data[19] & 0x10) puts (" 4");
if (data[19] & 0x08) puts (" 3");
if (data[19] & 0x04) puts (" 2");
if (data[19] & 0x02) puts (" 1");
if (data[19] & 0x01) puts (" 0");
decode_bits (data[19], decode_CS_WE_default, 0);
putc ('\n');
}
if (DDR2 != type) {
puts ("WE latency(s) ");
if (data[20] & 0x80) puts (" TBD");
if (data[20] & 0x40) puts (" 6");
if (data[20] & 0x20) puts (" 5");
if (data[20] & 0x10) puts (" 4");
if (data[20] & 0x08) puts (" 3");
if (data[20] & 0x04) puts (" 2");
if (data[20] & 0x02) puts (" 1");
if (data[20] & 0x01) puts (" 0");
decode_bits (data[20], decode_CS_WE_default, 0);
putc ('\n');
}
@ -935,48 +975,24 @@ int do_sdram ( cmd_tbl_t *cmdtp, int flag, int argc, char *argv[])
puts (" TBD (bit 5)\n");
if (data[21] & 0x10)
puts (" FET switch external enable\n");
printf(" %d PLLs on DIMM\n", (data[21] >> 2) & 0x03);
printf (" %d PLLs on DIMM\n", (data[21] >> 2) & 0x03);
if (data[20] & 0x11) {
printf(" %d active registers on DIMM\n",
(data[21] & 0x03) + 1);
printf (" %d active registers on DIMM\n",
(data[21] & 0x03) + 1);
}
break;
default:
puts ("Module attributes:\n");
if (!data[21])
puts (" (none)\n");
if (data[21] & 0x80)
puts (" TBD (bit 7)\n");
if (data[21] & 0x40)
puts (" Redundant row address\n");
if (data[21] & 0x20)
puts (" Differential clock input\n");
if (data[21] & 0x10)
puts (" Registerd DQMB inputs\n");
if (data[21] & 0x08)
puts (" Buffered DQMB inputs\n");
if (data[21] & 0x04)
puts (" On-card PLL\n");
if (data[21] & 0x02)
puts (" Registered address/control lines\n");
if (data[21] & 0x01)
puts (" Buffered address/control lines\n");
else
decode_bits (data[21], decode_byte21_default, 0);
break;
}
switch (type) {
case DDR2:
if (data[22] & 0x80) puts (" TBD (bit 7)\n");
if (data[22] & 0x40) puts (" TBD (bit 6)\n");
if (data[22] & 0x20) puts (" TBD (bit 5)\n");
if (data[22] & 0x10) puts (" TBD (bit 4)\n");
if (data[22] & 0x08) puts (" TBD (bit 3)\n");
if (data[22] & 0x04)
puts (" Supports parital array self refresh\n");
if (data[22] & 0x02)
puts (" Supports 50 ohm ODT\n");
if (data[22] & 0x01)
puts (" Supports weak driver\n");
decode_bits (data[22], decode_byte22_DDR2, 0);
break;
default:
puts ("Device attributes:\n");
@ -995,259 +1011,172 @@ int do_sdram ( cmd_tbl_t *cmdtp, int flag, int argc, char *argv[])
switch (type) {
case DDR2:
printf("SDRAM cycle time (2nd highest CAS latency) %d.",
(data[23] >> 4) & 0x0F);
switch (data[23] & 0x0F) {
case 0x0:
case 0x1:
case 0x2:
case 0x3:
case 0x4:
case 0x5:
case 0x6:
case 0x7:
case 0x8:
case 0x9:
printf("%d ns\n", data[23] & 0x0F);
break;
case 0xA:
puts("25 ns\n");
break;
case 0xB:
puts("33 ns\n");
break;
case 0xC:
puts("66 ns\n");
break;
case 0xD:
puts("75 ns\n");
break;
default:
puts("?? ns\n");
break;
}
printf ("SDRAM cycle time (2nd highest CAS latency) ");
print_ddr2_tcyc (data[23]);
break;
default:
printf("SDRAM cycle time (2nd highest CAS latency) %d."
"%d nS\n", (data[23] >> 4) & 0x0F, data[23] & 0x0F);
printf ("SDRAM cycle time (2nd highest CAS latency) %d."
"%d ns\n", (data[23] >> 4) & 0x0F, data[23] & 0x0F);
break;
}
switch (type) {
case DDR2:
printf("SDRAM access from clock (2nd highest CAS latency) 0."
"%d%d ns\n", (data[24] >> 4) & 0x0F, data[24] & 0x0F);
printf ("SDRAM access from clock (2nd highest CAS latency) 0."
"%d%d ns\n", (data[24] >> 4) & 0x0F, data[24] & 0x0F);
break;
default:
printf("SDRAM access from clock (2nd highest CAS latency) %d."
"%d nS\n", (data[24] >> 4) & 0x0F, data[24] & 0x0F);
printf ("SDRAM access from clock (2nd highest CAS latency) %d."
"%d ns\n", (data[24] >> 4) & 0x0F, data[24] & 0x0F);
break;
}
switch (type) {
case DDR2:
printf("SDRAM cycle time (3rd highest CAS latency) %d.",
(data[25] >> 4) & 0x0F);
switch (data[25] & 0x0F) {
case 0x0:
case 0x1:
case 0x2:
case 0x3:
case 0x4:
case 0x5:
case 0x6:
case 0x7:
case 0x8:
case 0x9:
printf("%d ns\n", data[25] & 0x0F);
break;
case 0xA:
puts("25 ns\n");
break;
case 0xB:
puts("33 ns\n");
break;
case 0xC:
puts("66 ns\n");
break;
case 0xD:
puts("75 ns\n");
break;
default:
puts("?? ns\n");
break;
}
printf ("SDRAM cycle time (3rd highest CAS latency) ");
print_ddr2_tcyc (data[25]);
break;
default:
printf("SDRAM cycle time (3rd highest CAS latency) %d."
"%d nS\n", (data[25] >> 4) & 0x0F, data[25] & 0x0F);
printf ("SDRAM cycle time (3rd highest CAS latency) %d."
"%d ns\n", (data[25] >> 4) & 0x0F, data[25] & 0x0F);
break;
}
switch (type) {
case DDR2:
printf("SDRAM access from clock (3rd highest CAS latency) 0."
"%d%d ns\n", (data[26] >> 4) & 0x0F, data[26] & 0x0F);
printf ("SDRAM access from clock (3rd highest CAS latency) 0."
"%d%d ns\n", (data[26] >> 4) & 0x0F, data[26] & 0x0F);
break;
default:
printf("SDRAM access from clock (3rd highest CAS latency) %d."
"%d nS\n", (data[26] >> 4) & 0x0F, data[26] & 0x0F);
printf ("SDRAM access from clock (3rd highest CAS latency) %d."
"%d ns\n", (data[26] >> 4) & 0x0F, data[26] & 0x0F);
break;
}
switch (type) {
case DDR2:
printf("Minimum row precharge %d", data[27] >> 2);
switch (data[27] & 0x03) {
case 0x0: puts(".00 ns\n"); break;
case 0x1: puts(".25 ns\n"); break;
case 0x2: puts(".50 ns\n"); break;
case 0x3: puts(".75 ns\n"); break;
}
printf ("Minimum row precharge %d.%02d ns\n",
(data[27] >> 2) & 0x3F, 25 * (data[27] & 0x03));
break;
default:
printf("Minimum row precharge %d nS\n", data[27]);
printf ("Minimum row precharge %d ns\n", data[27]);
break;
}
switch (type) {
case DDR2:
printf("Row active to row active min %d", data[28] >> 2);
switch (data[28] & 0x03) {
case 0x0: puts(".00 ns\n"); break;
case 0x1: puts(".25 ns\n"); break;
case 0x2: puts(".50 ns\n"); break;
case 0x3: puts(".75 ns\n"); break;
}
printf ("Row active to row active min %d.%02d ns\n",
(data[28] >> 2) & 0x3F, 25 * (data[28] & 0x03));
break;
default:
printf("Row active to row active min %d nS\n", data[28]);
printf ("Row active to row active min %d ns\n", data[28]);
break;
}
switch (type) {
case DDR2:
printf("RAS to CAS delay min %d", data[29] >> 2);
switch (data[29] & 0x03) {
case 0x0: puts(".00 ns\n"); break;
case 0x1: puts(".25 ns\n"); break;
case 0x2: puts(".50 ns\n"); break;
case 0x3: puts(".75 ns\n"); break;
}
printf ("RAS to CAS delay min %d.%02d ns\n",
(data[29] >> 2) & 0x3F, 25 * (data[29] & 0x03));
break;
default:
printf("RAS to CAS delay min %d nS\n", data[29]);
printf ("RAS to CAS delay min %d ns\n", data[29]);
break;
}
printf("Minimum RAS pulse width %d nS\n", data[30]);
printf ("Minimum RAS pulse width %d ns\n", data[30]);
switch (type) {
case DDR2:
puts ("Density of each row ");
if (data[31] & 0x80) puts (" 512 MiB\n");
if (data[31] & 0x40) puts (" 256 MiB\n");
if (data[31] & 0x20) puts (" 128 MiB\n");
if (data[31] & 0x10) puts (" 16 GiB\n");
if (data[31] & 0x08) puts (" 8 GiB\n");
if (data[31] & 0x04) puts (" 4 GiB\n");
if (data[31] & 0x02) puts (" 2 GiB\n");
if (data[31] & 0x01) puts (" 1 GiB\n");
puts ("Density of each row ");
decode_bits (data[31], decode_row_density_DDR2, 1);
putc ('\n');
break;
default:
puts ("Density of each row ");
if (data[31] & 0x80) puts (" 512 MiB\n");
if (data[31] & 0x40) puts (" 256 MiB\n");
if (data[31] & 0x20) puts (" 128 MiB\n");
if (data[31] & 0x10) puts (" 64 MiB\n");
if (data[31] & 0x08) puts (" 32 MiB\n");
if (data[31] & 0x04) puts (" 16 MiB\n");
if (data[31] & 0x02) puts (" 8 MiB\n");
if (data[31] & 0x01) puts (" 4 MiB\n");
puts ("Density of each row ");
decode_bits (data[31], decode_row_density_default, 1);
putc ('\n');
break;
}
switch (type) {
case DDR2:
puts("Command and Address setup ");
puts ("Command and Address setup ");
if (data[32] >= 0xA0) {
printf("1.%d%d ns\n",
((data[32] >> 4) & 0x0F) - 10, data[32] & 0x0F);
printf ("1.%d%d ns\n",
((data[32] >> 4) & 0x0F) - 10, data[32] & 0x0F);
} else {
printf("0.%d%d ns\n",
((data[32] >> 4) & 0x0F), data[32] & 0x0F);
printf ("0.%d%d ns\n",
((data[32] >> 4) & 0x0F), data[32] & 0x0F);
}
break;
default:
printf("Command and Address setup %c%d.%d nS\n",
(data[32] & 0x80) ? '-' : '+',
(data[32] >> 4) & 0x07, data[32] & 0x0F);
printf ("Command and Address setup %c%d.%d ns\n",
(data[32] & 0x80) ? '-' : '+',
(data[32] >> 4) & 0x07, data[32] & 0x0F);
break;
}
switch (type) {
case DDR2:
puts("Command and Address hold ");
puts ("Command and Address hold ");
if (data[33] >= 0xA0) {
printf("1.%d%d ns\n",
((data[33] >> 4) & 0x0F) - 10, data[33] & 0x0F);
printf ("1.%d%d ns\n",
((data[33] >> 4) & 0x0F) - 10, data[33] & 0x0F);
} else {
printf("0.%d%d ns\n",
((data[33] >> 4) & 0x0F), data[33] & 0x0F);
printf ("0.%d%d ns\n",
((data[33] >> 4) & 0x0F), data[33] & 0x0F);
}
break;
default:
printf("Command and Address hold %c%d.%d nS\n",
(data[33] & 0x80) ? '-' : '+',
(data[33] >> 4) & 0x07, data[33] & 0x0F);
printf ("Command and Address hold %c%d.%d ns\n",
(data[33] & 0x80) ? '-' : '+',
(data[33] >> 4) & 0x07, data[33] & 0x0F);
break;
}
switch (type) {
case DDR2:
printf("Data signal input setup 0.%d%d ns\n",
(data[34] >> 4) & 0x0F, data[34] & 0x0F);
printf ("Data signal input setup 0.%d%d ns\n",
(data[34] >> 4) & 0x0F, data[34] & 0x0F);
break;
default:
printf("Data signal input setup %c%d.%d nS\n",
(data[34] & 0x80) ? '-' : '+',
(data[34] >> 4) & 0x07, data[34] & 0x0F);
printf ("Data signal input setup %c%d.%d ns\n",
(data[34] & 0x80) ? '-' : '+',
(data[34] >> 4) & 0x07, data[34] & 0x0F);
break;
}
switch (type) {
case DDR2:
printf("Data signal input hold 0.%d%d ns\n",
(data[35] >> 4) & 0x0F, data[35] & 0x0F);
printf ("Data signal input hold 0.%d%d ns\n",
(data[35] >> 4) & 0x0F, data[35] & 0x0F);
break;
default:
printf("Data signal input hold %c%d.%d nS\n",
(data[35] & 0x80) ? '-' : '+',
(data[35] >> 4) & 0x07, data[35] & 0x0F);
printf ("Data signal input hold %c%d.%d ns\n",
(data[35] & 0x80) ? '-' : '+',
(data[35] >> 4) & 0x07, data[35] & 0x0F);
break;
}
puts ("Manufacturer's JEDEC ID ");
for (j = 64; j <= 71; j++)
printf("%02X ", data[j]);
printf ("%02X ", data[j]);
putc ('\n');
printf("Manufacturing Location %02X\n", data[72]);
printf ("Manufacturing Location %02X\n", data[72]);
puts ("Manufacturer's Part Number ");
for (j = 73; j <= 90; j++)
printf("%02X ", data[j]);
printf ("%02X ", data[j]);
putc ('\n');
printf("Revision Code %02X %02X\n", data[91], data[92]);
printf("Manufacturing Date %02X %02X\n", data[93], data[94]);
printf ("Revision Code %02X %02X\n", data[91], data[92]);
printf ("Manufacturing Date %02X %02X\n", data[93], data[94]);
puts ("Assembly Serial Number ");
for (j = 95; j <= 98; j++)
printf("%02X ", data[j]);
printf ("%02X ", data[j]);
putc ('\n');
if (DDR2 != type) {
printf("Speed rating PC%d\n",
data[126] == 0x66 ? 66 : data[126]);
printf ("Speed rating PC%d\n",
data[126] == 0x66 ? 66 : data[126]);
}
return 0;
}