net: eepro100: Pass device private data around

This patch replaces the various uses of struct eth_device for accessing
device private data with struct eepro100_priv, which is compatible both
with DM and non-DM operation.

Signed-off-by: Marek Vasut <marek.vasut+renesas@gmail.com>
This commit is contained in:
Marek Vasut 2020-05-23 17:10:03 +02:00
parent bd159c6185
commit 389da9743c

View file

@ -203,6 +203,10 @@ static const char i82558_config_cmd[] = {
struct eepro100_priv { struct eepro100_priv {
struct eth_device dev; struct eth_device dev;
pci_dev_t devno;
char *name;
void __iomem *iobase;
u8 *enetaddr;
}; };
#if defined(CONFIG_E500) #if defined(CONFIG_E500)
@ -213,40 +217,40 @@ struct eepro100_priv {
#define phys_to_bus(dev, a) pci_phys_to_mem((dev), (a)) #define phys_to_bus(dev, a) pci_phys_to_mem((dev), (a))
#endif #endif
static int INW(struct eth_device *dev, u_long addr) static int INW(struct eepro100_priv *priv, u_long addr)
{ {
return le16_to_cpu(readw(addr + (void *)dev->iobase)); return le16_to_cpu(readw(addr + priv->iobase));
} }
static void OUTW(struct eth_device *dev, int command, u_long addr) static void OUTW(struct eepro100_priv *priv, int command, u_long addr)
{ {
writew(cpu_to_le16(command), addr + (void *)dev->iobase); writew(cpu_to_le16(command), addr + priv->iobase);
} }
static void OUTL(struct eth_device *dev, int command, u_long addr) static void OUTL(struct eepro100_priv *priv, int command, u_long addr)
{ {
writel(cpu_to_le32(command), addr + (void *)dev->iobase); writel(cpu_to_le32(command), addr + priv->iobase);
} }
#if defined(CONFIG_MII) || defined(CONFIG_CMD_MII) #if defined(CONFIG_MII) || defined(CONFIG_CMD_MII)
static int INL(struct eth_device *dev, u_long addr) static int INL(struct eepro100_priv *priv, u_long addr)
{ {
return le32_to_cpu(readl(addr + (void *)dev->iobase)); return le32_to_cpu(readl(addr + priv->iobase));
} }
static int get_phyreg(struct eth_device *dev, unsigned char addr, static int get_phyreg(struct eepro100_priv *priv, unsigned char addr,
unsigned char reg, unsigned short *value) unsigned char reg, unsigned short *value)
{ {
int cmd;
int timeout = 50; int timeout = 50;
int cmd;
/* read requested data */ /* read requested data */
cmd = (2 << 26) | ((addr & 0x1f) << 21) | ((reg & 0x1f) << 16); cmd = (2 << 26) | ((addr & 0x1f) << 21) | ((reg & 0x1f) << 16);
OUTL(dev, cmd, SCB_CTRL_MDI); OUTL(priv, cmd, SCB_CTRL_MDI);
do { do {
udelay(1000); udelay(1000);
cmd = INL(dev, SCB_CTRL_MDI); cmd = INL(priv, SCB_CTRL_MDI);
} while (!(cmd & (1 << 28)) && (--timeout)); } while (!(cmd & (1 << 28)) && (--timeout));
if (timeout == 0) if (timeout == 0)
@ -257,17 +261,17 @@ static int get_phyreg(struct eth_device *dev, unsigned char addr,
return 0; return 0;
} }
static int set_phyreg(struct eth_device *dev, unsigned char addr, static int set_phyreg(struct eepro100_priv *priv, unsigned char addr,
unsigned char reg, unsigned short value) unsigned char reg, unsigned short value)
{ {
int cmd;
int timeout = 50; int timeout = 50;
int cmd;
/* write requested data */ /* write requested data */
cmd = (1 << 26) | ((addr & 0x1f) << 21) | ((reg & 0x1f) << 16); cmd = (1 << 26) | ((addr & 0x1f) << 21) | ((reg & 0x1f) << 16);
OUTL(dev, cmd | value, SCB_CTRL_MDI); OUTL(priv, cmd | value, SCB_CTRL_MDI);
while (!(INL(dev, SCB_CTRL_MDI) & (1 << 28)) && (--timeout)) while (!(INL(priv, SCB_CTRL_MDI) & (1 << 28)) && (--timeout))
udelay(1000); udelay(1000);
if (timeout == 0) if (timeout == 0)
@ -280,49 +284,45 @@ static int set_phyreg(struct eth_device *dev, unsigned char addr,
* Check if given phyaddr is valid, i.e. there is a PHY connected. * Check if given phyaddr is valid, i.e. there is a PHY connected.
* Do this by checking model value field from ID2 register. * Do this by checking model value field from ID2 register.
*/ */
static struct eth_device *verify_phyaddr(const char *devname, static int verify_phyaddr(struct eepro100_priv *priv, unsigned char addr)
unsigned char addr)
{ {
struct eth_device *dev; unsigned short value, model;
unsigned short value; int ret;
unsigned char model;
dev = eth_get_dev_by_name(devname);
if (!dev) {
printf("%s: no such device\n", devname);
return NULL;
}
/* read id2 register */ /* read id2 register */
if (get_phyreg(dev, addr, MII_PHYSID2, &value) != 0) { ret = get_phyreg(priv, addr, MII_PHYSID2, &value);
printf("%s: mii read timeout!\n", devname); if (ret) {
return NULL; printf("%s: mii read timeout!\n", priv->name);
return ret;
} }
/* get model */ /* get model */
model = (unsigned char)((value >> 4) & 0x003f); model = (value >> 4) & 0x003f;
if (!model) {
if (model == 0) { printf("%s: no PHY at address %d\n", priv->name, addr);
printf("%s: no PHY at address %d\n", devname, addr); return -EINVAL;
return NULL;
} }
return dev; return 0;
} }
static int eepro100_miiphy_read(struct mii_dev *bus, int addr, int devad, static int eepro100_miiphy_read(struct mii_dev *bus, int addr, int devad,
int reg) int reg)
{ {
struct eth_device *dev = eth_get_dev_by_name(bus->name);
struct eepro100_priv *priv =
container_of(dev, struct eepro100_priv, dev);
unsigned short value = 0; unsigned short value = 0;
struct eth_device *dev; int ret;
dev = verify_phyaddr(bus->name, addr); ret = verify_phyaddr(priv, addr);
if (!dev) if (ret)
return -1; return ret;
if (get_phyreg(dev, addr, reg, &value) != 0) { ret = get_phyreg(priv, addr, reg, &value);
if (ret) {
printf("%s: mii read timeout!\n", bus->name); printf("%s: mii read timeout!\n", bus->name);
return -1; return ret;
} }
return value; return value;
@ -331,23 +331,26 @@ static int eepro100_miiphy_read(struct mii_dev *bus, int addr, int devad,
static int eepro100_miiphy_write(struct mii_dev *bus, int addr, int devad, static int eepro100_miiphy_write(struct mii_dev *bus, int addr, int devad,
int reg, u16 value) int reg, u16 value)
{ {
struct eth_device *dev; struct eth_device *dev = eth_get_dev_by_name(bus->name);
struct eepro100_priv *priv =
container_of(dev, struct eepro100_priv, dev);
int ret;
dev = verify_phyaddr(bus->name, addr); ret = verify_phyaddr(priv, addr);
if (!dev) if (ret)
return -1; return ret;
if (set_phyreg(dev, addr, reg, value) != 0) { ret = set_phyreg(priv, addr, reg, value);
if (ret) {
printf("%s: mii write timeout!\n", bus->name); printf("%s: mii write timeout!\n", bus->name);
return -1; return ret;
} }
return 0; return 0;
} }
#endif #endif
static void init_rx_ring(struct eth_device *dev) static void init_rx_ring(struct eepro100_priv *priv)
{ {
int i; int i;
@ -356,7 +359,7 @@ static void init_rx_ring(struct eth_device *dev)
rx_ring[i].control = (i == NUM_RX_DESC - 1) ? rx_ring[i].control = (i == NUM_RX_DESC - 1) ?
cpu_to_le16 (RFD_CONTROL_S) : 0; cpu_to_le16 (RFD_CONTROL_S) : 0;
rx_ring[i].link = rx_ring[i].link =
cpu_to_le32(phys_to_bus((pci_dev_t)dev->priv, cpu_to_le32(phys_to_bus(priv->devno,
(u32)&rx_ring[(i + 1) % (u32)&rx_ring[(i + 1) %
NUM_RX_DESC])); NUM_RX_DESC]));
rx_ring[i].rx_buf_addr = 0xffffffff; rx_ring[i].rx_buf_addr = 0xffffffff;
@ -370,7 +373,7 @@ static void init_rx_ring(struct eth_device *dev)
rx_next = 0; rx_next = 0;
} }
static void purge_tx_ring(struct eth_device *dev) static void purge_tx_ring(struct eepro100_priv *priv)
{ {
tx_next = 0; tx_next = 0;
tx_threshold = 0x01208000; tx_threshold = 0x01208000;
@ -382,11 +385,11 @@ static void purge_tx_ring(struct eth_device *dev)
} }
/* Wait for the chip get the command. */ /* Wait for the chip get the command. */
static int wait_for_eepro100(struct eth_device *dev) static int wait_for_eepro100(struct eepro100_priv *priv)
{ {
int i; int i;
for (i = 0; INW(dev, SCB_CMD) & (CU_CMD_MASK | RU_CMD_MASK); i++) { for (i = 0; INW(priv, SCB_CMD) & (CU_CMD_MASK | RU_CMD_MASK); i++) {
if (i >= TOUT_LOOP) if (i >= TOUT_LOOP)
return 0; return 0;
} }
@ -394,7 +397,7 @@ static int wait_for_eepro100(struct eth_device *dev)
return 1; return 1;
} }
static int eepro100_txcmd_send(struct eth_device *dev, static int eepro100_txcmd_send(struct eepro100_priv *priv,
struct eepro100_txfd *desc) struct eepro100_txfd *desc)
{ {
u16 rstat; u16 rstat;
@ -403,11 +406,11 @@ static int eepro100_txcmd_send(struct eth_device *dev,
flush_dcache_range((unsigned long)desc, flush_dcache_range((unsigned long)desc,
(unsigned long)desc + sizeof(*desc)); (unsigned long)desc + sizeof(*desc));
if (!wait_for_eepro100(dev)) if (!wait_for_eepro100(priv))
return -ETIMEDOUT; return -ETIMEDOUT;
OUTL(dev, phys_to_bus((pci_dev_t)dev->priv, (u32)desc), SCB_POINTER); OUTL(priv, phys_to_bus(priv->devno, (u32)desc), SCB_POINTER);
OUTW(dev, SCB_M | CU_START, SCB_CMD); OUTW(priv, SCB_M | CU_START, SCB_CMD);
while (true) { while (true) {
invalidate_dcache_range((unsigned long)desc, invalidate_dcache_range((unsigned long)desc,
@ -417,7 +420,7 @@ static int eepro100_txcmd_send(struct eth_device *dev,
break; break;
if (i++ >= TOUT_LOOP) { if (i++ >= TOUT_LOOP) {
printf("%s: Tx error buffer not ready\n", dev->name); printf("%s: Tx error buffer not ready\n", priv->name);
return -EINVAL; return -EINVAL;
} }
} }
@ -435,42 +438,42 @@ static int eepro100_txcmd_send(struct eth_device *dev,
} }
/* SROM Read. */ /* SROM Read. */
static int read_eeprom(struct eth_device *dev, int location, int addr_len) static int read_eeprom(struct eepro100_priv *priv, int location, int addr_len)
{ {
unsigned short retval = 0; unsigned short retval = 0;
int read_cmd = location | EE_READ_CMD(addr_len); int read_cmd = location | EE_READ_CMD(addr_len);
int i; int i;
OUTW(dev, EE_ENB & ~EE_CS, SCB_EEPROM); OUTW(priv, EE_ENB & ~EE_CS, SCB_EEPROM);
OUTW(dev, EE_ENB, SCB_EEPROM); OUTW(priv, EE_ENB, SCB_EEPROM);
/* Shift the read command bits out. */ /* Shift the read command bits out. */
for (i = 12; i >= 0; i--) { for (i = 12; i >= 0; i--) {
short dataval = (read_cmd & (1 << i)) ? EE_DATA_WRITE : 0; short dataval = (read_cmd & (1 << i)) ? EE_DATA_WRITE : 0;
OUTW(dev, EE_ENB | dataval, SCB_EEPROM); OUTW(priv, EE_ENB | dataval, SCB_EEPROM);
udelay(1); udelay(1);
OUTW(dev, EE_ENB | dataval | EE_SHIFT_CLK, SCB_EEPROM); OUTW(priv, EE_ENB | dataval | EE_SHIFT_CLK, SCB_EEPROM);
udelay(1); udelay(1);
} }
OUTW(dev, EE_ENB, SCB_EEPROM); OUTW(priv, EE_ENB, SCB_EEPROM);
for (i = 15; i >= 0; i--) { for (i = 15; i >= 0; i--) {
OUTW(dev, EE_ENB | EE_SHIFT_CLK, SCB_EEPROM); OUTW(priv, EE_ENB | EE_SHIFT_CLK, SCB_EEPROM);
udelay(1); udelay(1);
retval = (retval << 1) | retval = (retval << 1) |
((INW(dev, SCB_EEPROM) & EE_DATA_READ) ? 1 : 0); !!(INW(priv, SCB_EEPROM) & EE_DATA_READ);
OUTW(dev, EE_ENB, SCB_EEPROM); OUTW(priv, EE_ENB, SCB_EEPROM);
udelay(1); udelay(1);
} }
/* Terminate the EEPROM access. */ /* Terminate the EEPROM access. */
OUTW(dev, EE_ENB & ~EE_CS, SCB_EEPROM); OUTW(priv, EE_ENB & ~EE_CS, SCB_EEPROM);
return retval; return retval;
} }
#if defined(CONFIG_MII) || defined(CONFIG_CMD_MII) #if defined(CONFIG_MII) || defined(CONFIG_CMD_MII)
static int eepro100_initialize_mii(struct eth_device *dev) static int eepro100_initialize_mii(struct eepro100_priv *priv)
{ {
/* register mii command access routines */ /* register mii command access routines */
struct mii_dev *mdiodev; struct mii_dev *mdiodev;
@ -480,7 +483,7 @@ static int eepro100_initialize_mii(struct eth_device *dev)
if (!mdiodev) if (!mdiodev)
return -ENOMEM; return -ENOMEM;
strncpy(mdiodev->name, dev->name, MDIO_NAME_LEN); strncpy(mdiodev->name, priv->name, MDIO_NAME_LEN);
mdiodev->read = eepro100_miiphy_read; mdiodev->read = eepro100_miiphy_read;
mdiodev->write = eepro100_miiphy_write; mdiodev->write = eepro100_miiphy_write;
@ -493,7 +496,7 @@ static int eepro100_initialize_mii(struct eth_device *dev)
return 0; return 0;
} }
#else #else
static int eepro100_initialize_mii(struct eth_device *dev) static int eepro100_initialize_mii(struct eepro100_priv *priv)
{ {
return 0; return 0;
} }
@ -506,70 +509,72 @@ static struct pci_device_id supported[] = {
{ } { }
}; };
static void read_hw_addr(struct eth_device *dev, bd_t *bis) static void read_hw_addr(struct eepro100_priv *priv, bd_t *bis)
{ {
u16 sum = 0; u16 sum = 0;
int i, j; int i, j;
int addr_len = read_eeprom(dev, 0, 6) == 0xffff ? 8 : 6; int addr_len = read_eeprom(priv, 0, 6) == 0xffff ? 8 : 6;
for (j = 0, i = 0; i < 0x40; i++) { for (j = 0, i = 0; i < 0x40; i++) {
u16 value = read_eeprom(dev, i, addr_len); u16 value = read_eeprom(priv, i, addr_len);
sum += value; sum += value;
if (i < 3) { if (i < 3) {
dev->enetaddr[j++] = value; priv->enetaddr[j++] = value;
dev->enetaddr[j++] = value >> 8; priv->enetaddr[j++] = value >> 8;
} }
} }
if (sum != 0xBABA) { if (sum != 0xBABA) {
memset(dev->enetaddr, 0, ETH_ALEN); memset(priv->enetaddr, 0, ETH_ALEN);
debug("%s: Invalid EEPROM checksum %#4.4x, check settings before activating this device!\n", debug("%s: Invalid EEPROM checksum %#4.4x, check settings before activating this device!\n",
dev->name, sum); priv->name, sum);
} }
} }
static int eepro100_init(struct eth_device *dev, bd_t *bis) static int eepro100_init(struct eth_device *dev, bd_t *bis)
{ {
struct eepro100_priv *priv =
container_of(dev, struct eepro100_priv, dev);
struct eepro100_txfd *ias_cmd, *cfg_cmd; struct eepro100_txfd *ias_cmd, *cfg_cmd;
int ret, status = -1; int ret, status = -1;
int tx_cur; int tx_cur;
/* Reset the ethernet controller */ /* Reset the ethernet controller */
OUTL(dev, I82559_SELECTIVE_RESET, SCB_PORT); OUTL(priv, I82559_SELECTIVE_RESET, SCB_PORT);
udelay(20); udelay(20);
OUTL(dev, I82559_RESET, SCB_PORT); OUTL(priv, I82559_RESET, SCB_PORT);
udelay(20); udelay(20);
if (!wait_for_eepro100(dev)) { if (!wait_for_eepro100(priv)) {
printf("Error: Can not reset ethernet controller.\n"); printf("Error: Can not reset ethernet controller.\n");
goto done; goto done;
} }
OUTL(dev, 0, SCB_POINTER); OUTL(priv, 0, SCB_POINTER);
OUTW(dev, SCB_M | RUC_ADDR_LOAD, SCB_CMD); OUTW(priv, SCB_M | RUC_ADDR_LOAD, SCB_CMD);
if (!wait_for_eepro100(dev)) { if (!wait_for_eepro100(priv)) {
printf("Error: Can not reset ethernet controller.\n"); printf("Error: Can not reset ethernet controller.\n");
goto done; goto done;
} }
OUTL(dev, 0, SCB_POINTER); OUTL(priv, 0, SCB_POINTER);
OUTW(dev, SCB_M | CU_ADDR_LOAD, SCB_CMD); OUTW(priv, SCB_M | CU_ADDR_LOAD, SCB_CMD);
/* Initialize Rx and Tx rings. */ /* Initialize Rx and Tx rings. */
init_rx_ring(dev); init_rx_ring(priv);
purge_tx_ring(dev); purge_tx_ring(priv);
/* Tell the adapter where the RX ring is located. */ /* Tell the adapter where the RX ring is located. */
if (!wait_for_eepro100(dev)) { if (!wait_for_eepro100(priv)) {
printf("Error: Can not reset ethernet controller.\n"); printf("Error: Can not reset ethernet controller.\n");
goto done; goto done;
} }
/* RX ring cache was already flushed in init_rx_ring() */ /* RX ring cache was already flushed in init_rx_ring() */
OUTL(dev, phys_to_bus((pci_dev_t)dev->priv, (u32)&rx_ring[rx_next]), OUTL(priv, phys_to_bus(priv->devno, (u32)&rx_ring[rx_next]),
SCB_POINTER); SCB_POINTER);
OUTW(dev, SCB_M | RUC_START, SCB_CMD); OUTW(priv, SCB_M | RUC_START, SCB_CMD);
/* Send the Configure frame */ /* Send the Configure frame */
tx_cur = tx_next; tx_cur = tx_next;
@ -579,13 +584,13 @@ static int eepro100_init(struct eth_device *dev, bd_t *bis)
cfg_cmd->command = cpu_to_le16(CONFIG_SYS_CMD_SUSPEND | cfg_cmd->command = cpu_to_le16(CONFIG_SYS_CMD_SUSPEND |
CONFIG_SYS_CMD_CONFIGURE); CONFIG_SYS_CMD_CONFIGURE);
cfg_cmd->status = 0; cfg_cmd->status = 0;
cfg_cmd->link = cpu_to_le32(phys_to_bus((pci_dev_t)dev->priv, cfg_cmd->link = cpu_to_le32(phys_to_bus(priv->devno,
(u32)&tx_ring[tx_next])); (u32)&tx_ring[tx_next]));
memcpy(((struct descriptor *)cfg_cmd)->params, i82558_config_cmd, memcpy(((struct descriptor *)cfg_cmd)->params, i82558_config_cmd,
sizeof(i82558_config_cmd)); sizeof(i82558_config_cmd));
ret = eepro100_txcmd_send(dev, cfg_cmd); ret = eepro100_txcmd_send(priv, cfg_cmd);
if (ret) { if (ret) {
if (ret == -ETIMEDOUT) if (ret == -ETIMEDOUT)
printf("Error---CONFIG_SYS_CMD_CONFIGURE: Can not reset ethernet controller.\n"); printf("Error---CONFIG_SYS_CMD_CONFIGURE: Can not reset ethernet controller.\n");
@ -600,12 +605,12 @@ static int eepro100_init(struct eth_device *dev, bd_t *bis)
ias_cmd->command = cpu_to_le16(CONFIG_SYS_CMD_SUSPEND | ias_cmd->command = cpu_to_le16(CONFIG_SYS_CMD_SUSPEND |
CONFIG_SYS_CMD_IAS); CONFIG_SYS_CMD_IAS);
ias_cmd->status = 0; ias_cmd->status = 0;
ias_cmd->link = cpu_to_le32(phys_to_bus((pci_dev_t)dev->priv, ias_cmd->link = cpu_to_le32(phys_to_bus(priv->devno,
(u32)&tx_ring[tx_next])); (u32)&tx_ring[tx_next]));
memcpy(((struct descriptor *)ias_cmd)->params, dev->enetaddr, 6); memcpy(((struct descriptor *)ias_cmd)->params, priv->enetaddr, 6);
ret = eepro100_txcmd_send(dev, ias_cmd); ret = eepro100_txcmd_send(priv, ias_cmd);
if (ret) { if (ret) {
if (ret == -ETIMEDOUT) if (ret == -ETIMEDOUT)
printf("Error: Can not reset ethernet controller.\n"); printf("Error: Can not reset ethernet controller.\n");
@ -620,12 +625,14 @@ done:
static int eepro100_send(struct eth_device *dev, void *packet, int length) static int eepro100_send(struct eth_device *dev, void *packet, int length)
{ {
struct eepro100_priv *priv =
container_of(dev, struct eepro100_priv, dev);
struct eepro100_txfd *desc; struct eepro100_txfd *desc;
int ret, status = -1; int ret, status = -1;
int tx_cur; int tx_cur;
if (length <= 0) { if (length <= 0) {
printf("%s: bad packet size: %d\n", dev->name, length); printf("%s: bad packet size: %d\n", priv->name, length);
goto done; goto done;
} }
@ -637,19 +644,19 @@ static int eepro100_send(struct eth_device *dev, void *packet, int length)
TXCB_CMD_S | TXCB_CMD_EL); TXCB_CMD_S | TXCB_CMD_EL);
desc->status = 0; desc->status = 0;
desc->count = cpu_to_le32(tx_threshold); desc->count = cpu_to_le32(tx_threshold);
desc->link = cpu_to_le32(phys_to_bus((pci_dev_t)dev->priv, desc->link = cpu_to_le32(phys_to_bus(priv->devno,
(u32)&tx_ring[tx_next])); (u32)&tx_ring[tx_next]));
desc->tx_desc_addr = cpu_to_le32(phys_to_bus((pci_dev_t)dev->priv, desc->tx_desc_addr = cpu_to_le32(phys_to_bus(priv->devno,
(u32)&desc->tx_buf_addr0)); (u32)&desc->tx_buf_addr0));
desc->tx_buf_addr0 = cpu_to_le32(phys_to_bus((pci_dev_t)dev->priv, desc->tx_buf_addr0 = cpu_to_le32(phys_to_bus(priv->devno,
(u_long)packet)); (u_long)packet));
desc->tx_buf_size0 = cpu_to_le32(length); desc->tx_buf_size0 = cpu_to_le32(length);
ret = eepro100_txcmd_send(dev, &tx_ring[tx_cur]); ret = eepro100_txcmd_send(priv, &tx_ring[tx_cur]);
if (ret) { if (ret) {
if (ret == -ETIMEDOUT) if (ret == -ETIMEDOUT)
printf("%s: Tx error ethernet controller not ready.\n", printf("%s: Tx error ethernet controller not ready.\n",
dev->name); priv->name);
goto done; goto done;
} }
@ -661,12 +668,14 @@ done:
static int eepro100_recv(struct eth_device *dev) static int eepro100_recv(struct eth_device *dev)
{ {
struct eepro100_priv *priv =
container_of(dev, struct eepro100_priv, dev);
struct eepro100_rxfd *desc; struct eepro100_rxfd *desc;
int rx_prev, length = 0; int rx_prev, length = 0;
u16 status, stat; u16 status, stat;
stat = INW(dev, SCB_STATUS); stat = INW(priv, SCB_STATUS);
OUTW(dev, stat & SCB_STATUS_RNR, SCB_STATUS); OUTW(priv, stat & SCB_STATUS_RNR, SCB_STATUS);
for (;;) { for (;;) {
desc = &rx_ring[rx_next]; desc = &rx_ring[rx_next];
@ -706,20 +715,20 @@ static int eepro100_recv(struct eth_device *dev)
} }
if (stat & SCB_STATUS_RNR) { if (stat & SCB_STATUS_RNR) {
printf("%s: Receiver is not ready, restart it !\n", dev->name); printf("%s: Receiver is not ready, restart it !\n", priv->name);
/* Reinitialize Rx ring. */ /* Reinitialize Rx ring. */
init_rx_ring(dev); init_rx_ring(priv);
if (!wait_for_eepro100(dev)) { if (!wait_for_eepro100(priv)) {
printf("Error: Can not restart ethernet controller.\n"); printf("Error: Can not restart ethernet controller.\n");
goto done; goto done;
} }
/* RX ring cache was already flushed in init_rx_ring() */ /* RX ring cache was already flushed in init_rx_ring() */
OUTL(dev, phys_to_bus((pci_dev_t)dev->priv, OUTL(priv, phys_to_bus(priv->devno,
(u32)&rx_ring[rx_next]), SCB_POINTER); (u32)&rx_ring[rx_next]), SCB_POINTER);
OUTW(dev, SCB_M | RUC_START, SCB_CMD); OUTW(priv, SCB_M | RUC_START, SCB_CMD);
} }
done: done:
@ -728,26 +737,29 @@ done:
static void eepro100_halt(struct eth_device *dev) static void eepro100_halt(struct eth_device *dev)
{ {
struct eepro100_priv *priv =
container_of(dev, struct eepro100_priv, dev);
/* Reset the ethernet controller */ /* Reset the ethernet controller */
OUTL(dev, I82559_SELECTIVE_RESET, SCB_PORT); OUTL(priv, I82559_SELECTIVE_RESET, SCB_PORT);
udelay(20); udelay(20);
OUTL(dev, I82559_RESET, SCB_PORT); OUTL(priv, I82559_RESET, SCB_PORT);
udelay(20); udelay(20);
if (!wait_for_eepro100(dev)) { if (!wait_for_eepro100(priv)) {
printf("Error: Can not reset ethernet controller.\n"); printf("Error: Can not reset ethernet controller.\n");
goto done; goto done;
} }
OUTL(dev, 0, SCB_POINTER); OUTL(priv, 0, SCB_POINTER);
OUTW(dev, SCB_M | RUC_ADDR_LOAD, SCB_CMD); OUTW(priv, SCB_M | RUC_ADDR_LOAD, SCB_CMD);
if (!wait_for_eepro100(dev)) { if (!wait_for_eepro100(priv)) {
printf("Error: Can not reset ethernet controller.\n"); printf("Error: Can not reset ethernet controller.\n");
goto done; goto done;
} }
OUTL(dev, 0, SCB_POINTER); OUTL(priv, 0, SCB_POINTER);
OUTW(dev, SCB_M | CU_ADDR_LOAD, SCB_CMD); OUTW(priv, SCB_M | CU_ADDR_LOAD, SCB_CMD);
done: done:
return; return;
@ -798,8 +810,12 @@ int eepro100_initialize(bd_t *bis)
dev = &priv->dev; dev = &priv->dev;
sprintf(dev->name, "i82559#%d", card_number); sprintf(dev->name, "i82559#%d", card_number);
dev->priv = (void *)devno; /* this have to come before bus_to_phys() */ priv->name = dev->name;
dev->iobase = bus_to_phys(devno, iobase); /* this have to come before bus_to_phys() */
priv->devno = devno;
priv->iobase = (void __iomem *)bus_to_phys(devno, iobase);
priv->enetaddr = dev->enetaddr;
dev->init = eepro100_init; dev->init = eepro100_init;
dev->halt = eepro100_halt; dev->halt = eepro100_halt;
dev->send = eepro100_send; dev->send = eepro100_send;
@ -807,7 +823,7 @@ int eepro100_initialize(bd_t *bis)
eth_register(dev); eth_register(dev);
ret = eepro100_initialize_mii(dev); ret = eepro100_initialize_mii(priv);
if (ret) { if (ret) {
eth_unregister(dev); eth_unregister(dev);
free(priv); free(priv);
@ -821,7 +837,7 @@ int eepro100_initialize(bd_t *bis)
udelay(10 * 1000); udelay(10 * 1000);
read_hw_addr(dev, bis); read_hw_addr(priv, bis);
} }
return card_number; return card_number;