Pull request of efi-next

Documentation:
 
 * Add Sunxi board description
 
 UEFI:
 
 * Improvements to U-Boot running on top of UEFI
 -----BEGIN PGP SIGNATURE-----
 
 iQIzBAABCAAdFiEEbcT5xx8ppvoGt20zxIHbvCwFGsQFAmHOp5gACgkQxIHbvCwF
 GsTonA//Y8wwlaXA1TD6B0fIEcQiZucDJQD0nbHugx+1xw/7w9wHX1qfM4Tskqc4
 y4RA3QyoyUp7tvesP6/EA3mAUSEUp0nrtLPyCJjjXV1lrOaXhwvbdqrhOCqUQLen
 h6RNjhujVtbC90wBWYPal3Ip0hdIUROe3qp9Mk2p4zAru8jBEShn+PTRIeHvf6UV
 9BZ8j9LCivC7hUAG3Cyv+KFhW1s47IN54WddedIREEWk4vIdrUMRLjW/kW8ZbDxx
 gi1Eec25Rte6+p5k/+TJkvCwA8GC1kW+MFMYWxcAARZlUd0yr/S6ru5yaW8km0KQ
 kKgcYGp878hVB41JFEhiGUf9CkwU2oo+3NZGIfNv/vG45J4UppyqNffm9c3ZudWC
 S6DqRVPSp1YQEs45SIVZGx+LK6s1iTBn3DJ/dX68NavuUIYX2nnveUBgtW5vdzGf
 ba0yh4a0EU36hcjd2o3y3sEAjiy+PF8SAZ+f2HQ7JaLjsCWF1zNFGsiAxaEStHp8
 aVrUN0cWQPKnnI2A8DCqjmMaSBDKZDK59k6EeC1ZFdMmGivHEO61A0sDiUTz+IRW
 U7XLvjAA5IVKAtij6T/iab6qvhgwABJRL9lZI5DMiFxJRSl4uSYe9YviG7+EzUg0
 XMIs5nK6jBB74HPKqhBouiSUiRa9UHY/rdyNhJACHQ8GODzCf04=
 =YdSB
 -----END PGP SIGNATURE-----

Merge tag 'efi-next' of https://source.denx.de/u-boot/custodians/u-boot-efi into next

Pull request of efi-next

Documentation:

* Add Sunxi board description

UEFI:

* Improvements to U-Boot running on top of UEFI
This commit is contained in:
Tom Rini 2021-12-31 07:28:36 -05:00
commit 5fec3c853d
21 changed files with 744 additions and 68 deletions

View file

@ -7,6 +7,7 @@
#include <common.h>
#include <cpu_func.h>
#include <efi.h>
#include <efi_api.h>
#include <errno.h>
#include <init.h>
#include <log.h>
@ -296,8 +297,14 @@ void setup_efi_info(struct efi_info *efi_info)
void efi_show_bdinfo(void)
{
struct efi_entry_systable *table = NULL;
struct efi_system_table *sys_table;
int size, ret;
ret = efi_info_get(EFIET_SYS_TABLE, (void **)&table, &size);
bdinfo_print_num_l("efi_table", (ulong)table);
if (!ret) {
bdinfo_print_num_l("efi_table", table->sys_table);
sys_table = (struct efi_system_table *)(uintptr_t)
table->sys_table;
bdinfo_print_num_l(" revision", sys_table->fw_revision);
}
}

View file

@ -24,7 +24,7 @@ dtb-y += bayleybay.dtb \
targets += $(dtb-y)
DTC_FLAGS += -R 4 -p 0x1000
DTC_FLAGS += -R 4 -p $(if $(CONFIG_EFI_APP),0x8000,0x1000)
PHONY += dtbs
dtbs: $(addprefix $(obj)/, $(dtb-y))

View file

@ -179,10 +179,14 @@ int boot_linux_kernel(ulong setup_base, ulong load_address, bool image_64bit)
* U-Boot is setting them up that way for itself in
* arch/i386/cpu/cpu.c.
*
* Note that we cannot currently boot a kernel while running as
* an EFI application. Please use the payload option for that.
* Note: this is incomplete for EFI kernels!
*
* This can boot a kernel while running as an EFI application,
* but if the kernel requires EFI support then that support needs
* to be enabled first (see EFI_LOADER). Also the EFI information
* must enabled with setup_efi_info(). See setup_zimage() for
* how this is done with the stub.
*/
#ifndef CONFIG_EFI_APP
__asm__ __volatile__ (
"movl $0, %%ebp\n"
"cli\n"
@ -191,7 +195,6 @@ int boot_linux_kernel(ulong setup_base, ulong load_address, bool image_64bit)
[boot_params] "S"(setup_base),
"b"(0), "D"(0)
);
#endif
}
/* We can't get to here */

View file

@ -365,11 +365,14 @@ int setup_zimage(struct boot_params *setup_base, char *cmd_line, int auto_boot,
strcpy(cmd_line, (char *)cmdline_force);
else
build_command_line(cmd_line, auto_boot);
ret = bootm_process_cmdline(cmd_line, max_size, BOOTM_CL_ALL);
if (ret) {
printf("Cmdline setup failed (max_size=%x, bootproto=%x, err=%d)\n",
max_size, bootproto, ret);
return ret;
if (IS_ENABLED(CONFIG_CMD_BOOTM)) {
ret = bootm_process_cmdline(cmd_line, max_size,
BOOTM_CL_ALL);
if (ret) {
printf("Cmdline setup failed (max_size=%x, bootproto=%x, err=%d)\n",
max_size, bootproto, ret);
return ret;
}
}
printf("Kernel command line: \"");
puts(cmd_line);

View file

@ -841,9 +841,8 @@ void board_init_r(gd_t *new_gd, ulong dest_addr)
* TODO(sjg@chromium.org): Consider doing this for all archs, or
* dropping the new_gd parameter.
*/
#if CONFIG_IS_ENABLED(X86_64)
arch_setup_gd(new_gd);
#endif
if (CONFIG_IS_ENABLED(X86_64) && !IS_ENABLED(CONFIG_EFI_APP))
arch_setup_gd(new_gd);
#ifdef CONFIG_NEEDS_MANUAL_RELOC
int i;

View file

@ -0,0 +1,9 @@
.. SPDX-License-Identifier: GPL-2.0+
Allwinner (sunxi) boards
========================
.. toctree::
:maxdepth: 2
sunxi

View file

@ -0,0 +1,319 @@
.. SPDX-License-Identifier: GPL-2.0+
.. Copyright (C) 2021 Arm Ltd.
Allwinner SoC based boards
==========================
For boards using an Allwinner ARM based SoC ("sunxi"), the U-Boot build
system generates a single integrated image file: ``u-boot-sunxi-with-spl.bin.``
This file can be used on SD cards, eMMC devices, SPI flash and for the
USB-OTG based boot method (FEL). To build this file:
* For 64-bit SoCs, build Trusted Firmware (TF-A, formerly known as ATF) first,
you will need its ``bl31.bin``. See below for more details.
* Optionally on 64-bit SoCs, build the `crust`_ management processor firmware,
you will need its ``scp.bin``. See below for more details.
* Build U-Boot::
$ export BL31=/path/to/bl31.bin # required for 64-bit SoCs
$ export SCP=/path/to/scp.bin # optional for some 64-bit SoCs
$ make <yourboardname>_defconfig
$ make
* Transfer to an (micro)SD card (see below for more details)::
$ sudo dd if=u-boot-sunxi-with-spl.bin of=/dev/sdX bs=8k seek=1
* Boot and enjoy!
.. note::
The traditional SD card location the Allwinner BootROM loads from is 8KB
(sector 16). This works fine with the old MBR partitioning scheme, which most
SD cards come formatted with. However this is in the middle of a potential
GPT partition table, which will become invalid in this step. Newer SoCs
(starting with the H3 from late 2014) also support booting from 128KB, which
is beyond even a GPT and thus a safer location.
For more details, and alternative boot locations or installations, see below.
Building Arm Trusted Firmware (TF-A)
------------------------------------
Boards using a 64-bit Soc (A64, H5, H6, H616, R329) require the BL31 stage of
the `Arm Trusted Firmware-A`_ firmware. This provides the reference
implementation of secure software for Armv8-A, offering PSCI and SMCCC
services. Allwinner support is fully mainlined. To build bl31.bin::
$ git clone https://git.trustedfirmware.org/TF-A/trusted-firmware-a.git
$ cd trusted-firmware-a
$ make CROSS_COMPILE=aarch64-linux-gnu- PLAT=sun50i_a64 DEBUG=1
$ export BL31=$(pwd)/build/sun50i_a64/debug/bl31.bin
The target platform (``PLAT=``) for A64 and H5 SoCs is sun50i_a64, for the H6
sun50i_h6, for the H616 sun50i_h616, and for the R329 sun50i_r329. Use::
$ find plat/allwinner -name platform.mk
to find all supported platforms. TF-A's `docs/plat/allwinner.rst`_ contains
more information and lists some build options.
Building the Crust management processor firmware
------------------------------------------------
For some SoCs and boards, the integrated OpenRISC management controller can
be used to provide power management services, foremost suspend to RAM.
There is a community supported Open Source implementation called `crust`_,
which runs on most SoCs featuring a management controller.
This firmware part is optional, setting the SCP environment variable to
/dev/null avoids the warning message when building without one.
To build crust's scp.bin, you need an OpenRISC (or1k) cross compiler, then::
$ git clone https://github.com/crust-firmware/crust.git
$ cd crust
$ make <yourboard>_defconfig
$ make CROSS_COMPILE=or1k-none-elf- scp
$ export SCP=$(pwd)/build/scp/scp.bin
Find a list of supported board configurations in the `configs/`_ directory.
The `crust README`_ has more information about the building process, including
information about where to get OpenRISC cross compilers.
Building the U-Boot image
-------------------------
Find the U-Boot defconfig file for your board first. Those files live in
the ``configs/`` directory; you can grep for the stub name of the devicetree
file, if you know that, or for the SoC name to find the right version::
$ git grep -l MACH_SUN8I_H3 configs
$ git grep -l sun50i-h6-orangepi-3 configs
The `linux-sunxi`_ wiki also lists the name of the defconfig file in the
respective board page. Then use this defconfig file to create the .config
file, and build the image::
$ make <yourboard>_defconfig
$ make
For 64-bit boards, this requires either the BL31 environment variable to be
set (as shown above in the TF-A build example), or it to be supplied on the
build command line::
$ make BL31=/src/tf-a.git/build/sun50i_h616/debug/bl31.bin
The same applies to the (optional) SCP firmware.
The file containing everything you need is called ``u-boot-sunxi-with-spl.bin``,
you will find it in the root folder of your U-Boot (build) tree. Except for
raw NAND flash devices this very same file can be used for any boot source.
It will contain the SPL image, fitted with the proper signature recognised by
the BROM, and the required checksum. Also it will contain at least U-Boot
proper, either wrapped in the legacy U-Boot image format, or in a FIT image.
The board's devicetree is also included, either appended to the U-Boot proper
image, or contained in the FIT image. If required by the SoC, this FIT file will
also include the other firmware images.
Installing U-Boot
-----------------
Installing on a (micro-) SD card
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
All Allwinner SoCs will try to find a boot image at sector 16 (8KB) of
an SD card, connected to the first MMC controller. To transfer the generated
image to an SD card, from any Linux device (including the board itself) with
an (micro-)SD card reader, type::
$ sudo dd if=u-boot-sunxi-with-spl.bin of=/dev/sdX bs=1k seek=8
``/dev/sdx`` needs to be replaced with the block device name of the SD card
reader. On some machines this could be ``/dev/mmcblkX``.
Newer SoCs (starting from the H3 from 2014, and including all ARM64 SoCs),
also look at sector 256 (128KB) for the signature (after having checked the
8KB location). Installing the firmware there has the advantage of not
overlapping with a GPT partition table. Simply replace the "``seek=8``" above
with "``seek=128``".
You can also use an existing (mainline) U-Boot to write to the SD card. Load
the generated U-Boot image somewhere into DRAM (via ``ext4load``, ``fatload``,
or ``tftpboot``), then write to MMC device 0::
=> fatload mmc 0:1 $kernel_addr_r u-boot-sunxi-with-spl.bin
=> mmc dev 0
=> mmc write $kernel_addr_r 0x10 0x7f0
To use the alternative boot location on newer SoCs::
=> mmc write $kernel_addr_r 0x100 0x700
Installing on eMMC (on-board flash memory)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Some boards have a soldered eMMC chip, some other boards have an eMMC socket
to receive an optional eMMC module. U-Boot can be installed to those chips,
to boot without an SD card inserted. The Boot-ROM can boot either from the
regular user data partition, or from one of the separate eMMC boot partitions.
U-Boot can be installed either from a running Linux instance on the device,
from a running (mainline) U-Boot, or via an adapter for the (removable)
eMMC module.
Installing on an eMMC user data partition from Linux
````````````````````````````````````````````````````
If you have a running Linux instance on the device, and have somehow copied
over the image file to that device, you can write the image directly into the
eMMC device from there.
Find the name of the block device file first, it is one of the
``/dev/mmcblk<X>`` devices. eMMC devices typically also list a
``/dev/mmcblk<X>boot0`` partition (see below), this helps you to tell it apart
from the SD card device.
To install onto the user data partition::
$ sudo dd if=u-boot-sunxi-with-spl.bin of=/dev/dev/mmcblkX bs=1k seek=8
Similar to SD cards, the BROM in newer SoCs (H3 and above) also checks
sector 256 of an eMMC, so you can use "``seek=128``" as well. Having a GPT
on an eMMC device is much more likely than on an SD card, so you should
probably stick to the alternative location, or use one of the boot partitions.
Installing on an eMMC boot partition from Linux
```````````````````````````````````````````````
In the following examples, ``/dev/mmcblkX`` needs to be replaced with the block
device name of the eMMC device. The eMMC device can be recognised by also
listing the boot partitions (``/dev/mmcblkXboot0``) in ``/proc/partitions``.
To allow booting from one of the eMMC boot partitions, this one needs to be
enabled first. This only needs to be done once, as this setting is
persistent, even though the boot partition can be disabled or changed again
any time later::
# apt-get install mmc-utils
# mmc bootbus set single_hs x1 x4 /dev/mmcblkX
# mmc bootpart enable 1 1 /dev/mmcblkX
The first "1" in the last command points to the boot partition number to be
used, typically devices offer two boot partitions.
By default Linux disables write access to the boot partitions, to prevent
accidental overwrites. You need to disable the write protection (until the
next reboot), then can write the U-Boot image to the *first* sector of the
selected boot partition::
# echo 0 > /sys/block/mmcblkXboot0/force_ro
# dd if=u-boot-sunxi-with-spl.bin of=/dev/mmcblkXboot0 bs=1k
Installing on an eMMC user data partition from U-Boot
`````````````````````````````````````````````````````
You can also write the generated image file to an SD card, boot the device
from there, and burn the very same image to the eMMC device from U-Boot.
The following commands copy the image from the SD card to the eMMC device::
=> mmc dev 0
=> mmc read $kernel_addr_r 0x10 0x7f0
=> mmc dev 1
=> mmc write $kernel_addr_r 0x10 0x7f0
You can also copy an image from the 8K offset of an SD card to the 128K
offset of the eMMC (or any combination), just change the "``0x10 0x7f0``" above
to "``0x100 0x700``", respectively. Of course the image file can be loaded via
any other loading method, including ``fatload``, ``ext4load``, ``tftpboot``.
Installing on an eMMC boot partition from U-Boot
````````````````````````````````````````````````
The selected eMMC boot partition needs to be initially enabled first (same
as in Linux above), you can do this from U-Boot with::
=> mmc dev 1
=> mmc bootbus 1 1 0 0
=> mmc partconf 1 1 1 1
The first "1" in both commands denotes the MMC device number. The second "1"
in the partconf command sets the required ``BOOT_ACK`` option, the last two "1"s
selects the active boot partition and the target for the next data access,
respectively. So for the next "``mmc write``" command to address one of the boot
partitions, the last number must either be "1" or "2", "0" would switch (back)
to the normal user data partition.
Then load the ``u-boot-sunxi-with-spl.bin`` image file into DRAM, either by
reading directly from an SD card or eMMC user data partition, or from a
file system or TFTP (see above), and transfer it to the boot partition::
=> tftpboot $kernel_addr_r u-boot-sunxi-with-spl.bin
=> mmc write $kernel_addr_r 0 0x7f0
After that the device should boot from the selected boot partition, which takes
precedence over booting from the user data partition.
Installing on SPI flash
^^^^^^^^^^^^^^^^^^^^^^^
Some devices have a SPI NOR flash chip soldered on the board. If it is
connected to the SPI0 pins on PortC, the BROM can also boot from there.
Typically the SPI flash has the lowest boot priority, so SD card and eMMC
devices will be considered first.
Installing on SPI flash from Linux
``````````````````````````````````
If the devicetree enables and describes the SPI flash device, you can access
the SPI flash content from Linux, using the `MTD utils`_::
# apt-get install mtd-utils
# mtdinfo
# mtd_debug erase /dev/mtdX 0 0xf0000
# mtd_debug write /dev/mtdX 0 0xf0000 u-boot-sunxi-with-spl.bin
``/dev/mtdX`` needs to be replaced with the respective device name, as listed
in the output of ``mtdinfo``.
Installing on SPI flash from U-Boot
```````````````````````````````````
If SPI flash driver and command support (``CONFIG_CMD_SF``) is enabled in the
U-Boot configuration, the image file can be installed via U-Boot as well::
=> tftpboot $kernel_addr_r u-boot-sunxi-with-spl.bin
=> sf probe
=> sf erase 0 +0xf0000
=> sf write $kernel_addr_r 0 $filesize
Installing on SPI flash via USB in FEL mode
```````````````````````````````````````````
If the device is in FEL mode (see below), the SPI flash can also be written to
with the sunxi-fel utility, via an USB(-OTG) cable from any USB host machine::
$ sunxi-fel spiflash-write 0 u-boot-sunxi-with-spl.bin
Booting via the USB(-OTG) FEL mode
----------------------------------
If none of the boot locations checked by the BROM contains a medium or valid
signature, the BROM will enter the so-called FEL mode, in which it will
listen to commands from a host on the SoC's USB-OTG interface. Those commands
allow to read from and write to arbitrary memory locations, also to start
execution at any address, which allows to bootstrap a board solely via an
USB cable. Some boards feature a "FEL" or "U-Boot" button, which forces
FEL mode despite a valid boot location being present. The same can be achieved
via a `magic binary`_ on an SD card, which allows to enter FEL mode on any
board.
To use FEL booting, let the board enter FEL mode, via any of the mentioned
methods (no boot media, FEL button, SD card with FEL binary), then connect
a USB cable to the board's USB OTG port. Some boards (Pine64, TV boxes) don't
have a separate OTG port. In this case mostly one of the USB-A ports is
connected to USB0, and can be used via a non-standard USB-A to USB-A cable.
Typically there is no on-board indication of FEL mode, other than a new USB
device appearing on the connected host computer. The USB vendor/device ID
is 1f3a:efe8. Mostly this will identify as "sunxi SoC OTG connector in
FEL/flashing mode", but older distributions might still report "Onda
(unverified) V972 tablet in flashing mode".
The `sunxi_fel`_ tool implements the proprietary BROM protocol, and allows to
bootstrap U-Boot by just providing our venerable u-boot-sunxi-with-spl.bin::
$ sudo apt-get install sunxi-tools
$ sunxi-fel uboot u-boot-sunxi-with-spl.bin
Additional binaries like a kernel, an initial ramdisk or a boot script, can
also be uploaded via FEL, check the Wiki's `FEL page`_ for more details.
.. _`Arm Trusted Firmware-A`: https://www.trustedfirmware.org/projects/tf-a/
.. _`docs/plat/allwinner.rst`: https://trustedfirmware-a.readthedocs.io/en/latest/plat/allwinner.html
.. _`crust`: https://github.com/crust-firmware/crust
.. _`configs/`: https://github.com/crust-firmware/crust/tree/master/configs
.. _`crust README`: https://github.com/crust-firmware/crust/blob/master/README.md#building-the-firmware
.. _`linux-sunxi`: https://linux-sunxi.org
.. _`MTD utils`: http://www.linux-mtd.infradead.org/
.. _`magic binary`: https://github.com/linux-sunxi/sunxi-tools/raw/master/bin/fel-sdboot.sunxi
.. _`sunxi_fel`: https://github.com/linux-sunxi/sunxi-tools
.. _`FEL page`: https://linux-sunxi.org/FEL/USBBoot

View file

@ -9,6 +9,7 @@ Board-specific doc
actions/index
advantech/index
AndesTech/index
allwinner/index
amlogic/index
apple/index
atmel/index

View file

@ -265,13 +265,11 @@ This work could be extended in a number of ways:
- Figure out how to solve the interrupt problem
- Add more drivers to the application side (e.g. block devices, USB,
environment access). This would mostly be an academic exercise as a strong
use case is not readily apparent, but it might be fun.
- Add more drivers to the application side (e.g.USB, environment access).
- Avoid turning off boot services in the stub. Instead allow U-Boot to make
use of boot services in case it wants to. It is unclear what it might want
though.
though. It is better to use the app.
Where is the code?
------------------

View file

@ -24,6 +24,9 @@ struct serial_efi_priv {
bool have_key;
};
/* Convert a lower-case character to its ctrl-char equivalent */
#define CTL_CH(c) ((c) - 'a' + 1)
int serial_efi_setbrg(struct udevice *dev, int baudrate)
{
return 0;
@ -49,6 +52,7 @@ static int serial_efi_get_key(struct serial_efi_priv *priv)
static int serial_efi_getc(struct udevice *dev)
{
struct serial_efi_priv *priv = dev_get_priv(dev);
char conv_scan[10] = {0, 'p', 'n', 'f', 'b', 'a', 'e', 0, 8};
int ret, ch;
ret = serial_efi_get_key(priv);
@ -63,8 +67,11 @@ static int serial_efi_getc(struct udevice *dev)
* key scan code of 8. Handle this so that backspace works correctly
* in the U-Boot command line.
*/
if (!ch && priv->key.scan_code == 8)
ch = 8;
if (!ch && priv->key.scan_code < sizeof(conv_scan)) {
ch = conv_scan[priv->key.scan_code];
if (ch >= 'a')
ch -= 'a' - 1;
}
debug(" [%x %x %x] ", ch, priv->key.unicode_char, priv->key.scan_code);
return ch;

View file

@ -10,8 +10,33 @@
#undef CONFIG_TPM_TIS_BASE_ADDRESS
/*
* Select the output device: Put an 'x' prefix before one of these to disable it
*/
/*
* Video output - can normally continue after exit_boot_services has been
* called, since output to the display does not require EFI services at that
* point. U-Boot sets up the console memory and does its own drawing.
*/
#define CONFIG_STD_DEVICES_SETTINGS "stdin=serial\0" \
"stdout=vidconsole\0" \
"stderr=vidconsole\0"
/*
* Serial output with no console. Run qemu with:
*
* -display none -serial mon:stdio
*
* This will hang or fail to output on the console after exit_boot_services is
* called.
*/
#define xCONFIG_STD_DEVICES_SETTINGS "stdin=serial\0" \
"stdout=serial\0" \
"stderr=serial\0"
#undef CONFIG_BOOTCOMMAND
#define CONFIG_BOOTCOMMAND "part list efi 0; fatls efi 0:1"
#endif

View file

@ -321,7 +321,7 @@ struct efi_info_hdr {
* struct efi_entry_hdr - Header for a table entry
*
* @type: enum eft_entry_t
* @size size of entry bytes excluding header and padding
* @size: size of entry bytes excluding header and padding
* @addr: address of this entry (0 if it follows the header )
* @link: size of entry including header and padding
* @spare1: Spare space for expansion
@ -400,15 +400,37 @@ static inline struct efi_mem_desc *efi_get_next_mem_desc(
return (struct efi_mem_desc *)((ulong)desc + map->desc_size);
}
/**
* struct efi_priv - Information about the environment provided by EFI
*
* @parent_image: image passed into the EFI app or stub
* @sys_table: Pointer to system table
* @boot: Pointer to boot-services table
* @run: Pointer to runtime-services table
*
* @use_pool_for_malloc: true if all allocation should go through the EFI 'pool'
* methods allocate_pool() and free_pool(); false to use 'pages' methods
* allocate_pages() and free_pages()
* @ram_base: Base address of RAM (size CONFIG_EFI_RAM_SIZE)
* @image_data_type: Type of the loaded image (e.g. EFI_LOADER_CODE)
*
* @info: Header of the info list, holding info collected by the stub and passed
* to U-Boot
* @info_size: Size of the info list @info in bytes
* @next_hdr: Pointer to where to put the next header when adding to the list
*/
struct efi_priv {
efi_handle_t parent_image;
struct efi_device_path *device_path;
struct efi_system_table *sys_table;
struct efi_boot_services *boot;
struct efi_runtime_services *run;
/* app: */
bool use_pool_for_malloc;
unsigned long ram_base;
unsigned int image_data_type;
/* stub: */
struct efi_info_hdr *info;
unsigned int info_size;
void *next_hdr;
@ -419,10 +441,12 @@ struct efi_priv {
*
* @handle: handle of the controller on which this driver is installed
* @blkio: block io protocol proxied by this driver
* @device_path: EFI path to the device
*/
struct efi_media_plat {
efi_handle_t handle;
struct efi_block_io *blkio;
efi_handle_t handle;
struct efi_block_io *blkio;
struct efi_device_path *device_path;
};
/* Base address of the EFI image */
@ -450,6 +474,27 @@ extern char _binary_u_boot_bin_start[], _binary_u_boot_bin_end[];
EFI_VARIABLE_TIME_BASED_AUTHENTICATED_WRITE_ACCESS | \
EFI_VARIABLE_APPEND_WRITE)
/**
* efi_get_priv() - Get access to the EFI-private information
*
* This struct it used by both the stub and the app to record things about the
* EFI environment. It is not available in U-Boot proper after the stub has
* jumped there. Use efi_info_get() to obtain info in that case.
*
* Return: pointer to private info
*/
struct efi_priv *efi_get_priv(void);
/**
* efi_set_priv() - Set up a pointer to the EFI-private information
*
* This is called in the stub and app to record the location of this
* information.
*
* @priv: New location of private data
*/
void efi_set_priv(struct efi_priv *priv);
/**
* efi_get_sys_table() - Get access to the main EFI system table
*
@ -521,6 +566,10 @@ void efi_putc(struct efi_priv *priv, const char ch);
/**
* efi_info_get() - get an entry from an EFI table
*
* This function is called from U-Boot proper to read information set up by the
* EFI stub. It can only be used when running from the EFI stub, not when U-Boot
* is running as an app.
*
* @type: Entry type to search for
* @datap: Returns pointer to entry data
* @sizep: Returns pointer to entry size

View file

@ -2035,4 +2035,19 @@ struct efi_firmware_management_protocol {
const u16 *package_version_name);
};
#define EFI_DISK_IO_PROTOCOL_GUID \
EFI_GUID(0xce345171, 0xba0b, 0x11d2, 0x8e, 0x4f, \
0x00, 0xa0, 0xc9, 0x69, 0x72, 0x3b)
struct efi_disk {
u64 revision;
efi_status_t (EFIAPI *read_disk)(struct efi_disk *this, u32 media_id,
u64 offset, efi_uintn_t buffer_size,
void *buffer);
efi_status_t (EFIAPI *write_disk)(struct efi_disk *this, u32 media_id,
u64 offset, efi_uintn_t buffer_size,
void *buffer);
};
#endif

View file

@ -14,8 +14,11 @@
#include <linux/types.h>
/* Avoid using CONFIG_EFI_STUB directly as we may boot from other loaders */
#ifdef CONFIG_EFI_STUB
/*
* In case of the EFI app the UEFI firmware provides the low-level
* initialisation.
*/
#ifdef CONFIG_EFI
#define ll_boot_init() false
#else
#include <asm/global_data.h>

View file

@ -58,6 +58,7 @@
#define TEE_SUCCESS 0x00000000
#define TEE_ERROR_STORAGE_NOT_AVAILABLE 0xf0100003
#define TEE_ERROR_GENERIC 0xffff0000
#define TEE_ERROR_EXCESS_DATA 0xffff0004
#define TEE_ERROR_BAD_PARAMETERS 0xffff0006
#define TEE_ERROR_ITEM_NOT_FOUND 0xffff0008
#define TEE_ERROR_NOT_IMPLEMENTED 0xffff0009

View file

@ -52,7 +52,7 @@ config CC_OPTIMIZE_LIBS_FOR_SPEED
config CHARSET
bool
default y if UT_UNICODE || EFI_LOADER || UFS
default y if UT_UNICODE || EFI_LOADER || UFS || EFI_APP
help
Enables support for various conversions between different
character sets, such as between unicode representations and

View file

@ -1,5 +1,7 @@
// SPDX-License-Identifier: GPL-2.0+
/*
* Functions shared by the app and stub
*
* Copyright (c) 2015 Google, Inc
*
* EFI information obtained here:
@ -17,6 +19,33 @@
#include <efi.h>
#include <efi_api.h>
static struct efi_priv *global_priv;
struct efi_priv *efi_get_priv(void)
{
return global_priv;
}
void efi_set_priv(struct efi_priv *priv)
{
global_priv = priv;
}
struct efi_system_table *efi_get_sys_table(void)
{
return global_priv->sys_table;
}
struct efi_boot_services *efi_get_boot(void)
{
return global_priv->boot;
}
unsigned long efi_get_ram_base(void)
{
return global_priv->ram_base;
}
/*
* Global declaration of gd.
*

View file

@ -21,31 +21,60 @@
#include <efi.h>
#include <efi_api.h>
#include <sysreset.h>
#include <dm/device-internal.h>
#include <dm/lists.h>
#include <dm/root.h>
DECLARE_GLOBAL_DATA_PTR;
static struct efi_priv *global_priv;
struct efi_system_table *efi_get_sys_table(void)
{
return global_priv->sys_table;
}
struct efi_boot_services *efi_get_boot(void)
{
return global_priv->boot;
}
unsigned long efi_get_ram_base(void)
{
return global_priv->ram_base;
}
int efi_info_get(enum efi_entry_t type, void **datap, int *sizep)
{
return -ENOSYS;
}
/**
* efi_bind_block() - bind a new block device to an EFI device
*
* Binds a new top-level EFI_MEDIA device as well as a child block device so
* that the block device can be accessed in U-Boot.
*
* The device can then be accessed using 'part list efi 0', 'fat ls efi 0:1',
* for example, just like any other interface type.
*
* @handle: handle of the controller on which this driver is installed
* @blkio: block io protocol proxied by this driver
* @device_path: EFI device path structure for this
* @len: Length of @device_path in bytes
* @devp: Returns the bound device
* @return 0 if OK, -ve on error
*/
int efi_bind_block(efi_handle_t handle, struct efi_block_io *blkio,
struct efi_device_path *device_path, int len,
struct udevice **devp)
{
struct efi_media_plat plat;
struct udevice *dev;
char name[18];
int ret;
plat.handle = handle;
plat.blkio = blkio;
plat.device_path = malloc(device_path->length);
if (!plat.device_path)
return log_msg_ret("path", -ENOMEM);
memcpy(plat.device_path, device_path, device_path->length);
ret = device_bind(dm_root(), DM_DRIVER_GET(efi_media), "efi_media",
&plat, ofnode_null(), &dev);
if (ret)
return log_msg_ret("bind", ret);
snprintf(name, sizeof(name), "efi_media_%x", dev_seq(dev));
device_set_name(dev, name);
*devp = dev;
return 0;
}
static efi_status_t setup_memory(struct efi_priv *priv)
{
struct efi_boot_services *boot = priv->boot;
@ -77,13 +106,14 @@ static efi_status_t setup_memory(struct efi_priv *priv)
ret = boot->allocate_pages(EFI_ALLOCATE_MAX_ADDRESS,
priv->image_data_type, pages, &addr);
if (ret) {
printf("(using pool %lx) ", ret);
log_info("(using pool %lx) ", ret);
priv->ram_base = (ulong)efi_malloc(priv, CONFIG_EFI_RAM_SIZE,
&ret);
if (!priv->ram_base)
return ret;
priv->use_pool_for_malloc = true;
} else {
log_info("(using allocated RAM address %lx) ", (ulong)addr);
priv->ram_base = addr;
}
gd->ram_size = pages << 12;
@ -91,6 +121,14 @@ static efi_status_t setup_memory(struct efi_priv *priv)
return 0;
}
/**
* free_memory() - Free memory used by the U-Boot app
*
* This frees memory allocated in setup_memory(), in preparation for returning
* to UEFI. It also zeroes the global_data pointer.
*
* @priv: Private EFI data
*/
static void free_memory(struct efi_priv *priv)
{
struct efi_boot_services *boot = priv->boot;
@ -105,6 +143,150 @@ static void free_memory(struct efi_priv *priv)
global_data_ptr = NULL;
}
/**
* devpath_is_partition() - Figure out if a device path is a partition
*
* Checks if a device path refers to a partition on some media device. This
* works by checking for a valid partition number in a hard-driver media device
* as the final component of the device path.
*
* @path: device path
* Return: true if a partition, false if not
* (e.g. it might be media which contains partitions)
*/
static bool devpath_is_partition(const struct efi_device_path *path)
{
const struct efi_device_path *p;
bool was_part;
for (p = path; p->type != DEVICE_PATH_TYPE_END;
p = (void *)p + p->length) {
was_part = false;
if (p->type == DEVICE_PATH_TYPE_MEDIA_DEVICE &&
p->sub_type == DEVICE_PATH_SUB_TYPE_HARD_DRIVE_PATH) {
struct efi_device_path_hard_drive_path *hd =
(void *)path;
if (hd->partition_number)
was_part = true;
}
}
return was_part;
}
/**
* setup_block() - Find all block devices and setup EFI devices for them
*
* Partitions are ignored, since U-Boot has partition handling. Errors with
* particular devices produce a warning but execution continues to try to
* find others.
*
* Return: 0 if found, -ENOSYS if there is no boot-services table, -ENOTSUPP
* if a required protocol is not supported
*/
static int setup_block(void)
{
efi_guid_t efi_blkio_guid = EFI_BLOCK_IO_PROTOCOL_GUID;
efi_guid_t efi_devpath_guid = EFI_DEVICE_PATH_PROTOCOL_GUID;
efi_guid_t efi_pathutil_guid = EFI_DEVICE_PATH_UTILITIES_PROTOCOL_GUID;
efi_guid_t efi_pathtext_guid = EFI_DEVICE_PATH_TO_TEXT_PROTOCOL_GUID;
struct efi_boot_services *boot = efi_get_boot();
struct efi_device_path_utilities_protocol *util;
struct efi_device_path_to_text_protocol *text;
struct efi_device_path *path;
struct efi_block_io *blkio;
efi_uintn_t num_handles;
efi_handle_t *handle;
int ret, i;
if (!boot)
return log_msg_ret("sys", -ENOSYS);
/* Find all devices which support the block I/O protocol */
ret = boot->locate_handle_buffer(BY_PROTOCOL, &efi_blkio_guid, NULL,
&num_handles, &handle);
if (ret)
return log_msg_ret("loc", -ENOTSUPP);
log_debug("Found %d handles:\n", (int)num_handles);
/* We need to look up the path size and convert it to text */
ret = boot->locate_protocol(&efi_pathutil_guid, NULL, (void **)&util);
if (ret)
return log_msg_ret("util", -ENOTSUPP);
ret = boot->locate_protocol(&efi_pathtext_guid, NULL, (void **)&text);
if (ret)
return log_msg_ret("text", -ENOTSUPP);
for (i = 0; i < num_handles; i++) {
struct udevice *dev;
const u16 *name;
bool is_part;
int len;
ret = boot->handle_protocol(handle[i], &efi_devpath_guid,
(void **)&path);
if (ret) {
log_warning("- devpath %d failed (ret=%d)\n", i, ret);
continue;
}
ret = boot->handle_protocol(handle[i], &efi_blkio_guid,
(void **)&blkio);
if (ret) {
log_warning("- blkio %d failed (ret=%d)\n", i, ret);
continue;
}
name = text->convert_device_path_to_text(path, true, false);
is_part = devpath_is_partition(path);
if (!is_part) {
len = util->get_device_path_size(path);
ret = efi_bind_block(handle[i], blkio, path, len, &dev);
if (ret) {
log_warning("- blkio bind %d failed (ret=%d)\n",
i, ret);
continue;
}
} else {
dev = NULL;
}
/*
* Show the device name if we created one. Otherwise indicate
* that it is a partition.
*/
printf("%2d: %-12s %ls\n", i, dev ? dev->name : "<partition>",
name);
}
boot->free_pool(handle);
return 0;
}
/**
* dm_scan_other() - Scan for UEFI devices that should be available to U-Boot
*
* This sets up block devices within U-Boot for those found in UEFI. With this,
* U-Boot can access those devices
*
* @pre_reloc_only: true to only bind pre-relocation devices (ignored)
* Returns: 0 on success, -ve on error
*/
int dm_scan_other(bool pre_reloc_only)
{
if (gd->flags & GD_FLG_RELOC) {
int ret;
ret = setup_block();
if (ret)
return ret;
}
return 0;
}
/**
* efi_main() - Start an EFI image
*
@ -119,9 +301,12 @@ efi_status_t EFIAPI efi_main(efi_handle_t image,
efi_status_t ret;
/* Set up access to EFI data structures */
efi_init(priv, "App", image, sys_table);
global_priv = priv;
ret = efi_init(priv, "App", image, sys_table);
if (ret) {
printf("Failed to set up U-Boot: err=%lx\n", ret);
return ret;
}
efi_set_priv(priv);
/*
* Set up the EFI debug UART so that printf() works. This is
@ -147,7 +332,7 @@ efi_status_t EFIAPI efi_main(efi_handle_t image,
static void efi_exit(void)
{
struct efi_priv *priv = global_priv;
struct efi_priv *priv = efi_get_priv();
free_memory(priv);
printf("U-Boot EFI exiting\n");

View file

@ -31,7 +31,6 @@
#error "This file needs to be ported for use on architectures"
#endif
static struct efi_priv *global_priv;
static bool use_uart;
struct __packed desctab_info {
@ -63,6 +62,8 @@ void _debug_uart_init(void)
void putc(const char ch)
{
struct efi_priv *priv = efi_get_priv();
if (ch == '\n')
putc('\r');
@ -73,7 +74,7 @@ void putc(const char ch)
;
outb(ch, (ulong)&com_port->thr);
} else {
efi_putc(global_priv, ch);
efi_putc(priv, ch);
}
}
@ -225,6 +226,22 @@ static int get_codeseg32(void)
return cs32;
}
/**
* setup_info_table() - sets up a table containing information from EFI
*
* We must call exit_boot_services() before jumping out of the stub into U-Boot
* proper, so that U-Boot has full control of peripherals, memory, etc.
*
* Once we do this, we cannot call any boot-services functions so we must find
* out everything we need to before doing that.
*
* Set up a struct efi_info_hdr table which can hold various records (e.g.
* struct efi_entry_memmap) with information obtained from EFI.
*
* @priv: Pointer to our private information which contains the list
* @size: Size of the table to allocate
* Return: 0 if OK, non-zero on error
*/
static int setup_info_table(struct efi_priv *priv, int size)
{
struct efi_info_hdr *info;
@ -248,6 +265,19 @@ static int setup_info_table(struct efi_priv *priv, int size)
return 0;
}
/**
* add_entry_addr() - Add a new entry to the efi_info list
*
* This adds an entry, consisting of a tag and two lots of data. This avoids the
* caller having to coalesce the data first
*
* @priv: Pointer to our private information which contains the list
* @type: Type of the entry to add
* @ptr1: Pointer to first data block to add
* @size1: Size of first data block in bytes (can be 0)
* @ptr2: Pointer to second data block to add
* @size2: Size of second data block in bytes (can be 0)
*/
static void add_entry_addr(struct efi_priv *priv, enum efi_entry_t type,
void *ptr1, int size1, void *ptr2, int size2)
{
@ -291,7 +321,7 @@ efi_status_t EFIAPI efi_main(efi_handle_t image,
puts(" efi_init() failed\n");
return ret;
}
global_priv = priv;
efi_set_priv(priv);
cs32 = get_codeseg32();
if (cs32 < 0)

View file

@ -15,7 +15,6 @@
#include <malloc.h>
#include <mm_communication.h>
#define OPTEE_PAGE_SIZE BIT(12)
extern struct efi_var_file __efi_runtime_data *efi_var_buf;
static efi_uintn_t max_buffer_size; /* comm + var + func + data */
static efi_uintn_t max_payload_size; /* func + data */
@ -114,7 +113,11 @@ static efi_status_t optee_mm_communicate(void *comm_buf, ulong dsize)
rc = tee_invoke_func(conn.tee, &arg, 2, param);
tee_shm_free(shm);
tee_close_session(conn.tee, conn.session);
if (rc || arg.ret != TEE_SUCCESS)
if (rc)
return EFI_DEVICE_ERROR;
if (arg.ret == TEE_ERROR_EXCESS_DATA)
log_err("Variable payload too large\n");
if (arg.ret != TEE_SUCCESS)
return EFI_DEVICE_ERROR;
switch (param[1].u.value.a) {
@ -255,15 +258,6 @@ efi_status_t EFIAPI get_max_payload(efi_uintn_t *size)
goto out;
}
*size = var_payload->size;
/*
* Although the max payload is configurable on StMM, we only share a
* single page from OP-TEE for the non-secure buffer used to communicate
* with StMM. Since OP-TEE will reject to map anything bigger than that,
* make sure we are in bounds.
*/
if (*size > OPTEE_PAGE_SIZE)
*size = OPTEE_PAGE_SIZE - MM_COMMUNICATE_HEADER_SIZE -
MM_VARIABLE_COMMUNICATE_SIZE;
/*
* There seems to be a bug in EDK2 miscalculating the boundaries and
* size checks, so deduct 2 more bytes to fulfill this requirement. Fix

View file

@ -276,9 +276,8 @@ static char *string(char *buf, char *end, char *s, int field_width,
}
/* U-Boot uses UTF-16 strings in the EFI context only. */
#if CONFIG_IS_ENABLED(EFI_LOADER) && !defined(API_BUILD)
static char *string16(char *buf, char *end, u16 *s, int field_width,
int precision, int flags)
static __maybe_unused char *string16(char *buf, char *end, u16 *s,
int field_width, int precision, int flags)
{
const u16 *str = s ? s : L"<NULL>";
ssize_t i, len = utf16_strnlen(str, precision);
@ -317,7 +316,6 @@ static char *device_path_string(char *buf, char *end, void *dp, int field_width,
return buf;
}
#endif
#endif
static char *mac_address_string(char *buf, char *end, u8 *addr, int field_width,
int precision, int flags)
@ -616,7 +614,8 @@ repeat:
case 's':
/* U-Boot uses UTF-16 strings in the EFI context only. */
#if CONFIG_IS_ENABLED(EFI_LOADER) && !defined(API_BUILD)
#if (CONFIG_IS_ENABLED(EFI_LOADER) || CONFIG_IS_ENABLED(EFI_APP)) && \
!defined(API_BUILD)
if (qualifier == 'l') {
str = string16(str, end, va_arg(args, u16 *),
field_width, precision, flags);