mtd: nand: Remove jz4740 driver

This driver is not used by anyone, remove it.

Signed-off-by: Marek Vasut <marex@denx.de>
Cc: Daniel Schwierzeck <daniel.schwierzeck@gmail.com>
Cc: Paul Burton <paul.burton@imgtec.com>
Cc: Scott Wood <oss@buserror.net>
Acked-by: Daniel Schwierzeck <daniel.schwierzeck@gmail.com>
Signed-off-by: Scott Wood <oss@buserror.net>
This commit is contained in:
Marek Vasut 2016-05-30 13:57:52 -05:00 committed by Scott Wood
parent a39d14406a
commit 5d74e3a6f1
2 changed files with 0 additions and 259 deletions

View file

@ -50,7 +50,6 @@ obj-$(CONFIG_NAND_FSL_ELBC) += fsl_elbc_nand.o
obj-$(CONFIG_NAND_FSL_IFC) += fsl_ifc_nand.o
obj-$(CONFIG_NAND_FSL_UPM) += fsl_upm.o
obj-$(CONFIG_NAND_FSMC) += fsmc_nand.o
obj-$(CONFIG_NAND_JZ4740) += jz4740_nand.o
obj-$(CONFIG_NAND_KB9202) += kb9202_nand.o
obj-$(CONFIG_NAND_KIRKWOOD) += kirkwood_nand.o
obj-$(CONFIG_NAND_KMETER1) += kmeter1_nand.o

View file

@ -1,258 +0,0 @@
/*
* Platform independend driver for JZ4740.
*
* Copyright (c) 2007 Ingenic Semiconductor Inc.
* Author: <jlwei@ingenic.cn>
*
* SPDX-License-Identifier: GPL-2.0+
*/
#include <common.h>
#include <nand.h>
#include <asm/io.h>
#include <asm/jz4740.h>
#define JZ_NAND_DATA_ADDR ((void __iomem *)0xB8000000)
#define JZ_NAND_CMD_ADDR (JZ_NAND_DATA_ADDR + 0x8000)
#define JZ_NAND_ADDR_ADDR (JZ_NAND_DATA_ADDR + 0x10000)
#define JZ_NAND_ECC_CTRL_ENCODING BIT(3)
#define JZ_NAND_ECC_CTRL_RS BIT(2)
#define JZ_NAND_ECC_CTRL_RESET BIT(1)
#define JZ_NAND_ECC_CTRL_ENABLE BIT(0)
#define EMC_SMCR1_OPT_NAND 0x094c4400
/* Optimize the timing of nand */
static struct jz4740_emc * emc = (struct jz4740_emc *)JZ4740_EMC_BASE;
static struct nand_ecclayout qi_lb60_ecclayout_2gb = {
.eccbytes = 72,
.eccpos = {
12, 13, 14, 15, 16, 17, 18, 19,
20, 21, 22, 23, 24, 25, 26, 27,
28, 29, 30, 31, 32, 33, 34, 35,
36, 37, 38, 39, 40, 41, 42, 43,
44, 45, 46, 47, 48, 49, 50, 51,
52, 53, 54, 55, 56, 57, 58, 59,
60, 61, 62, 63, 64, 65, 66, 67,
68, 69, 70, 71, 72, 73, 74, 75,
76, 77, 78, 79, 80, 81, 82, 83 },
.oobfree = {
{.offset = 2,
.length = 10 },
{.offset = 84,
.length = 44 } }
};
static int is_reading;
static void jz_nand_cmd_ctrl(struct mtd_info *mtd, int cmd, unsigned int ctrl)
{
struct nand_chip *this = mtd->priv;
uint32_t reg;
if (ctrl & NAND_CTRL_CHANGE) {
if (ctrl & NAND_ALE)
this->IO_ADDR_W = JZ_NAND_ADDR_ADDR;
else if (ctrl & NAND_CLE)
this->IO_ADDR_W = JZ_NAND_CMD_ADDR;
else
this->IO_ADDR_W = JZ_NAND_DATA_ADDR;
reg = readl(&emc->nfcsr);
if (ctrl & NAND_NCE)
reg |= EMC_NFCSR_NFCE1;
else
reg &= ~EMC_NFCSR_NFCE1;
writel(reg, &emc->nfcsr);
}
if (cmd != NAND_CMD_NONE)
writeb(cmd, this->IO_ADDR_W);
}
static int jz_nand_device_ready(struct mtd_info *mtd)
{
return (readl(GPIO_PXPIN(2)) & 0x40000000) ? 1 : 0;
}
void board_nand_select_device(struct nand_chip *nand, int chip)
{
/*
* Don't use "chip" to address the NAND device,
* generate the cs from the address where it is encoded.
*/
}
static int jz_nand_rs_calculate_ecc(struct mtd_info *mtd, const u_char *dat,
u_char *ecc_code)
{
uint32_t status;
int i;
if (is_reading)
return 0;
do {
status = readl(&emc->nfints);
} while (!(status & EMC_NFINTS_ENCF));
/* disable ecc */
writel(readl(&emc->nfecr) & ~EMC_NFECR_ECCE, &emc->nfecr);
for (i = 0; i < 9; i++)
ecc_code[i] = readb(&emc->nfpar[i]);
return 0;
}
static void jz_nand_hwctl(struct mtd_info *mtd, int mode)
{
uint32_t reg;
writel(0, &emc->nfints);
reg = readl(&emc->nfecr);
reg |= JZ_NAND_ECC_CTRL_RESET;
reg |= JZ_NAND_ECC_CTRL_ENABLE;
reg |= JZ_NAND_ECC_CTRL_RS;
switch (mode) {
case NAND_ECC_READ:
reg &= ~JZ_NAND_ECC_CTRL_ENCODING;
is_reading = 1;
break;
case NAND_ECC_WRITE:
reg |= JZ_NAND_ECC_CTRL_ENCODING;
is_reading = 0;
break;
default:
break;
}
writel(reg, &emc->nfecr);
}
/* Correct 1~9-bit errors in 512-bytes data */
static void jz_rs_correct(unsigned char *dat, int idx, int mask)
{
int i;
idx--;
i = idx + (idx >> 3);
if (i >= 512)
return;
mask <<= (idx & 0x7);
dat[i] ^= mask & 0xff;
if (i < 511)
dat[i + 1] ^= (mask >> 8) & 0xff;
}
static int jz_nand_rs_correct_data(struct mtd_info *mtd, u_char *dat,
u_char *read_ecc, u_char *calc_ecc)
{
int k;
uint32_t errcnt, index, mask, status;
/* Set PAR values */
const uint8_t all_ff_ecc[] = {
0xcd, 0x9d, 0x90, 0x58, 0xf4, 0x8b, 0xff, 0xb7, 0x6f };
if (read_ecc[0] == 0xff && read_ecc[1] == 0xff &&
read_ecc[2] == 0xff && read_ecc[3] == 0xff &&
read_ecc[4] == 0xff && read_ecc[5] == 0xff &&
read_ecc[6] == 0xff && read_ecc[7] == 0xff &&
read_ecc[8] == 0xff) {
for (k = 0; k < 9; k++)
writeb(all_ff_ecc[k], &emc->nfpar[k]);
} else {
for (k = 0; k < 9; k++)
writeb(read_ecc[k], &emc->nfpar[k]);
}
/* Set PRDY */
writel(readl(&emc->nfecr) | EMC_NFECR_PRDY, &emc->nfecr);
/* Wait for completion */
do {
status = readl(&emc->nfints);
} while (!(status & EMC_NFINTS_DECF));
/* disable ecc */
writel(readl(&emc->nfecr) & ~EMC_NFECR_ECCE, &emc->nfecr);
/* Check decoding */
if (!(status & EMC_NFINTS_ERR))
return 0;
if (status & EMC_NFINTS_UNCOR) {
printf("uncorrectable ecc\n");
return -1;
}
errcnt = (status & EMC_NFINTS_ERRCNT_MASK) >> EMC_NFINTS_ERRCNT_BIT;
switch (errcnt) {
case 4:
index = (readl(&emc->nferr[3]) & EMC_NFERR_INDEX_MASK) >>
EMC_NFERR_INDEX_BIT;
mask = (readl(&emc->nferr[3]) & EMC_NFERR_MASK_MASK) >>
EMC_NFERR_MASK_BIT;
jz_rs_correct(dat, index, mask);
case 3:
index = (readl(&emc->nferr[2]) & EMC_NFERR_INDEX_MASK) >>
EMC_NFERR_INDEX_BIT;
mask = (readl(&emc->nferr[2]) & EMC_NFERR_MASK_MASK) >>
EMC_NFERR_MASK_BIT;
jz_rs_correct(dat, index, mask);
case 2:
index = (readl(&emc->nferr[1]) & EMC_NFERR_INDEX_MASK) >>
EMC_NFERR_INDEX_BIT;
mask = (readl(&emc->nferr[1]) & EMC_NFERR_MASK_MASK) >>
EMC_NFERR_MASK_BIT;
jz_rs_correct(dat, index, mask);
case 1:
index = (readl(&emc->nferr[0]) & EMC_NFERR_INDEX_MASK) >>
EMC_NFERR_INDEX_BIT;
mask = (readl(&emc->nferr[0]) & EMC_NFERR_MASK_MASK) >>
EMC_NFERR_MASK_BIT;
jz_rs_correct(dat, index, mask);
default:
break;
}
return errcnt;
}
/*
* Main initialization routine
*/
int board_nand_init(struct nand_chip *nand)
{
uint32_t reg;
reg = readl(&emc->nfcsr);
reg |= EMC_NFCSR_NFE1; /* EMC setup, Set NFE bit */
writel(reg, &emc->nfcsr);
writel(EMC_SMCR1_OPT_NAND, &emc->smcr[1]);
nand->IO_ADDR_R = JZ_NAND_DATA_ADDR;
nand->IO_ADDR_W = JZ_NAND_DATA_ADDR;
nand->cmd_ctrl = jz_nand_cmd_ctrl;
nand->dev_ready = jz_nand_device_ready;
nand->ecc.hwctl = jz_nand_hwctl;
nand->ecc.correct = jz_nand_rs_correct_data;
nand->ecc.calculate = jz_nand_rs_calculate_ecc;
nand->ecc.mode = NAND_ECC_HW_OOB_FIRST;
nand->ecc.size = CONFIG_SYS_NAND_ECCSIZE;
nand->ecc.bytes = CONFIG_SYS_NAND_ECCBYTES;
nand->ecc.strength = 4;
nand->ecc.layout = &qi_lb60_ecclayout_2gb;
nand->chip_delay = 50;
nand->bbt_options |= NAND_BBT_USE_FLASH;
return 0;
}