phy: marvell: cp110: let the firmware perform training for XFI

Replace the XFI training with appropriate SMC call, so the firmware will
perform exact initialization.

Update Stefan 2021-03-23:
Move comphy_smc() function to an earlier place - necessary for the
mainline merge.

Change-Id: I789b130b05529dc80dadcf66aef407d93595b762
Signed-off-by: Grzegorz Jaszczyk <jaz@semihalf.com>
Signed-off-by: Stefan Roese <sr@denx.de>
Reviewed-by: Igal Liberman <igall@marvell.com>
This commit is contained in:
Grzegorz Jaszczyk 2018-04-03 16:59:12 +02:00 committed by Stefan Roese
parent f635c3b3a2
commit 2e28b597fa

View file

@ -28,6 +28,7 @@ DECLARE_GLOBAL_DATA_PTR;
#define MV_SIP_COMPHY_POWER_ON 0x82000001
#define MV_SIP_COMPHY_POWER_OFF 0x82000002
#define MV_SIP_COMPHY_PLL_LOCK 0x82000003
#define MV_SIP_COMPHY_XFI_TRAIN 0x82000004
/* Used to distinguish between different possible callers (U-boot/Linux) */
#define COMPHY_CALLER_UBOOT (0x1 << 21)
@ -133,196 +134,6 @@ static u32 polling_with_timeout(void __iomem *addr, u32 val,
return 0;
}
/* This function performs RX training for single FFE value.
* The result of the RX training is located in:
* Saved DFE values Register[10:15].
*
* The result is returned to the caller using *result
*
* Return '1' on succsess.
* Return '0' on failure.
*/
static int comphy_cp110_test_single_ffe(
struct chip_serdes_phy_config *ptr_chip_cfg,
u32 lane, u32 ffe, u32 *result)
{
u32 mask, data, timeout;
void __iomem *hpipe_base_addr = ptr_chip_cfg->hpipe3_base_addr;
void __iomem *hpipe_addr = HPIPE_ADDR(hpipe_base_addr, lane);
void __iomem *sd_ip_addr = SD_ADDR(hpipe_base_addr, lane);
/* Configure PRBS counters */
mask = HPIPE_PHY_TEST_PATTERN_SEL_MASK;
data = 0xe << HPIPE_PHY_TEST_PATTERN_SEL_OFFSET;
reg_set(hpipe_addr + HPIPE_PHY_TEST_CONTROL_REG, data, mask);
mask = HPIPE_PHY_TEST_DATA_MASK;
data = 0x64 << HPIPE_PHY_TEST_DATA_OFFSET;
reg_set(hpipe_addr + HPIPE_PHY_TEST_DATA_REG, data, mask);
mask = HPIPE_PHY_TEST_EN_MASK;
data = 0x1 << HPIPE_PHY_TEST_EN_OFFSET;
reg_set(hpipe_addr + HPIPE_PHY_TEST_CONTROL_REG, data, mask);
mdelay(50);
/* Set the FFE value */
mask = HPIPE_G1_SETTINGS_3_G1_FFE_RES_SEL_MASK;
data = ffe << HPIPE_G1_SETTINGS_3_G1_FFE_RES_SEL_OFFSET;
reg_set(hpipe_addr + HPIPE_G1_SETTINGS_3_REG, data, mask);
/* Start RX training */
mask = SD_EXTERNAL_STATUS_START_RX_TRAINING_MASK;
data = 1 << SD_EXTERNAL_STATUS_START_RX_TRAINING_OFFSET;
reg_set(sd_ip_addr + SD_EXTERNAL_STATUS_REG, data, mask);
/* Check the result of RX training */
timeout = RX_TRAINING_TIMEOUT;
while (timeout) {
data = readl(sd_ip_addr + SD_EXTERNAL_STATUS1_REG);
if (data & SD_EXTERNAL_STATUS1_REG_RX_TRAIN_COMP_MASK)
break;
mdelay(1);
timeout--;
}
if (timeout == 0)
return 0;
if (data & SD_EXTERNAL_STATUS1_REG_RX_TRAIN_FAILED_MASK)
return 0;
/* Stop RX training */
mask = SD_EXTERNAL_STATUS_START_RX_TRAINING_MASK;
data = 0 << SD_EXTERNAL_STATUS_START_RX_TRAINING_OFFSET;
reg_set(sd_ip_addr + SD_EXTERNAL_STATUS_REG, data, mask);
/* Read the result */
data = readl(hpipe_addr + HPIPE_SAVED_DFE_VALUES_REG);
data &= HPIPE_SAVED_DFE_VALUES_SAV_F0D_MASK;
data >>= HPIPE_SAVED_DFE_VALUES_SAV_F0D_OFFSET;
*result = data;
printf("FFE = %d, result = 0x%x\n", ffe, *result);
/* Clear the PRBS counters */
mask = HPIPE_PHY_TEST_RESET_MASK;
data = 0x1 << HPIPE_PHY_TEST_RESET_OFFSET;
mask |= HPIPE_PHY_TEST_EN_MASK;
data |= 0x0 << HPIPE_PHY_TEST_EN_OFFSET;
reg_set(hpipe_addr + HPIPE_PHY_TEST_CONTROL_REG, data, mask);
mask = HPIPE_PHY_TEST_RESET_MASK;
data = 0x0 << HPIPE_PHY_TEST_RESET_OFFSET;
reg_set(hpipe_addr + HPIPE_PHY_TEST_CONTROL_REG, data, mask);
return 1;
}
/* This function performs RX training for all FFE possible values.
* We get the result for each FFE and eventually the best FFE will
* be used and set to the HW.
*
* Return '1' on succsess.
* Return '0' on failure.
*/
int comphy_cp110_sfi_rx_training(struct chip_serdes_phy_config *ptr_chip_cfg,
u32 lane)
{
u32 mask, data, i, rx_train_result;
u32 max_rx_train = 0, max_rx_train_index = 0;
void __iomem *hpipe_base_addr = ptr_chip_cfg->hpipe3_base_addr;
void __iomem *hpipe_addr = HPIPE_ADDR(hpipe_base_addr, lane);
int ret;
debug_enter();
if (ptr_chip_cfg->comphy_map_data[lane].type != COMPHY_TYPE_SFI) {
pr_err("Comphy %d isn't configured to SFI\n", lane);
return 0;
}
/* Configure SQ threshold and CDR lock */
mask = HPIPE_SQUELCH_THRESH_IN_MASK;
data = 0xc << HPIPE_SQUELCH_THRESH_IN_OFFSET;
reg_set(hpipe_addr + HPIPE_SQUELCH_FFE_SETTING_REG, data, mask);
mask = HPIPE_SQ_DEGLITCH_WIDTH_P_MASK;
data = 0xf << HPIPE_SQ_DEGLITCH_WIDTH_P_OFFSET;
mask |= HPIPE_SQ_DEGLITCH_WIDTH_N_MASK;
data |= 0xf << HPIPE_SQ_DEGLITCH_WIDTH_N_OFFSET;
mask |= HPIPE_SQ_DEGLITCH_EN_MASK;
data |= 0x1 << HPIPE_SQ_DEGLITCH_EN_OFFSET;
reg_set(hpipe_addr + HPIPE_SQ_GLITCH_FILTER_CTRL, data, mask);
mask = HPIPE_CDR_LOCK_DET_EN_MASK;
data = 0x1 << HPIPE_CDR_LOCK_DET_EN_OFFSET;
reg_set(hpipe_addr + HPIPE_LOOPBACK_REG, data, mask);
udelay(100);
/* Determine if we have a cable attached to this comphy, if not,
* we can't perform RX training.
*/
data = readl(hpipe_addr + HPIPE_SQUELCH_FFE_SETTING_REG);
if (data & HPIPE_SQUELCH_DETECTED_MASK) {
pr_err("Squelsh is not detected, can't perform RX training\n");
return 0;
}
data = readl(hpipe_addr + HPIPE_LOOPBACK_REG);
if (!(data & HPIPE_CDR_LOCK_MASK)) {
pr_err("CDR is not locked, can't perform RX training\n");
return 0;
}
/* Do preparations for RX training */
mask = HPIPE_DFE_RES_FORCE_MASK;
data = 0x0 << HPIPE_DFE_RES_FORCE_OFFSET;
reg_set(hpipe_addr + HPIPE_DFE_REG0, data, mask);
mask = HPIPE_G1_SETTINGS_3_G1_FFE_CAP_SEL_MASK;
data = 0xf << HPIPE_G1_SETTINGS_3_G1_FFE_CAP_SEL_OFFSET;
mask |= HPIPE_G1_SETTINGS_3_G1_FFE_SETTING_FORCE_MASK;
data |= 1 << HPIPE_G1_SETTINGS_3_G1_FFE_SETTING_FORCE_OFFSET;
reg_set(hpipe_addr + HPIPE_G1_SETTINGS_3_REG, data, mask);
/* Performs RX training for all possible FFE (Feed Forward
* Equalization, possible values are 0-7).
* We update the best value reached and the FFE which gave this value.
*/
for (i = 0; i < MAX_NUM_OF_FFE; i++) {
rx_train_result = 0;
ret = comphy_cp110_test_single_ffe(ptr_chip_cfg, lane,
i, &rx_train_result);
if (ret && (rx_train_result > max_rx_train)) {
max_rx_train = rx_train_result;
max_rx_train_index = i;
}
}
/* If we were able to determine which FFE gives the best value,
* now we need to set it and run RX training again (only for this
* FFE).
*/
if (max_rx_train) {
ret = comphy_cp110_test_single_ffe(ptr_chip_cfg, lane,
max_rx_train_index,
&rx_train_result);
if (ret == 1)
printf("RX Training passed(FFE = %d, result = 0x%x)\n",
max_rx_train_index, rx_train_result);
} else {
pr_err("RX training failed\n");
ret = 0;
}
debug_exit();
return ret;
}
static int comphy_smc(u32 function_id, void __iomem *comphy_base_addr,
u32 lane, u32 mode)
{
@ -343,6 +154,34 @@ static int comphy_smc(u32 function_id, void __iomem *comphy_base_addr,
return pregs.regs[0] ? 0 : 1;
}
/* This function performs RX training for all FFE possible values.
* We get the result for each FFE and eventually the best FFE will
* be used and set to the HW.
*
* Return '1' on succsess.
* Return '0' on failure.
*/
int comphy_cp110_sfi_rx_training(struct chip_serdes_phy_config *ptr_chip_cfg,
u32 lane)
{
int ret;
debug_enter();
if (ptr_chip_cfg->comphy_map_data[lane].type != COMPHY_TYPE_SFI) {
pr_err("Comphy %d isn't configured to SFI\n", lane);
return 0;
}
/* Mode is not relevant for xfi training */
ret = comphy_smc(MV_SIP_COMPHY_XFI_TRAIN,
ptr_chip_cfg->comphy_base_addr, lane, 0);
debug_exit();
return ret;
}
static int comphy_sata_power_up(u32 lane, void __iomem *hpipe_base,
void __iomem *comphy_base_addr, int cp_index,
u32 type)