lib: add crypt subsystem

Add the basic functionality required to support the standard crypt
format.
The files crypt-sha256.c and crypt-sha512.c originate from libxcrypt and
their formatting is therefor retained.
The integration is done via a crypt_compare() function in crypt.c.

```
libxcrypt $ git describe --long --always --all
tags/v4.4.17-0-g6b110bc
```

Signed-off-by: Steffen Jaeckel <jaeckel-floss@eyet-services.de>
Reviewed-by: Simon Glass <sjg@chromium.org>
Reviewed-by: Heiko Schocher <hs@denx.de>
This commit is contained in:
Steffen Jaeckel 2021-07-08 15:57:33 +02:00 committed by Tom Rini
parent c74675bd90
commit 26dd993657
14 changed files with 881 additions and 0 deletions

13
include/crypt.h Normal file
View file

@ -0,0 +1,13 @@
/* SPDX-License-Identifier: GPL-2.0+ */
/* Copyright (C) 2020 Steffen Jaeckel <jaeckel-floss@eyet-services.de> */
/**
* Compare should with the processed passphrase.
*
* @should The crypt-style string to compare against
* @passphrase The plaintext passphrase
* @equal Pointer to an int where the result is stored
* '0' = unequal
* '1' = equal
*/
void crypt_compare(const char *should, const char *passphrase, int *equal);

View file

@ -297,6 +297,7 @@ config AES
source lib/rsa/Kconfig
source lib/crypto/Kconfig
source lib/crypt/Kconfig
config TPM
bool "Trusted Platform Module (TPM) Support"

View file

@ -65,6 +65,7 @@ obj-$(CONFIG_HASH) += hash-checksum.o
obj-$(CONFIG_SHA1) += sha1.o
obj-$(CONFIG_SHA256) += sha256.o
obj-$(CONFIG_SHA512_ALGO) += sha512.o
obj-$(CONFIG_CRYPT_PW) += crypt/
obj-$(CONFIG_$(SPL_)ZLIB) += zlib/
obj-$(CONFIG_$(SPL_)ZSTD) += zstd/

28
lib/crypt/Kconfig Normal file
View file

@ -0,0 +1,28 @@
menuconfig CRYPT_PW
bool "Add crypt support for password-based unlock"
depends on AUTOBOOT_KEYED && AUTOBOOT_ENCRYPTION
help
Enable support for crypt-style hashed passphrases.
This will then be used as the mechanism of choice to
verify whether the entered password to unlock the
console is correct or not.
if CRYPT_PW
config CRYPT_PW_SHA256
bool "Provide sha256crypt"
select SHA256
select SHA256_ALGO
help
Enables support for the sha256crypt password-hashing algorithm.
The prefix is "$5$".
config CRYPT_PW_SHA512
bool "Provide sha512crypt"
select SHA512
select SHA512_ALGO
help
Enables support for the sha512crypt password-hashing algorithm.
The prefix is "$6$".
endif

7
lib/crypt/Makefile Normal file
View file

@ -0,0 +1,7 @@
# SPDX-License-Identifier: GPL-2.0+
#
# Copyright (c) 2021, Steffen Jaeckel <jaeckel-floss@eyet-services.de>
obj-$(CONFIG_CRYPT_PW) += crypt.o
obj-$(CONFIG_CRYPT_PW_SHA256) += crypt-sha256.o
obj-$(CONFIG_CRYPT_PW_SHA512) += crypt-sha512.o

17
lib/crypt/alg-sha256.h Normal file
View file

@ -0,0 +1,17 @@
/* SPDX-License-Identifier: GPL-2.0+ */
/* Copyright (C) 2020 Steffen Jaeckel <jaeckel-floss@eyet-services.de> */
#ifndef USE_HOSTCC
#include "common.h"
#else
#include <string.h>
#endif
#include "u-boot/sha256.h"
#define INCLUDE_sha256crypt 1
#define SHA256_CTX sha256_context
#define SHA256_Init sha256_starts
#define SHA256_Update(c, i, l) sha256_update(c, (const void *)i, l)
#define SHA256_Final(b, c) sha256_finish(c, b)

17
lib/crypt/alg-sha512.h Normal file
View file

@ -0,0 +1,17 @@
/* SPDX-License-Identifier: GPL-2.0+ */
/* Copyright (C) 2020 Steffen Jaeckel <jaeckel-floss@eyet-services.de> */
#ifndef USE_HOSTCC
#include "common.h"
#else
#include <string.h>
#endif
#include "u-boot/sha512.h"
#define INCLUDE_sha512crypt 1
#define SHA512_CTX sha512_context
#define SHA512_Init sha512_starts
#define SHA512_Update(c, i, l) sha512_update(c, (const void *)i, l)
#define SHA512_Final(b, c) sha512_finish(c, b)

28
lib/crypt/crypt-port.h Normal file
View file

@ -0,0 +1,28 @@
/* SPDX-License-Identifier: GPL-2.0+ */
/* Copyright (C) 2020 Steffen Jaeckel <jaeckel-floss@eyet-services.de> */
#include <linux/types.h>
#include <vsprintf.h>
#define NO_GENSALT
#define CRYPT_OUTPUT_SIZE 384
#define ALG_SPECIFIC_SIZE 8192
#define ARG_UNUSED(x) (x)
#define static_assert(a, b) _Static_assert(a, b)
#define strtoul(cp, endp, base) simple_strtoul(cp, endp, base)
extern const unsigned char ascii64[65];
#define b64t ((const char *)ascii64)
void crypt_sha256crypt_rn(const char *phrase, size_t phr_size,
const char *setting, size_t ARG_UNUSED(set_size),
uint8_t *output, size_t out_size, void *scratch,
size_t scr_size);
void crypt_sha512crypt_rn(const char *phrase, size_t phr_size,
const char *setting, size_t ARG_UNUSED(set_size),
uint8_t *output, size_t out_size, void *scratch,
size_t scr_size);

313
lib/crypt/crypt-sha256.c Normal file
View file

@ -0,0 +1,313 @@
/* One way encryption based on the SHA256-based Unix crypt implementation.
*
* Written by Ulrich Drepper <drepper at redhat.com> in 2007 [1].
* Modified by Zack Weinberg <zackw at panix.com> in 2017, 2018.
* Composed by Björn Esser <besser82 at fedoraproject.org> in 2018.
* Modified by Björn Esser <besser82 at fedoraproject.org> in 2020.
* Modified by Steffen Jaeckel <jaeckel-floss at eyet-services.de> in 2020.
* To the extent possible under law, the named authors have waived all
* copyright and related or neighboring rights to this work.
*
* See https://creativecommons.org/publicdomain/zero/1.0/ for further
* details.
*
* This file is a modified except from [2], lines 648 up to 909.
*
* [1] https://www.akkadia.org/drepper/sha-crypt.html
* [2] https://www.akkadia.org/drepper/SHA-crypt.txt
*/
#include "crypt-port.h"
#include "alg-sha256.h"
#include <errno.h>
#include <stdio.h>
#include <stdlib.h>
#if INCLUDE_sha256crypt
/* Define our magic string to mark salt for SHA256 "encryption"
replacement. */
static const char sha256_salt_prefix[] = "$5$";
/* Prefix for optional rounds specification. */
static const char sha256_rounds_prefix[] = "rounds=";
/* Maximum salt string length. */
#define SALT_LEN_MAX 16
/* Default number of rounds if not explicitly specified. */
#define ROUNDS_DEFAULT 5000
/* Minimum number of rounds. */
#define ROUNDS_MIN 1000
/* Maximum number of rounds. */
#define ROUNDS_MAX 999999999
/* The maximum possible length of a SHA256-hashed password string,
including the terminating NUL character. Prefix (including its NUL)
+ rounds tag ("rounds=$" = "rounds=\0") + strlen(ROUNDS_MAX)
+ salt (up to SALT_LEN_MAX chars) + '$' + hash (43 chars). */
#define LENGTH_OF_NUMBER(n) (sizeof #n - 1)
#define SHA256_HASH_LENGTH \
(sizeof (sha256_salt_prefix) + sizeof (sha256_rounds_prefix) + \
LENGTH_OF_NUMBER (ROUNDS_MAX) + SALT_LEN_MAX + 1 + 43)
static_assert (SHA256_HASH_LENGTH <= CRYPT_OUTPUT_SIZE,
"CRYPT_OUTPUT_SIZE is too small for SHA256");
/* A sha256_buffer holds all of the sensitive intermediate data. */
struct sha256_buffer
{
SHA256_CTX ctx;
uint8_t result[32];
uint8_t p_bytes[32];
uint8_t s_bytes[32];
};
static_assert (sizeof (struct sha256_buffer) <= ALG_SPECIFIC_SIZE,
"ALG_SPECIFIC_SIZE is too small for SHA256");
/* Feed CTX with LEN bytes of a virtual byte sequence consisting of
BLOCK repeated over and over indefinitely. */
static void
SHA256_Update_recycled (SHA256_CTX *ctx,
unsigned char block[32], size_t len)
{
size_t cnt;
for (cnt = len; cnt >= 32; cnt -= 32)
SHA256_Update (ctx, block, 32);
SHA256_Update (ctx, block, cnt);
}
void
crypt_sha256crypt_rn (const char *phrase, size_t phr_size,
const char *setting, size_t ARG_UNUSED (set_size),
uint8_t *output, size_t out_size,
void *scratch, size_t scr_size)
{
/* This shouldn't ever happen, but... */
if (out_size < SHA256_HASH_LENGTH
|| scr_size < sizeof (struct sha256_buffer))
{
errno = ERANGE;
return;
}
struct sha256_buffer *buf = scratch;
SHA256_CTX *ctx = &buf->ctx;
uint8_t *result = buf->result;
uint8_t *p_bytes = buf->p_bytes;
uint8_t *s_bytes = buf->s_bytes;
char *cp = (char *)output;
const char *salt = setting;
size_t salt_size;
size_t cnt;
/* Default number of rounds. */
size_t rounds = ROUNDS_DEFAULT;
bool rounds_custom = false;
/* Find beginning of salt string. The prefix should normally always
be present. Just in case it is not. */
if (strncmp (sha256_salt_prefix, salt, sizeof (sha256_salt_prefix) - 1) == 0)
/* Skip salt prefix. */
salt += sizeof (sha256_salt_prefix) - 1;
if (strncmp (salt, sha256_rounds_prefix, sizeof (sha256_rounds_prefix) - 1)
== 0)
{
const char *num = salt + sizeof (sha256_rounds_prefix) - 1;
/* Do not allow an explicit setting of zero rounds, nor of the
default number of rounds, nor leading zeroes on the rounds. */
if (!(*num >= '1' && *num <= '9'))
{
errno = EINVAL;
return;
}
errno = 0;
char *endp;
rounds = strtoul (num, &endp, 10);
if (endp == num || *endp != '$'
|| rounds < ROUNDS_MIN
|| rounds > ROUNDS_MAX
|| errno)
{
errno = EINVAL;
return;
}
salt = endp + 1;
rounds_custom = true;
}
/* The salt ends at the next '$' or the end of the string.
Ensure ':' does not appear in the salt (it is used as a separator in /etc/passwd).
Also check for '\n', as in /etc/passwd the whole parameters of the user data must
be on a single line. */
salt_size = strcspn (salt, "$:\n");
if (!(salt[salt_size] == '$' || !salt[salt_size]))
{
errno = EINVAL;
return;
}
/* Ensure we do not use more salt than SALT_LEN_MAX. */
if (salt_size > SALT_LEN_MAX)
salt_size = SALT_LEN_MAX;
/* Compute alternate SHA256 sum with input PHRASE, SALT, and PHRASE. The
final result will be added to the first context. */
SHA256_Init (ctx);
/* Add phrase. */
SHA256_Update (ctx, phrase, phr_size);
/* Add salt. */
SHA256_Update (ctx, salt, salt_size);
/* Add phrase again. */
SHA256_Update (ctx, phrase, phr_size);
/* Now get result of this (32 bytes). */
SHA256_Final (result, ctx);
/* Prepare for the real work. */
SHA256_Init (ctx);
/* Add the phrase string. */
SHA256_Update (ctx, phrase, phr_size);
/* The last part is the salt string. This must be at most 8
characters and it ends at the first `$' character (for
compatibility with existing implementations). */
SHA256_Update (ctx, salt, salt_size);
/* Add for any character in the phrase one byte of the alternate sum. */
for (cnt = phr_size; cnt > 32; cnt -= 32)
SHA256_Update (ctx, result, 32);
SHA256_Update (ctx, result, cnt);
/* Take the binary representation of the length of the phrase and for every
1 add the alternate sum, for every 0 the phrase. */
for (cnt = phr_size; cnt > 0; cnt >>= 1)
if ((cnt & 1) != 0)
SHA256_Update (ctx, result, 32);
else
SHA256_Update (ctx, phrase, phr_size);
/* Create intermediate result. */
SHA256_Final (result, ctx);
/* Start computation of P byte sequence. */
SHA256_Init (ctx);
/* For every character in the password add the entire password. */
for (cnt = 0; cnt < phr_size; ++cnt)
SHA256_Update (ctx, phrase, phr_size);
/* Finish the digest. */
SHA256_Final (p_bytes, ctx);
/* Start computation of S byte sequence. */
SHA256_Init (ctx);
/* For every character in the password add the entire password. */
for (cnt = 0; cnt < (size_t) 16 + (size_t) result[0]; ++cnt)
SHA256_Update (ctx, salt, salt_size);
/* Finish the digest. */
SHA256_Final (s_bytes, ctx);
/* Repeatedly run the collected hash value through SHA256 to burn
CPU cycles. */
for (cnt = 0; cnt < rounds; ++cnt)
{
/* New context. */
SHA256_Init (ctx);
/* Add phrase or last result. */
if ((cnt & 1) != 0)
SHA256_Update_recycled (ctx, p_bytes, phr_size);
else
SHA256_Update (ctx, result, 32);
/* Add salt for numbers not divisible by 3. */
if (cnt % 3 != 0)
SHA256_Update_recycled (ctx, s_bytes, salt_size);
/* Add phrase for numbers not divisible by 7. */
if (cnt % 7 != 0)
SHA256_Update_recycled (ctx, p_bytes, phr_size);
/* Add phrase or last result. */
if ((cnt & 1) != 0)
SHA256_Update (ctx, result, 32);
else
SHA256_Update_recycled (ctx, p_bytes, phr_size);
/* Create intermediate result. */
SHA256_Final (result, ctx);
}
/* Now we can construct the result string. It consists of four
parts, one of which is optional. We already know that there
is sufficient space at CP for the longest possible result string. */
memcpy (cp, sha256_salt_prefix, sizeof (sha256_salt_prefix) - 1);
cp += sizeof (sha256_salt_prefix) - 1;
if (rounds_custom)
{
int n = snprintf (cp,
SHA256_HASH_LENGTH - (sizeof (sha256_salt_prefix) - 1),
"%s%zu$", sha256_rounds_prefix, rounds);
cp += n;
}
memcpy (cp, salt, salt_size);
cp += salt_size;
*cp++ = '$';
#define b64_from_24bit(B2, B1, B0, N) \
do { \
unsigned int w = ((((unsigned int)(B2)) << 16) | \
(((unsigned int)(B1)) << 8) | \
((unsigned int)(B0))); \
int n = (N); \
while (n-- > 0) \
{ \
*cp++ = b64t[w & 0x3f]; \
w >>= 6; \
} \
} while (0)
b64_from_24bit (result[0], result[10], result[20], 4);
b64_from_24bit (result[21], result[1], result[11], 4);
b64_from_24bit (result[12], result[22], result[2], 4);
b64_from_24bit (result[3], result[13], result[23], 4);
b64_from_24bit (result[24], result[4], result[14], 4);
b64_from_24bit (result[15], result[25], result[5], 4);
b64_from_24bit (result[6], result[16], result[26], 4);
b64_from_24bit (result[27], result[7], result[17], 4);
b64_from_24bit (result[18], result[28], result[8], 4);
b64_from_24bit (result[9], result[19], result[29], 4);
b64_from_24bit (0, result[31], result[30], 3);
*cp = '\0';
}
#ifndef NO_GENSALT
void
gensalt_sha256crypt_rn (unsigned long count,
const uint8_t *rbytes, size_t nrbytes,
uint8_t *output, size_t output_size)
{
gensalt_sha_rn ('5', SALT_LEN_MAX, ROUNDS_DEFAULT, ROUNDS_MIN, ROUNDS_MAX,
count, rbytes, nrbytes, output, output_size);
}
#endif
#endif

328
lib/crypt/crypt-sha512.c Normal file
View file

@ -0,0 +1,328 @@
/* One way encryption based on the SHA512-based Unix crypt implementation.
*
* Written by Ulrich Drepper <drepper at redhat.com> in 2007 [1].
* Modified by Zack Weinberg <zackw at panix.com> in 2017, 2018.
* Composed by Björn Esser <besser82 at fedoraproject.org> in 2018.
* Modified by Björn Esser <besser82 at fedoraproject.org> in 2020.
* Modified by Steffen Jaeckel <jaeckel-floss at eyet-services.de> in 2020.
* To the extent possible under law, the named authors have waived all
* copyright and related or neighboring rights to this work.
*
* See https://creativecommons.org/publicdomain/zero/1.0/ for further
* details.
*
* This file is a modified except from [2], lines 1403 up to 1676.
*
* [1] https://www.akkadia.org/drepper/sha-crypt.html
* [2] https://www.akkadia.org/drepper/SHA-crypt.txt
*/
#include "crypt-port.h"
#include "alg-sha512.h"
#include <errno.h>
#include <stdio.h>
#include <stdlib.h>
#if INCLUDE_sha512crypt
/* Define our magic string to mark salt for SHA512 "encryption"
replacement. */
static const char sha512_salt_prefix[] = "$6$";
/* Prefix for optional rounds specification. */
static const char sha512_rounds_prefix[] = "rounds=";
/* Maximum salt string length. */
#define SALT_LEN_MAX 16
/* Default number of rounds if not explicitly specified. */
#define ROUNDS_DEFAULT 5000
/* Minimum number of rounds. */
#define ROUNDS_MIN 1000
/* Maximum number of rounds. */
#define ROUNDS_MAX 999999999
/* The maximum possible length of a SHA512-hashed password string,
including the terminating NUL character. Prefix (including its NUL)
+ rounds tag ("rounds=$" = "rounds=\0") + strlen(ROUNDS_MAX)
+ salt (up to SALT_LEN_MAX chars) + '$' + hash (86 chars). */
#define LENGTH_OF_NUMBER(n) (sizeof #n - 1)
#define SHA512_HASH_LENGTH \
(sizeof (sha512_salt_prefix) + sizeof (sha512_rounds_prefix) + \
LENGTH_OF_NUMBER (ROUNDS_MAX) + SALT_LEN_MAX + 1 + 86)
static_assert (SHA512_HASH_LENGTH <= CRYPT_OUTPUT_SIZE,
"CRYPT_OUTPUT_SIZE is too small for SHA512");
/* A sha512_buffer holds all of the sensitive intermediate data. */
struct sha512_buffer
{
SHA512_CTX ctx;
uint8_t result[64];
uint8_t p_bytes[64];
uint8_t s_bytes[64];
};
static_assert (sizeof (struct sha512_buffer) <= ALG_SPECIFIC_SIZE,
"ALG_SPECIFIC_SIZE is too small for SHA512");
/* Subroutine of _xcrypt_crypt_sha512crypt_rn: Feed CTX with LEN bytes of a
virtual byte sequence consisting of BLOCK repeated over and over
indefinitely. */
static void
sha512_process_recycled_bytes (unsigned char block[64], size_t len,
SHA512_CTX *ctx)
{
size_t cnt;
for (cnt = len; cnt >= 64; cnt -= 64)
SHA512_Update (ctx, block, 64);
SHA512_Update (ctx, block, cnt);
}
void
crypt_sha512crypt_rn (const char *phrase, size_t phr_size,
const char *setting, size_t ARG_UNUSED (set_size),
uint8_t *output, size_t out_size,
void *scratch, size_t scr_size)
{
/* This shouldn't ever happen, but... */
if (out_size < SHA512_HASH_LENGTH
|| scr_size < sizeof (struct sha512_buffer))
{
errno = ERANGE;
return;
}
struct sha512_buffer *buf = scratch;
SHA512_CTX *ctx = &buf->ctx;
uint8_t *result = buf->result;
uint8_t *p_bytes = buf->p_bytes;
uint8_t *s_bytes = buf->s_bytes;
char *cp = (char *)output;
const char *salt = setting;
size_t salt_size;
size_t cnt;
/* Default number of rounds. */
size_t rounds = ROUNDS_DEFAULT;
bool rounds_custom = false;
/* Find beginning of salt string. The prefix should normally always
be present. Just in case it is not. */
if (strncmp (sha512_salt_prefix, salt, sizeof (sha512_salt_prefix) - 1) == 0)
/* Skip salt prefix. */
salt += sizeof (sha512_salt_prefix) - 1;
if (strncmp (salt, sha512_rounds_prefix, sizeof (sha512_rounds_prefix) - 1)
== 0)
{
const char *num = salt + sizeof (sha512_rounds_prefix) - 1;
/* Do not allow an explicit setting of zero rounds, nor of the
default number of rounds, nor leading zeroes on the rounds. */
if (!(*num >= '1' && *num <= '9'))
{
errno = EINVAL;
return;
}
errno = 0;
char *endp;
rounds = strtoul (num, &endp, 10);
if (endp == num || *endp != '$'
|| rounds < ROUNDS_MIN
|| rounds > ROUNDS_MAX
|| errno)
{
errno = EINVAL;
return;
}
salt = endp + 1;
rounds_custom = true;
}
/* The salt ends at the next '$' or the end of the string.
Ensure ':' does not appear in the salt (it is used as a separator in /etc/passwd).
Also check for '\n', as in /etc/passwd the whole parameters of the user data must
be on a single line. */
salt_size = strcspn (salt, "$:\n");
if (!(salt[salt_size] == '$' || !salt[salt_size]))
{
errno = EINVAL;
return;
}
/* Ensure we do not use more salt than SALT_LEN_MAX. */
if (salt_size > SALT_LEN_MAX)
salt_size = SALT_LEN_MAX;
/* Compute alternate SHA512 sum with input PHRASE, SALT, and PHRASE. The
final result will be added to the first context. */
SHA512_Init (ctx);
/* Add phrase. */
SHA512_Update (ctx, phrase, phr_size);
/* Add salt. */
SHA512_Update (ctx, salt, salt_size);
/* Add phrase again. */
SHA512_Update (ctx, phrase, phr_size);
/* Now get result of this (64 bytes) and add it to the other
context. */
SHA512_Final (result, ctx);
/* Prepare for the real work. */
SHA512_Init (ctx);
/* Add the phrase string. */
SHA512_Update (ctx, phrase, phr_size);
/* The last part is the salt string. This must be at most 8
characters and it ends at the first `$' character (for
compatibility with existing implementations). */
SHA512_Update (ctx, salt, salt_size);
/* Add for any character in the phrase one byte of the alternate sum. */
for (cnt = phr_size; cnt > 64; cnt -= 64)
SHA512_Update (ctx, result, 64);
SHA512_Update (ctx, result, cnt);
/* Take the binary representation of the length of the phrase and for every
1 add the alternate sum, for every 0 the phrase. */
for (cnt = phr_size; cnt > 0; cnt >>= 1)
if ((cnt & 1) != 0)
SHA512_Update (ctx, result, 64);
else
SHA512_Update (ctx, phrase, phr_size);
/* Create intermediate result. */
SHA512_Final (result, ctx);
/* Start computation of P byte sequence. */
SHA512_Init (ctx);
/* For every character in the password add the entire password. */
for (cnt = 0; cnt < phr_size; ++cnt)
SHA512_Update (ctx, phrase, phr_size);
/* Finish the digest. */
SHA512_Final (p_bytes, ctx);
/* Start computation of S byte sequence. */
SHA512_Init (ctx);
/* For every character in the password add the entire password. */
for (cnt = 0; cnt < (size_t) 16 + (size_t) result[0]; ++cnt)
SHA512_Update (ctx, salt, salt_size);
/* Finish the digest. */
SHA512_Final (s_bytes, ctx);
/* Repeatedly run the collected hash value through SHA512 to burn
CPU cycles. */
for (cnt = 0; cnt < rounds; ++cnt)
{
/* New context. */
SHA512_Init (ctx);
/* Add phrase or last result. */
if ((cnt & 1) != 0)
sha512_process_recycled_bytes (p_bytes, phr_size, ctx);
else
SHA512_Update (ctx, result, 64);
/* Add salt for numbers not divisible by 3. */
if (cnt % 3 != 0)
sha512_process_recycled_bytes (s_bytes, salt_size, ctx);
/* Add phrase for numbers not divisible by 7. */
if (cnt % 7 != 0)
sha512_process_recycled_bytes (p_bytes, phr_size, ctx);
/* Add phrase or last result. */
if ((cnt & 1) != 0)
SHA512_Update (ctx, result, 64);
else
sha512_process_recycled_bytes (p_bytes, phr_size, ctx);
/* Create intermediate result. */
SHA512_Final (result, ctx);
}
/* Now we can construct the result string. It consists of four
parts, one of which is optional. We already know that buflen is
at least sha512_hash_length, therefore none of the string bashing
below can overflow the buffer. */
memcpy (cp, sha512_salt_prefix, sizeof (sha512_salt_prefix) - 1);
cp += sizeof (sha512_salt_prefix) - 1;
if (rounds_custom)
{
int n = snprintf (cp,
SHA512_HASH_LENGTH - (sizeof (sha512_salt_prefix) - 1),
"%s%zu$", sha512_rounds_prefix, rounds);
cp += n;
}
memcpy (cp, salt, salt_size);
cp += salt_size;
*cp++ = '$';
#define b64_from_24bit(B2, B1, B0, N) \
do { \
unsigned int w = ((((unsigned int)(B2)) << 16) | \
(((unsigned int)(B1)) << 8) | \
((unsigned int)(B0))); \
int n = (N); \
while (n-- > 0) \
{ \
*cp++ = b64t[w & 0x3f]; \
w >>= 6; \
} \
} while (0)
b64_from_24bit (result[0], result[21], result[42], 4);
b64_from_24bit (result[22], result[43], result[1], 4);
b64_from_24bit (result[44], result[2], result[23], 4);
b64_from_24bit (result[3], result[24], result[45], 4);
b64_from_24bit (result[25], result[46], result[4], 4);
b64_from_24bit (result[47], result[5], result[26], 4);
b64_from_24bit (result[6], result[27], result[48], 4);
b64_from_24bit (result[28], result[49], result[7], 4);
b64_from_24bit (result[50], result[8], result[29], 4);
b64_from_24bit (result[9], result[30], result[51], 4);
b64_from_24bit (result[31], result[52], result[10], 4);
b64_from_24bit (result[53], result[11], result[32], 4);
b64_from_24bit (result[12], result[33], result[54], 4);
b64_from_24bit (result[34], result[55], result[13], 4);
b64_from_24bit (result[56], result[14], result[35], 4);
b64_from_24bit (result[15], result[36], result[57], 4);
b64_from_24bit (result[37], result[58], result[16], 4);
b64_from_24bit (result[59], result[17], result[38], 4);
b64_from_24bit (result[18], result[39], result[60], 4);
b64_from_24bit (result[40], result[61], result[19], 4);
b64_from_24bit (result[62], result[20], result[41], 4);
b64_from_24bit (0, 0, result[63], 2);
*cp = '\0';
}
#ifndef NO_GENSALT
void
gensalt_sha512crypt_rn (unsigned long count,
const uint8_t *rbytes, size_t nrbytes,
uint8_t *output, size_t output_size)
{
gensalt_sha_rn ('6', SALT_LEN_MAX, ROUNDS_DEFAULT, ROUNDS_MIN, ROUNDS_MAX,
count, rbytes, nrbytes, output, output_size);
}
#endif
#endif

73
lib/crypt/crypt.c Normal file
View file

@ -0,0 +1,73 @@
// SPDX-License-Identifier: GPL-2.0+
/* Copyright (C) 2020 Steffen Jaeckel <jaeckel-floss@eyet-services.de> */
#include <common.h>
#include <crypt.h>
#include "crypt-port.h"
typedef void (*crypt_fn)(const char *, size_t, const char *, size_t, uint8_t *,
size_t, void *, size_t);
const unsigned char ascii64[65] =
"./0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz";
static void equals_constant_time(const void *a_, const void *b_, size_t len,
int *equal)
{
u8 ret = 0;
const u8 *a = a_, *b = b_;
int i;
for (i = 0; i < len; i++)
ret |= a[i] ^ b[i];
ret |= ret >> 4;
ret |= ret >> 2;
ret |= ret >> 1;
ret &= 1;
*equal = ret ^ 1;
}
void crypt_compare(const char *should, const char *passphrase, int *equal)
{
u8 output[CRYPT_OUTPUT_SIZE], scratch[ALG_SPECIFIC_SIZE];
size_t n;
struct {
const char *prefix;
crypt_fn crypt;
} crypt_algos[] = {
#if defined(CONFIG_CRYPT_PW_SHA256)
{ "$5$", crypt_sha256crypt_rn },
#endif
#if defined(CONFIG_CRYPT_PW_SHA512)
{ "$6$", crypt_sha512crypt_rn },
#endif
{ NULL, NULL }
};
*equal = 0;
for (n = 0; n < ARRAY_SIZE(crypt_algos); ++n) {
if (!crypt_algos[n].prefix)
continue;
if (strncmp(should, crypt_algos[n].prefix, 3) == 0)
break;
}
if (n >= ARRAY_SIZE(crypt_algos))
return;
crypt_algos[n].crypt(passphrase, strlen(passphrase), should, 0, output,
sizeof(output), scratch, sizeof(scratch));
/* early return on error, nothing really happened inside the crypt() function */
if (errno == ERANGE || errno == EINVAL)
return;
equals_constant_time(should, output, strlen((const char *)output),
equal);
memset(scratch, 0, sizeof(scratch));
memset(output, 0, sizeof(output));
}

View file

@ -38,6 +38,16 @@ config UT_LIB_ASN1
Enables a test which exercises asn1 compiler and decoder function
via various parsers.
config UT_LIB_CRYPT
bool "Unit test for crypt-style password hashing"
depends on !SPL && AUTOBOOT_KEYED && AUTOBOOT_ENCRYPTION
default y
select CRYPT_PW
select CRYPT_PW_SHA256
select CRYPT_PW_SHA512
help
Enables a test for the crypt-style password hash functions.
config UT_LIB_RSA
bool "Unit test for rsa_verify() function"
depends on RSA

View file

@ -17,3 +17,4 @@ obj-$(CONFIG_UT_LIB_ASN1) += asn1.o
obj-$(CONFIG_UT_LIB_RSA) += rsa.o
obj-$(CONFIG_AES) += test_aes.o
obj-$(CONFIG_GETOPT) += getopt.o
obj-$(CONFIG_UT_LIB_CRYPT) += test_crypt.o

44
test/lib/test_crypt.c Normal file
View file

@ -0,0 +1,44 @@
// SPDX-License-Identifier: GPL-2.0+
/*
* Copyright (c) 2021 Steffen Jaeckel
*
* Unit test for crypt-style password hashing
*/
#include <common.h>
#include <test/lib.h>
#include <test/test.h>
#include <test/ut.h>
#include <crypt.h>
/**
* lib_crypt() - unit test for crypt-style password hashing
*
* @uts: unit test state
* Return: 0 = success, 1 = failure
*/
static int lib_crypt(struct unit_test_state *uts)
{
int equals = 0;
if (IS_ENABLED(CONFIG_CRYPT_PW_SHA256)) {
crypt_compare(
"$5$rounds=640000$TM4lL4zXDG7F4aRX$JM7a9wmvodnA0WasjTztj6mxg.KVuk6doQ/eBhdcapB",
"password", &equals);
ut_assertf(equals == 1,
"crypt-sha256 password hash didn't match\n");
}
equals = 0;
if (IS_ENABLED(CONFIG_CRYPT_PW_SHA512)) {
crypt_compare(
"$6$rounds=640000$fCTP1F0N5JLq2eND$z5EzK5KZJA9JnOaj5d1Gg/2v6VqFOQJ3bVekWuCPauabutBt/8qzV1exJnytUyhbq3H0bSBXtodwNbtGEi/Tm/",
"password", &equals);
ut_assertf(equals == 1,
"crypt-sha512 password hash didn't match\n");
}
return CMD_RET_SUCCESS;
}
LIB_TEST(lib_crypt, 0);