acpi: Add more support for generating processor tables

This adds tables relating to P-States and C-States.

Signed-off-by: Simon Glass <sjg@chromium.org>
This commit is contained in:
Simon Glass 2020-09-22 12:45:13 -06:00 committed by Bin Meng
parent 7764a8481c
commit 350c7f52b9
3 changed files with 623 additions and 0 deletions

View file

@ -10,8 +10,10 @@
#ifndef __ACPI_ACPIGEN_H
#define __ACPI_ACPIGEN_H
#include <acpi/acpi_table.h>
#include <linux/types.h>
struct acpi_cstate;
struct acpi_ctx;
struct acpi_gen_regaddr;
struct acpi_gpio;
@ -87,6 +89,53 @@ enum psd_coord {
HW_ALL = 0xfe
};
/**
* enum csd_coord - Coordination types for C-states
*
* The type of coordination that exists (hardware) or is required (software) as
* a result of the underlying hardware dependency
*/
enum csd_coord {
CSD_HW_ALL = 0xfe,
};
/**
* struct acpi_cstate - Information about a C-State
*
* @ctype: C State type (1=C1, 2=C2, 3=C3)
* @latency: Worst-case latency to enter and exit the C State (in uS)
* @power: Average power consumption of the processor when in this C-State (mW)
* @resource: Register to read to place the processor in this state
*/
struct acpi_cstate {
uint ctype;
uint latency;
uint power;
struct acpi_gen_regaddr resource;
};
/**
* struct acpi_tstate - Information about a Throttling Supported State
*
* See ACPI v6.3 section 8.4.5.2: _TSS (Throttling Supported States)
*
* @percent: Percent of the core CPU operating frequency that will be
* available when this throttling state is invoked
* @power: Throttling states maximum power dissipation (mw)
* @latency: Worst-case latency (uS) that the CPU is unavailable during a
* transition from any throttling state to this throttling state
* @control: Value to be written to the Processor Control Register
* (THROTTLE_CTRL) to initiate a transition to this throttling state
* @status: Value in THROTTLE_STATUS when in this state
*/
struct acpi_tstate {
uint percent;
uint power;
uint latency;
uint control;
uint status;
};
/**
* acpigen_get_current() - Get the current ACPI code output pointer
*
@ -816,4 +865,117 @@ void acpigen_write_processor_package(struct acpi_ctx *ctx, const char *name,
*/
void acpigen_write_processor_cnot(struct acpi_ctx *ctx, const uint num_cores);
/**
* acpigen_write_ppc() - generates a function returning max P-states
*
* @ctx: ACPI context pointer
* @num_pstates: Number of pstates to return
*/
void acpigen_write_ppc(struct acpi_ctx *ctx, uint num_pstates);
/**
* acpigen_write_ppc() - generates a function returning PPCM
*
* This returns the maximum number of supported P-states, as saved in the
* variable PPCM
*
* @ctx: ACPI context pointer
*/
void acpigen_write_ppc_nvs(struct acpi_ctx *ctx);
/**
* acpigen_write_tpc() - Write a _TPC method that returns the TPC limit
*
* @ctx: ACPI context pointer
* @gnvs_tpc_limit: Variable that holds the TPC limit
*/
void acpigen_write_tpc(struct acpi_ctx *ctx, const char *gnvs_tpc_limit);
/**
* acpigen_write_pss_package() - Write a PSS package
*
* See ACPI v6.3 section 8.4.6: Processor Performance Control
*
* @ctx: ACPI context pointer
* @corefreq: CPU core frequency in MHz
* @translat: worst-case latency in uS that the CPU is unavailable during a
* transition from any performance state to this performance state
* @busmlat: worst-case latency in microseconds that Bus Masters are prevented
* from accessing memory during a transition from any performance state to
* this performance state
* @control: Value to write to PERF_CTRL to move to this performance state
* @status: Expected PERF_STATUS value when in this state
*/
void acpigen_write_pss_package(struct acpi_ctx *ctx, uint corefreq, uint power,
uint translat, uint busmlat, uint control,
uint status);
/**
* acpigen_write_psd_package() - Write a PSD package
*
* Writes a P-State dependency package
*
* See ACPI v6.3 section 8.4.6.5: _PSD (P-State Dependency)
*
* @ctx: ACPI context pointer
* @domain: Dependency domain number to which this P state entry belongs
* @numprocs: Number of processors belonging to the domain for this logical
* processors P-states
* @coordtype: Coordination type
*/
void acpigen_write_psd_package(struct acpi_ctx *ctx, uint domain, uint numprocs,
enum psd_coord coordtype);
/**
* acpigen_write_cst_package() - Write a _CST package
*
* See ACPI v6.3 section 8.4.2.1: _CST (C States)
*
* @ctx: ACPI context pointer
* @entry: Array of entries
* @nentries; Number of entries
*/
void acpigen_write_cst_package(struct acpi_ctx *ctx,
const struct acpi_cstate *entry, int nentries);
/**
* acpigen_write_csd_package() - Write a _CSD Package
*
* See ACPI v6.3 section 8.4.2.2: _CSD (C-State Dependency)
*
* @ctx: ACPI context pointer
* @domain: dependency domain number to which this C state entry belongs
* @numprocs: number of processors belonging to the domain for the particular
* C-state
* @coordtype: Co-ordination type
* @index: Index of the C-State entry in the _CST object for which the
* dependency applies
*/
void acpigen_write_csd_package(struct acpi_ctx *ctx, uint domain, uint numprocs,
enum csd_coord coordtype, uint index);
/**
* acpigen_write_tss_package() - Write a _TSS package
*
* @ctx: ACPI context pointer
* @entry: Entries to write
* @nentries: Number of entries to write
*/
void acpigen_write_tss_package(struct acpi_ctx *ctx,
struct acpi_tstate *entry, int nentries);
/**
* acpigen_write_tsd_package() - Write a _TSD package
*
* See ACPI v6.3 section 8.4.5.4: _TSD (T-State Dependency)
*
* @ctx: ACPI context pointer
* @domain: dependency domain number to which this T state entry belongs
* @numprocs: Number of processors belonging to the domain for this logical
* processors T-states
* @coordtype: Coordination type
*/
void acpigen_write_tsd_package(struct acpi_ctx *ctx, uint domain, uint numprocs,
enum psd_coord coordtype);
#endif

View file

@ -481,6 +481,53 @@ void acpigen_write_register_resource(struct acpi_ctx *ctx,
acpigen_write_resourcetemplate_footer(ctx);
}
void acpigen_write_ppc(struct acpi_ctx *ctx, uint num_pstates)
{
/*
* Method (_PPC, 0, NotSerialized)
* {
* Return (num_pstates)
* }
*/
acpigen_write_method(ctx, "_PPC", 0);
acpigen_emit_byte(ctx, RETURN_OP);
acpigen_write_byte(ctx, num_pstates);
acpigen_pop_len(ctx);
}
/*
* Generates a func with max supported P-states saved
* in the variable PPCM.
*/
void acpigen_write_ppc_nvs(struct acpi_ctx *ctx)
{
/*
* Method (_PPC, 0, NotSerialized)
* {
* Return (PPCM)
* }
*/
acpigen_write_method(ctx, "_PPC", 0);
acpigen_emit_byte(ctx, RETURN_OP);
acpigen_emit_namestring(ctx, "PPCM");
acpigen_pop_len(ctx);
}
void acpigen_write_tpc(struct acpi_ctx *ctx, const char *gnvs_tpc_limit)
{
/*
* // Sample _TPC method
* Method (_TPC, 0, NotSerialized)
* {
* Return (\TLVL)
* }
*/
acpigen_write_method(ctx, "_TPC", 0);
acpigen_emit_byte(ctx, RETURN_OP);
acpigen_emit_namestring(ctx, gnvs_tpc_limit);
acpigen_pop_len(ctx);
}
void acpigen_write_prw(struct acpi_ctx *ctx, uint wake, uint level)
{
/* Name (_PRW, Package () { wake, level } */
@ -491,6 +538,126 @@ void acpigen_write_prw(struct acpi_ctx *ctx, uint wake, uint level)
acpigen_pop_len(ctx);
}
void acpigen_write_pss_package(struct acpi_ctx *ctx, u32 core_freq, u32 power,
u32 trans_lat, u32 busm_lat, u32 control,
u32 status)
{
acpigen_write_package(ctx, 6);
acpigen_write_dword(ctx, core_freq);
acpigen_write_dword(ctx, power);
acpigen_write_dword(ctx, trans_lat);
acpigen_write_dword(ctx, busm_lat);
acpigen_write_dword(ctx, control);
acpigen_write_dword(ctx, status);
acpigen_pop_len(ctx);
log_debug("PSS: %uMHz power %u control 0x%x status 0x%x\n",
core_freq, power, control, status);
}
void acpigen_write_psd_package(struct acpi_ctx *ctx, uint domain, uint numprocs,
enum psd_coord coordtype)
{
acpigen_write_name(ctx, "_PSD");
acpigen_write_package(ctx, 1);
acpigen_write_package(ctx, 5);
acpigen_write_byte(ctx, 5); // 5 values
acpigen_write_byte(ctx, 0); // revision 0
acpigen_write_dword(ctx, domain);
acpigen_write_dword(ctx, coordtype);
acpigen_write_dword(ctx, numprocs);
acpigen_pop_len(ctx);
acpigen_pop_len(ctx);
}
static void acpigen_write_cst_package_entry(struct acpi_ctx *ctx,
const struct acpi_cstate *cstate)
{
acpigen_write_package(ctx, 4);
acpigen_write_register_resource(ctx, &cstate->resource);
acpigen_write_dword(ctx, cstate->ctype);
acpigen_write_dword(ctx, cstate->latency);
acpigen_write_dword(ctx, cstate->power);
acpigen_pop_len(ctx);
}
void acpigen_write_cst_package(struct acpi_ctx *ctx,
const struct acpi_cstate *cstate, int nentries)
{
int i;
acpigen_write_name(ctx, "_CST");
acpigen_write_package(ctx, nentries + 1);
acpigen_write_dword(ctx, nentries);
for (i = 0; i < nentries; i++)
acpigen_write_cst_package_entry(ctx, cstate + i);
acpigen_pop_len(ctx);
}
void acpigen_write_csd_package(struct acpi_ctx *ctx, uint domain, uint numprocs,
enum csd_coord coordtype, uint index)
{
acpigen_write_name(ctx, "_CSD");
acpigen_write_package(ctx, 1);
acpigen_write_package(ctx, 6);
acpigen_write_byte(ctx, 6); // 6 values
acpigen_write_byte(ctx, 0); // revision 0
acpigen_write_dword(ctx, domain);
acpigen_write_dword(ctx, coordtype);
acpigen_write_dword(ctx, numprocs);
acpigen_write_dword(ctx, index);
acpigen_pop_len(ctx);
acpigen_pop_len(ctx);
}
void acpigen_write_tss_package(struct acpi_ctx *ctx,
struct acpi_tstate *entry, int nentries)
{
/*
* Sample _TSS package with 100% and 50% duty cycles
* Name (_TSS, Package (0x02)
* {
* Package(){100, 1000, 0, 0x00, 0)
* Package(){50, 520, 0, 0x18, 0)
* })
*/
struct acpi_tstate *tstate = entry;
int i;
acpigen_write_name(ctx, "_TSS");
acpigen_write_package(ctx, nentries);
for (i = 0; i < nentries; i++) {
acpigen_write_package(ctx, 5);
acpigen_write_dword(ctx, tstate->percent);
acpigen_write_dword(ctx, tstate->power);
acpigen_write_dword(ctx, tstate->latency);
acpigen_write_dword(ctx, tstate->control);
acpigen_write_dword(ctx, tstate->status);
acpigen_pop_len(ctx);
tstate++;
}
acpigen_pop_len(ctx);
}
void acpigen_write_tsd_package(struct acpi_ctx *ctx, u32 domain, u32 numprocs,
enum psd_coord coordtype)
{
acpigen_write_name(ctx, "_TSD");
acpigen_write_package(ctx, 1);
acpigen_write_package(ctx, 5);
acpigen_write_byte(ctx, 5); // 5 values
acpigen_write_byte(ctx, 0); // revision 0
acpigen_write_dword(ctx, domain);
acpigen_write_dword(ctx, coordtype);
acpigen_write_dword(ctx, numprocs);
acpigen_pop_len(ctx);
acpigen_pop_len(ctx);
}
/*
* ToUUID(uuid)
*

View file

@ -1450,3 +1450,297 @@ static int dm_test_acpi_write_processor_cnot(struct unit_test_state *uts)
return 0;
}
DM_TEST(dm_test_acpi_write_processor_cnot, 0);
/* Test acpigen_write_tpc */
static int dm_test_acpi_write_tpc(struct unit_test_state *uts)
{
struct acpi_ctx *ctx;
u8 *ptr;
ut_assertok(alloc_context(&ctx));
ptr = acpigen_get_current(ctx);
acpigen_write_tpc(ctx, "\\TLVL");
ut_asserteq(METHOD_OP, *ptr++);
ptr += 3; /* skip length */
ut_asserteq_strn("_TPC", (char *)ptr);
ptr += 4;
ut_asserteq(0, *ptr++);
ut_asserteq(RETURN_OP, *ptr++);
ut_asserteq_strn("\\TLVL", (char *)ptr);
ptr += 5;
ut_asserteq_ptr(ptr, ctx->current);
free_context(&ctx);
return 0;
}
DM_TEST(dm_test_acpi_write_tpc, 0);
/* Test acpigen_write_pss_package(), etc. */
static int dm_test_acpi_write_pss_psd(struct unit_test_state *uts)
{
struct acpi_ctx *ctx;
u8 *ptr;
ut_assertok(alloc_context(&ctx));
ptr = acpigen_get_current(ctx);
acpigen_write_pss_package(ctx, 1, 2, 3, 4, 5, 6);
ut_asserteq(PACKAGE_OP, *ptr++);
ptr += 3; /* skip length */
ut_asserteq(6, *ptr++);
ut_asserteq(DWORD_PREFIX, *ptr++);
ut_asserteq(1, get_unaligned((u32 *)ptr));
ptr += 5;
ut_asserteq(2, get_unaligned((u32 *)ptr));
ptr += 5;
ut_asserteq(3, get_unaligned((u32 *)ptr));
ptr += 5;
ut_asserteq(4, get_unaligned((u32 *)ptr));
ptr += 5;
ut_asserteq(5, get_unaligned((u32 *)ptr));
ptr += 5;
ut_asserteq(6, get_unaligned((u32 *)ptr));
ptr += 4;
acpigen_write_psd_package(ctx, 6, 7, HW_ALL);
ut_asserteq(NAME_OP, *ptr++);
ut_asserteq_strn("_PSD", (char *)ptr);
ptr += 4;
ut_asserteq(PACKAGE_OP, *ptr++);
ptr += 3; /* skip length */
ut_asserteq(1, *ptr++);
ut_asserteq(PACKAGE_OP, *ptr++);
ptr += 3; /* skip length */
ut_asserteq(5, *ptr++);
ut_asserteq(BYTE_PREFIX, *ptr++);
ut_asserteq(5, *ptr++);
ut_asserteq(BYTE_PREFIX, *ptr++);
ut_asserteq(0, *ptr++);
ut_asserteq(DWORD_PREFIX, *ptr++);
ut_asserteq(6, get_unaligned((u32 *)ptr));
ptr += 5;
ut_asserteq(HW_ALL, get_unaligned((u32 *)ptr));
ptr += 5;
ut_asserteq(7, get_unaligned((u32 *)ptr));
ptr += 4;
ut_asserteq_ptr(ptr, ctx->current);
free_context(&ctx);
return 0;
}
DM_TEST(dm_test_acpi_write_pss_psd, 0);
/* Test acpi_write_cst_package() */
static int dm_test_acpi_write_cst(struct unit_test_state *uts)
{
static struct acpi_cstate cstate_map[] = {
{
/* C1 */
.ctype = 1, /* ACPI C1 */
.latency = 1,
.power = 1000,
.resource = {
.space_id = ACPI_ADDRESS_SPACE_FIXED,
},
}, {
.ctype = 2, /* ACPI C2 */
.latency = 50,
.power = 10,
.resource = {
.space_id = ACPI_ADDRESS_SPACE_IO,
.bit_width = 8,
.addrl = 0x415,
},
},
};
int nentries = ARRAY_SIZE(cstate_map);
struct acpi_ctx *ctx;
u8 *ptr;
int i;
ut_assertok(alloc_context(&ctx));
ptr = acpigen_get_current(ctx);
acpigen_write_cst_package(ctx, cstate_map, nentries);
ut_asserteq(NAME_OP, *ptr++);
ut_asserteq_strn("_CST", (char *)ptr);
ptr += 4;
ut_asserteq(PACKAGE_OP, *ptr++);
ptr += 3; /* skip length */
ut_asserteq(nentries + 1, *ptr++);
ut_asserteq(DWORD_PREFIX, *ptr++);
ut_asserteq(nentries, get_unaligned((u32 *)ptr));
ptr += 4;
for (i = 0; i < nentries; i++) {
ut_asserteq(PACKAGE_OP, *ptr++);
ptr += 3; /* skip length */
ut_asserteq(4, *ptr++);
ut_asserteq(BUFFER_OP, *ptr++);
ptr += 0x17;
ut_asserteq(DWORD_PREFIX, *ptr++);
ut_asserteq(cstate_map[i].ctype, get_unaligned((u32 *)ptr));
ptr += 5;
ut_asserteq(cstate_map[i].latency, get_unaligned((u32 *)ptr));
ptr += 5;
ut_asserteq(cstate_map[i].power, get_unaligned((u32 *)ptr));
ptr += 4;
}
ut_asserteq_ptr(ptr, ctx->current);
free_context(&ctx);
return 0;
}
DM_TEST(dm_test_acpi_write_cst, 0);
/* Test acpi_write_cst_package() */
static int dm_test_acpi_write_csd(struct unit_test_state *uts)
{
struct acpi_ctx *ctx;
u8 *ptr;
ut_assertok(alloc_context(&ctx));
ptr = acpigen_get_current(ctx);
acpigen_write_csd_package(ctx, 12, 34, CSD_HW_ALL, 56);
ut_asserteq(NAME_OP, *ptr++);
ut_asserteq_strn("_CSD", (char *)ptr);
ptr += 4;
ut_asserteq(PACKAGE_OP, *ptr++);
ptr += 3; /* skip length */
ut_asserteq(1, *ptr++);
ut_asserteq(PACKAGE_OP, *ptr++);
ptr += 3; /* skip length */
ut_asserteq(6, *ptr++);
ut_asserteq(BYTE_PREFIX, *ptr++);
ut_asserteq(6, *ptr++);
ut_asserteq(BYTE_PREFIX, *ptr++);
ut_asserteq(0, *ptr++);
ut_asserteq(DWORD_PREFIX, *ptr++);
ut_asserteq(12, get_unaligned((u32 *)ptr));
ptr += 5;
ut_asserteq(CSD_HW_ALL, get_unaligned((u32 *)ptr));
ptr += 5;
ut_asserteq(34, get_unaligned((u32 *)ptr));
ptr += 5;
ut_asserteq(56, get_unaligned((u32 *)ptr));
ptr += 4;
ut_asserteq_ptr(ptr, ctx->current);
free_context(&ctx);
return 0;
}
DM_TEST(dm_test_acpi_write_csd, 0);
/* Test acpigen_write_tss_package() */
static int dm_test_acpi_write_tss(struct unit_test_state *uts)
{
static struct acpi_tstate tstate_list[] = {
{ 1, 2, 3, 4, 5, },
{ 6, 7, 8, 9, 10, },
};
int nentries = ARRAY_SIZE(tstate_list);
struct acpi_ctx *ctx;
u8 *ptr;
int i;
ut_assertok(alloc_context(&ctx));
ptr = acpigen_get_current(ctx);
acpigen_write_tss_package(ctx, tstate_list, nentries);
ut_asserteq(NAME_OP, *ptr++);
ut_asserteq_strn("_TSS", (char *)ptr);
ptr += 4;
ut_asserteq(PACKAGE_OP, *ptr++);
ptr += 3; /* skip length */
ut_asserteq(nentries, *ptr++);
for (i = 0; i < nentries; i++) {
ut_asserteq(PACKAGE_OP, *ptr++);
ptr += 3; /* skip length */
ut_asserteq(5, *ptr++);
ut_asserteq(DWORD_PREFIX, *ptr++);
ut_asserteq(tstate_list[i].percent, get_unaligned((u32 *)ptr));
ptr += 5;
ut_asserteq(tstate_list[i].power, get_unaligned((u32 *)ptr));
ptr += 5;
ut_asserteq(tstate_list[i].latency, get_unaligned((u32 *)ptr));
ptr += 5;
ut_asserteq(tstate_list[i].control, get_unaligned((u32 *)ptr));
ptr += 5;
ut_asserteq(tstate_list[i].status, get_unaligned((u32 *)ptr));
ptr += 4;
}
ut_asserteq_ptr(ptr, ctx->current);
free_context(&ctx);
return 0;
}
DM_TEST(dm_test_acpi_write_tss, 0);
/* Test acpigen_write_tsd_package() */
static int dm_test_acpi_write_tsd_package(struct unit_test_state *uts)
{
struct acpi_ctx *ctx;
u8 *ptr;
ut_assertok(alloc_context(&ctx));
ptr = acpigen_get_current(ctx);
acpigen_write_tsd_package(ctx, 12, 34, HW_ALL);
ut_asserteq(NAME_OP, *ptr++);
ut_asserteq_strn("_TSD", (char *)ptr);
ptr += 4;
ut_asserteq(PACKAGE_OP, *ptr++);
ptr += 3; /* skip length */
ut_asserteq(1, *ptr++);
ut_asserteq(PACKAGE_OP, *ptr++);
ptr += 3; /* skip length */
ut_asserteq(5, *ptr++);
ut_asserteq(BYTE_PREFIX, *ptr++);
ut_asserteq(5, *ptr++);
ut_asserteq(BYTE_PREFIX, *ptr++);
ut_asserteq(0, *ptr++);
ut_asserteq(DWORD_PREFIX, *ptr++);
ut_asserteq(12, get_unaligned((u32 *)ptr));
ptr += 5;
ut_asserteq(CSD_HW_ALL, get_unaligned((u32 *)ptr));
ptr += 5;
ut_asserteq(34, get_unaligned((u32 *)ptr));
ptr += 4;
ut_asserteq_ptr(ptr, ctx->current);
free_context(&ctx);
return 0;
}
DM_TEST(dm_test_acpi_write_tsd_package, 0);