Initial revision

This commit is contained in:
wdenk 2002-09-17 21:37:55 +00:00
parent e69b4b8f1c
commit 1df49e27bc
8 changed files with 3963 additions and 0 deletions

239
cpu/74xx_7xx/cpu.c Normal file
View file

@ -0,0 +1,239 @@
/*
* (C) Copyright 2001
* Josh Huber <huber@mclx.com>, Mission Critical Linux, Inc.
*
* See file CREDITS for list of people who contributed to this
* project.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of
* the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston,
* MA 02111-1307 USA
*/
/*
* cpu.c
*
* CPU specific code
*
* written or collected and sometimes rewritten by
* Magnus Damm <damm@bitsmart.com>
*
* minor modifications by
* Wolfgang Denk <wd@denx.de>
*
* more modifications by
* Josh Huber <huber@mclx.com>
* added support for the 74xx series of cpus
* added support for the 7xx series of cpus
* made the code a little less hard-coded, and more auto-detectish
*/
#include <common.h>
#include <command.h>
#include <74xx_7xx.h>
#include <asm/cache.h>
cpu_t
get_cpu_type(void)
{
uint pvr = get_pvr();
cpu_t type;
type = CPU_UNKNOWN;
switch (PVR_VER(pvr)) {
case 0x000c:
type = CPU_7400;
break;
case 0x0008:
type = CPU_750;
if (((pvr >> 8) & 0xff) == 0x01) {
type = CPU_750CX; /* old CX (80100 and 8010x?)*/
} else if (((pvr >> 8) & 0xff) == 0x22) {
type = CPU_750CX; /* CX (82201,82202) and CXe (82214) */
} else if (((pvr >> 8) & 0xff) == 0x33) {
type = CPU_750CX; /* CXe (83311) */
} else if (((pvr >> 12) & 0xF) == 0x3) {
type = CPU_755;
}
break;
case 0x800C:
type = CPU_7410;
break;
case 0x8000:
type = CPU_7450;
break;
default:
break;
}
return type;
}
/* ------------------------------------------------------------------------- */
#if !defined(CONFIG_BAB7xx)
int checkcpu (void)
{
DECLARE_GLOBAL_DATA_PTR;
uint type = get_cpu_type();
uint pvr = get_pvr();
ulong clock = gd->cpu_clk;
char buf[32];
char *str;
puts ("CPU: ");
switch (type) {
case CPU_750CX:
printf ("750CX%s v%d.%d", (pvr&0xf0)?"e":"",
(pvr>>8) & 0xf,
pvr & 0xf);
goto PR_CLK;
case CPU_750:
str = "750";
break;
case CPU_755:
str = "755";
break;
case CPU_7400:
str = "MPC7400";
break;
case CPU_7410:
str = "MPC7410";
break;
case CPU_7450:
str = "MPC7450";
break;
default:
printf("Unknown CPU -- PVR: 0x%08x\n", pvr);
return -1;
}
printf ("%s v%d.%d", str, (pvr >> 8) & 0xFF, pvr & 0xFF);
PR_CLK:
printf (" @ %s MHz\n", strmhz(buf, clock));
return (0);
}
#endif
/* these two functions are unimplemented currently [josh] */
/* ------------------------------------------------------------------------- */
/* L1 i-cache */
int
checkicache(void)
{
return 0; /* XXX */
}
/* ------------------------------------------------------------------------- */
/* L1 d-cache */
int
checkdcache(void)
{
return 0; /* XXX */
}
/* ------------------------------------------------------------------------- */
static inline void
soft_restart(unsigned long addr)
{
/* SRR0 has system reset vector, SRR1 has default MSR value */
/* rfi restores MSR from SRR1 and sets the PC to the SRR0 value */
__asm__ __volatile__ ("mtspr 26, %0" :: "r" (addr));
__asm__ __volatile__ ("li 4, (1 << 6)" ::: "r4");
__asm__ __volatile__ ("mtspr 27, 4");
__asm__ __volatile__ ("rfi");
while(1); /* not reached */
}
#if !defined(CONFIG_PCIPPC2) && \
!defined(CONFIG_BAB7xx) && \
!defined(CONFIG_ELPPC)
/* no generic way to do board reset. simply call soft_reset. */
void
do_reset (cmd_tbl_t *cmdtp, bd_t *bd, int flag, int argc, char *argv[])
{
ulong addr;
/* flush and disable I/D cache */
__asm__ __volatile__ ("mfspr 3, 1008" ::: "r3");
__asm__ __volatile__ ("ori 5, 5, 0xcc00" ::: "r5");
__asm__ __volatile__ ("ori 4, 3, 0xc00" ::: "r4");
__asm__ __volatile__ ("andc 5, 3, 5" ::: "r5");
__asm__ __volatile__ ("sync");
__asm__ __volatile__ ("mtspr 1008, 4");
__asm__ __volatile__ ("isync");
__asm__ __volatile__ ("sync");
__asm__ __volatile__ ("mtspr 1008, 5");
__asm__ __volatile__ ("isync");
__asm__ __volatile__ ("sync");
#ifdef CFG_RESET_ADDRESS
addr = CFG_RESET_ADDRESS;
#else
/*
* note: when CFG_MONITOR_BASE points to a RAM address,
* CFG_MONITOR_BASE - sizeof (ulong) is usually a valid
* address. Better pick an address known to be invalid on your
* system and assign it to CFG_RESET_ADDRESS.
*/
addr = CFG_MONITOR_BASE - sizeof (ulong);
#endif
soft_restart(addr);
while(1); /* not reached */
}
#endif
/* ------------------------------------------------------------------------- */
/*
* For the 7400 the TB clock runs at 1/4 the cpu bus speed.
*/
unsigned long
get_tbclk (void)
{
return CFG_BUS_HZ / 4;
}
/* ------------------------------------------------------------------------- */
#if defined(CONFIG_WATCHDOG)
#if !defined(CONFIG_PCIPPC2) && !defined(CONFIG_BAB7xx)
void
watchdog_reset(void)
{
}
#endif /* !CONFIG_PCIPPC2 && !CONFIG_BAB7xx */
#endif /* CONFIG_WATCHDOG */
/* ------------------------------------------------------------------------- */

820
drivers/eepro100.c Normal file
View file

@ -0,0 +1,820 @@
/*
* (C) Copyright 2002
* Wolfgang Denk, DENX Software Engineering, wd@denx.de.
*
* See file CREDITS for list of people who contributed to this
* project.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of
* the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston,
* MA 02111-1307 USA
*/
#include <common.h>
#include <malloc.h>
#include <net.h>
#include <asm/io.h>
#include <pci.h>
#undef DEBUG
#if (CONFIG_COMMANDS & CFG_CMD_NET) && defined(CONFIG_NET_MULTI) && \
defined(CONFIG_EEPRO100)
/* Ethernet chip registers.
*/
#define SCBStatus 0 /* Rx/Command Unit Status *Word* */
#define SCBIntAckByte 1 /* Rx/Command Unit STAT/ACK byte */
#define SCBCmd 2 /* Rx/Command Unit Command *Word* */
#define SCBIntrCtlByte 3 /* Rx/Command Unit Intr.Control Byte */
#define SCBPointer 4 /* General purpose pointer. */
#define SCBPort 8 /* Misc. commands and operands. */
#define SCBflash 12 /* Flash memory control. */
#define SCBeeprom 14 /* EEPROM memory control. */
#define SCBCtrlMDI 16 /* MDI interface control. */
#define SCBEarlyRx 20 /* Early receive byte count. */
#define SCBGenControl 28 /* 82559 General Control Register */
#define SCBGenStatus 29 /* 82559 General Status register */
/* 82559 SCB status word defnitions
*/
#define SCB_STATUS_CX 0x8000 /* CU finished command (transmit) */
#define SCB_STATUS_FR 0x4000 /* frame received */
#define SCB_STATUS_CNA 0x2000 /* CU left active state */
#define SCB_STATUS_RNR 0x1000 /* receiver left ready state */
#define SCB_STATUS_MDI 0x0800 /* MDI read/write cycle done */
#define SCB_STATUS_SWI 0x0400 /* software generated interrupt */
#define SCB_STATUS_FCP 0x0100 /* flow control pause interrupt */
#define SCB_INTACK_MASK 0xFD00 /* all the above */
#define SCB_INTACK_TX (SCB_STATUS_CX | SCB_STATUS_CNA)
#define SCB_INTACK_RX (SCB_STATUS_FR | SCB_STATUS_RNR)
/* System control block commands
*/
/* CU Commands */
#define CU_NOP 0x0000
#define CU_START 0x0010
#define CU_RESUME 0x0020
#define CU_STATSADDR 0x0040 /* Load Dump Statistics ctrs addr */
#define CU_SHOWSTATS 0x0050 /* Dump statistics counters. */
#define CU_ADDR_LOAD 0x0060 /* Base address to add to CU commands */
#define CU_DUMPSTATS 0x0070 /* Dump then reset stats counters. */
/* RUC Commands */
#define RUC_NOP 0x0000
#define RUC_START 0x0001
#define RUC_RESUME 0x0002
#define RUC_ABORT 0x0004
#define RUC_ADDR_LOAD 0x0006 /* (seems not to clear on acceptance) */
#define RUC_RESUMENR 0x0007
#define CU_CMD_MASK 0x00f0
#define RU_CMD_MASK 0x0007
#define SCB_M 0x0100 /* 0 = enable interrupt, 1 = disable */
#define SCB_SWI 0x0200 /* 1 - cause device to interrupt */
#define CU_STATUS_MASK 0x00C0
#define RU_STATUS_MASK 0x003C
#define RU_STATUS_IDLE (0<<2)
#define RU_STATUS_SUS (1<<2)
#define RU_STATUS_NORES (2<<2)
#define RU_STATUS_READY (4<<2)
#define RU_STATUS_NO_RBDS_SUS ((1<<2)|(8<<2))
#define RU_STATUS_NO_RBDS_NORES ((2<<2)|(8<<2))
#define RU_STATUS_NO_RBDS_READY ((4<<2)|(8<<2))
/* 82559 Port interface commands.
*/
#define I82559_RESET 0x00000000 /* Software reset */
#define I82559_SELFTEST 0x00000001 /* 82559 Selftest command */
#define I82559_SELECTIVE_RESET 0x00000002
#define I82559_DUMP 0x00000003
#define I82559_DUMP_WAKEUP 0x00000007
/* 82559 Eeprom interface.
*/
#define EE_SHIFT_CLK 0x01 /* EEPROM shift clock. */
#define EE_CS 0x02 /* EEPROM chip select. */
#define EE_DATA_WRITE 0x04 /* EEPROM chip data in. */
#define EE_WRITE_0 0x01
#define EE_WRITE_1 0x05
#define EE_DATA_READ 0x08 /* EEPROM chip data out. */
#define EE_ENB (0x4800 | EE_CS)
#define EE_CMD_BITS 3
#define EE_DATA_BITS 16
/* The EEPROM commands include the alway-set leading bit.
*/
#define EE_EWENB_CMD (4 << addr_len)
#define EE_WRITE_CMD (5 << addr_len)
#define EE_READ_CMD (6 << addr_len)
#define EE_ERASE_CMD (7 << addr_len)
/* Receive frame descriptors.
*/
struct RxFD {
volatile u16 status;
volatile u16 control;
volatile u32 link; /* struct RxFD * */
volatile u32 rx_buf_addr; /* void * */
volatile u32 count;
volatile u8 data[PKTSIZE_ALIGN];
};
#define RFD_STATUS_C 0x8000 /* completion of received frame */
#define RFD_STATUS_OK 0x2000 /* frame received with no errors */
#define RFD_CONTROL_EL 0x8000 /* 1=last RFD in RFA */
#define RFD_CONTROL_S 0x4000 /* 1=suspend RU after receiving frame */
#define RFD_CONTROL_H 0x0010 /* 1=RFD is a header RFD */
#define RFD_CONTROL_SF 0x0008 /* 0=simplified, 1=flexible mode */
#define RFD_COUNT_MASK 0x3fff
#define RFD_COUNT_F 0x4000
#define RFD_COUNT_EOF 0x8000
#define RFD_RX_CRC 0x0800 /* crc error */
#define RFD_RX_ALIGNMENT 0x0400 /* alignment error */
#define RFD_RX_RESOURCE 0x0200 /* out of space, no resources */
#define RFD_RX_DMA_OVER 0x0100 /* DMA overrun */
#define RFD_RX_SHORT 0x0080 /* short frame error */
#define RFD_RX_LENGTH 0x0020
#define RFD_RX_ERROR 0x0010 /* receive error */
#define RFD_RX_NO_ADR_MATCH 0x0004 /* no address match */
#define RFD_RX_IA_MATCH 0x0002 /* individual address does not match */
#define RFD_RX_TCO 0x0001 /* TCO indication */
/* Transmit frame descriptors
*/
struct TxFD { /* Transmit frame descriptor set. */
volatile u16 status;
volatile u16 command;
volatile u32 link; /* void * */
volatile u32 tx_desc_addr; /* Always points to the tx_buf_addr element. */
volatile s32 count;
volatile u32 tx_buf_addr0; /* void *, frame to be transmitted. */
volatile s32 tx_buf_size0; /* Length of Tx frame. */
volatile u32 tx_buf_addr1; /* void *, frame to be transmitted. */
volatile s32 tx_buf_size1; /* Length of Tx frame. */
};
#define TxCB_CMD_TRANSMIT 0x0004 /* transmit command */
#define TxCB_CMD_SF 0x0008 /* 0=simplified, 1=flexible mode */
#define TxCB_CMD_NC 0x0010 /* 0=CRC insert by controller */
#define TxCB_CMD_I 0x2000 /* generate interrupt on completion */
#define TxCB_CMD_S 0x4000 /* suspend on completion */
#define TxCB_CMD_EL 0x8000 /* last command block in CBL */
#define TxCB_COUNT_MASK 0x3fff
#define TxCB_COUNT_EOF 0x8000
/* The Speedo3 Rx and Tx frame/buffer descriptors.
*/
struct descriptor { /* A generic descriptor. */
volatile u16 status;
volatile u16 command;
volatile u32 link; /* struct descriptor * */
unsigned char params[0];
};
#define CFG_CMD_EL 0x8000
#define CFG_CMD_SUSPEND 0x4000
#define CFG_CMD_INT 0x2000
#define CFG_CMD_IAS 0x0001 /* individual address setup */
#define CFG_CMD_CONFIGURE 0x0002 /* configure */
#define CFG_STATUS_C 0x8000
#define CFG_STATUS_OK 0x2000
/* Misc.
*/
#define NUM_RX_DESC PKTBUFSRX
#define NUM_TX_DESC 1 /* Number of TX descriptors */
#define TOUT_LOOP 1000000
#define ETH_ALEN 6
static struct RxFD rx_ring[NUM_RX_DESC]; /* RX descriptor ring */
static struct TxFD tx_ring[NUM_TX_DESC]; /* TX descriptor ring */
static int rx_next; /* RX descriptor ring pointer */
static int tx_next; /* TX descriptor ring pointer */
static int tx_threshold;
/*
* The parameters for a CmdConfigure operation.
* There are so many options that it would be difficult to document
* each bit. We mostly use the default or recommended settings.
*/
static const char i82557_config_cmd[] = {
22, 0x08, 0, 0, 0, 0, 0x32, 0x03, 1, /* 1=Use MII 0=Use AUI */
0, 0x2E, 0, 0x60, 0,
0xf2, 0x48, 0, 0x40, 0xf2, 0x80, /* 0x40=Force full-duplex */
0x3f, 0x05,
};
static const char i82558_config_cmd[] = {
22, 0x08, 0, 1, 0, 0, 0x22, 0x03, 1, /* 1=Use MII 0=Use AUI */
0, 0x2E, 0, 0x60, 0x08, 0x88,
0x68, 0, 0x40, 0xf2, 0x84, /* Disable FC */
0x31, 0x05,
};
static void init_rx_ring (struct eth_device *dev);
static void purge_tx_ring (struct eth_device *dev);
static void read_hw_addr (struct eth_device *dev, bd_t * bis);
static int eepro100_init (struct eth_device *dev, bd_t * bis);
static int eepro100_send (struct eth_device *dev, volatile void *packet,
int length);
static int eepro100_recv (struct eth_device *dev);
static void eepro100_halt (struct eth_device *dev);
#define bus_to_phys(a) pci_mem_to_phys((pci_dev_t)dev->priv, a)
#define phys_to_bus(a) pci_phys_to_mem((pci_dev_t)dev->priv, a)
static inline int INW (struct eth_device *dev, u_long addr)
{
return le16_to_cpu (*(volatile u16 *) (addr + dev->iobase));
}
static inline void OUTW (struct eth_device *dev, int command, u_long addr)
{
*(volatile u16 *) ((addr + dev->iobase)) = cpu_to_le16 (command);
}
static inline void OUTL (struct eth_device *dev, int command, u_long addr)
{
*(volatile u32 *) ((addr + dev->iobase)) = cpu_to_le32 (command);
}
/* Wait for the chip get the command.
*/
static int wait_for_eepro100 (struct eth_device *dev)
{
int i;
for (i = 0; INW (dev, SCBCmd) & (CU_CMD_MASK | RU_CMD_MASK); i++) {
if (i >= TOUT_LOOP) {
return 0;
}
}
return 1;
}
static struct pci_device_id supported[] = {
{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82557},
{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82559},
{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82559ER},
{}
};
int eepro100_initialize (bd_t * bis)
{
pci_dev_t devno;
int card_number = 0;
struct eth_device *dev;
u32 iobase, status;
int idx = 0;
while (1) {
/* Find PCI device
*/
if ((devno = pci_find_devices (supported, idx++)) < 0) {
break;
}
pci_read_config_dword (devno, PCI_BASE_ADDRESS_0, &iobase);
iobase &= ~0xf;
#ifdef DEBUG
printf ("eepro100: Intel i82559 PCI EtherExpressPro @0x%x\n",
iobase);
#endif
pci_write_config_dword (devno,
PCI_COMMAND,
PCI_COMMAND_MEMORY | PCI_COMMAND_MASTER);
/* Check if I/O accesses and Bus Mastering are enabled.
*/
pci_read_config_dword (devno, PCI_COMMAND, &status);
if (!(status & PCI_COMMAND_MEMORY)) {
printf ("Error: Can not enable MEM access.\n");
continue;
}
if (!(status & PCI_COMMAND_MASTER)) {
printf ("Error: Can not enable Bus Mastering.\n");
continue;
}
dev = (struct eth_device *) malloc (sizeof *dev);
sprintf (dev->name, "i82559#%d", card_number);
dev->iobase = bus_to_phys (iobase);
dev->priv = (void *) devno;
dev->init = eepro100_init;
dev->halt = eepro100_halt;
dev->send = eepro100_send;
dev->recv = eepro100_recv;
eth_register (dev);
card_number++;
/* Set the latency timer for value.
*/
pci_write_config_byte (devno, PCI_LATENCY_TIMER, 0x20);
udelay (10 * 1000);
read_hw_addr (dev, bis);
}
return card_number;
}
static int eepro100_init (struct eth_device *dev, bd_t * bis)
{
int i, status = 0;
int tx_cur;
struct descriptor *ias_cmd, *cfg_cmd;
/* Reset the ethernet controller
*/
OUTL (dev, I82559_SELECTIVE_RESET, SCBPort);
udelay (20);
OUTL (dev, I82559_RESET, SCBPort);
udelay (20);
if (!wait_for_eepro100 (dev)) {
printf ("Error: Can not reset ethernet controller.\n");
goto Done;
}
OUTL (dev, 0, SCBPointer);
OUTW (dev, SCB_M | RUC_ADDR_LOAD, SCBCmd);
if (!wait_for_eepro100 (dev)) {
printf ("Error: Can not reset ethernet controller.\n");
goto Done;
}
OUTL (dev, 0, SCBPointer);
OUTW (dev, SCB_M | CU_ADDR_LOAD, SCBCmd);
/* Initialize Rx and Tx rings.
*/
init_rx_ring (dev);
purge_tx_ring (dev);
/* Tell the adapter where the RX ring is located.
*/
if (!wait_for_eepro100 (dev)) {
printf ("Error: Can not reset ethernet controller.\n");
goto Done;
}
OUTL (dev, phys_to_bus ((u32) & rx_ring[rx_next]), SCBPointer);
OUTW (dev, SCB_M | RUC_START, SCBCmd);
/* Send the Configure frame */
tx_cur = tx_next;
tx_next = ((tx_next + 1) % NUM_TX_DESC);
cfg_cmd = (struct descriptor *) &tx_ring[tx_cur];
cfg_cmd->command = cpu_to_le16 ((CFG_CMD_SUSPEND | CFG_CMD_CONFIGURE));
cfg_cmd->status = 0;
cfg_cmd->link = cpu_to_le32 (phys_to_bus ((u32) & tx_ring[tx_next]));
memcpy (cfg_cmd->params, i82558_config_cmd,
sizeof (i82558_config_cmd));
if (!wait_for_eepro100 (dev)) {
printf ("Error---CFG_CMD_CONFIGURE: Can not reset ethernet controller.\n");
goto Done;
}
OUTL (dev, phys_to_bus ((u32) & tx_ring[tx_cur]), SCBPointer);
OUTW (dev, SCB_M | CU_START, SCBCmd);
for (i = 0;
!(le16_to_cpu (tx_ring[tx_cur].status) & CFG_STATUS_C);
i++) {
if (i >= TOUT_LOOP) {
printf ("%s: Tx error buffer not ready\n", dev->name);
goto Done;
}
}
if (!(le16_to_cpu (tx_ring[tx_cur].status) & CFG_STATUS_OK)) {
printf ("TX error status = 0x%08X\n",
le16_to_cpu (tx_ring[tx_cur].status));
goto Done;
}
/* Send the Individual Address Setup frame
*/
tx_cur = tx_next;
tx_next = ((tx_next + 1) % NUM_TX_DESC);
ias_cmd = (struct descriptor *) &tx_ring[tx_cur];
ias_cmd->command = cpu_to_le16 ((CFG_CMD_SUSPEND | CFG_CMD_IAS));
ias_cmd->status = 0;
ias_cmd->link = cpu_to_le32 (phys_to_bus ((u32) & tx_ring[tx_next]));
memcpy (ias_cmd->params, dev->enetaddr, 6);
/* Tell the adapter where the TX ring is located.
*/
if (!wait_for_eepro100 (dev)) {
printf ("Error: Can not reset ethernet controller.\n");
goto Done;
}
OUTL (dev, phys_to_bus ((u32) & tx_ring[tx_cur]), SCBPointer);
OUTW (dev, SCB_M | CU_START, SCBCmd);
for (i = 0; !(le16_to_cpu (tx_ring[tx_cur].status) & CFG_STATUS_C);
i++) {
if (i >= TOUT_LOOP) {
printf ("%s: Tx error buffer not ready\n",
dev->name);
goto Done;
}
}
if (!(le16_to_cpu (tx_ring[tx_cur].status) & CFG_STATUS_OK)) {
printf ("TX error status = 0x%08X\n",
le16_to_cpu (tx_ring[tx_cur].status));
goto Done;
}
status = 1;
Done:
return status;
}
static int eepro100_send (struct eth_device *dev, volatile void *packet, int length)
{
int i, status = -1;
int tx_cur;
if (length <= 0) {
printf ("%s: bad packet size: %d\n", dev->name, length);
goto Done;
}
tx_cur = tx_next;
tx_next = (tx_next + 1) % NUM_TX_DESC;
tx_ring[tx_cur].command = cpu_to_le16 ( TxCB_CMD_TRANSMIT |
TxCB_CMD_SF |
TxCB_CMD_S |
TxCB_CMD_EL );
tx_ring[tx_cur].status = 0;
tx_ring[tx_cur].count = cpu_to_le32 (tx_threshold);
tx_ring[tx_cur].link =
cpu_to_le32 (phys_to_bus ((u32) & tx_ring[tx_next]));
tx_ring[tx_cur].tx_desc_addr =
cpu_to_le32 (phys_to_bus ((u32) & tx_ring[tx_cur].tx_buf_addr0));
tx_ring[tx_cur].tx_buf_addr0 =
cpu_to_le32 (phys_to_bus ((u_long) packet));
tx_ring[tx_cur].tx_buf_size0 = cpu_to_le32 (length);
if (!wait_for_eepro100 (dev)) {
printf ("%s: Tx error ethernet controller not ready.\n",
dev->name);
goto Done;
}
/* Send the packet.
*/
OUTL (dev, phys_to_bus ((u32) & tx_ring[tx_cur]), SCBPointer);
OUTW (dev, SCB_M | CU_START, SCBCmd);
for (i = 0; !(le16_to_cpu (tx_ring[tx_cur].status) & CFG_STATUS_C);
i++) {
if (i >= TOUT_LOOP) {
printf ("%s: Tx error buffer not ready\n", dev->name);
goto Done;
}
}
if (!(le16_to_cpu (tx_ring[tx_cur].status) & CFG_STATUS_OK)) {
printf ("TX error status = 0x%08X\n",
le16_to_cpu (tx_ring[tx_cur].status));
goto Done;
}
status = length;
Done:
return status;
}
static int eepro100_recv (struct eth_device *dev)
{
u16 status, stat;
int rx_prev, length = 0;
stat = INW (dev, SCBStatus);
OUTW (dev, stat & SCB_STATUS_RNR, SCBStatus);
for (;;) {
status = le16_to_cpu (rx_ring[rx_next].status);
if (!(status & RFD_STATUS_C)) {
break;
}
/* Valid frame status.
*/
if ((status & RFD_STATUS_OK)) {
/* A valid frame received.
*/
length = le32_to_cpu (rx_ring[rx_next].count) & 0x3fff;
/* Pass the packet up to the protocol
* layers.
*/
NetReceive (rx_ring[rx_next].data, length);
} else {
/* There was an error.
*/
printf ("RX error status = 0x%08X\n", status);
}
rx_ring[rx_next].control = cpu_to_le16 (RFD_CONTROL_S);
rx_ring[rx_next].status = 0;
rx_ring[rx_next].count = cpu_to_le32 (PKTSIZE_ALIGN << 16);
rx_prev = (rx_next + NUM_RX_DESC - 1) % NUM_RX_DESC;
rx_ring[rx_prev].control = 0;
/* Update entry information.
*/
rx_next = (rx_next + 1) % NUM_RX_DESC;
}
if (stat & SCB_STATUS_RNR) {
printf ("%s: Receiver is not ready, restart it !\n", dev->name);
/* Reinitialize Rx ring.
*/
init_rx_ring (dev);
if (!wait_for_eepro100 (dev)) {
printf ("Error: Can not restart ethernet controller.\n");
goto Done;
}
OUTL (dev, phys_to_bus ((u32) & rx_ring[rx_next]), SCBPointer);
OUTW (dev, SCB_M | RUC_START, SCBCmd);
}
Done:
return length;
}
static void eepro100_halt (struct eth_device *dev)
{
/* Reset the ethernet controller
*/
OUTL (dev, I82559_SELECTIVE_RESET, SCBPort);
udelay (20);
OUTL (dev, I82559_RESET, SCBPort);
udelay (20);
if (!wait_for_eepro100 (dev)) {
printf ("Error: Can not reset ethernet controller.\n");
goto Done;
}
OUTL (dev, 0, SCBPointer);
OUTW (dev, SCB_M | RUC_ADDR_LOAD, SCBCmd);
if (!wait_for_eepro100 (dev)) {
printf ("Error: Can not reset ethernet controller.\n");
goto Done;
}
OUTL (dev, 0, SCBPointer);
OUTW (dev, SCB_M | CU_ADDR_LOAD, SCBCmd);
Done:
return;
}
/* SROM Read.
*/
static int read_eeprom (struct eth_device *dev, int location, int addr_len)
{
unsigned short retval = 0;
int read_cmd = location | EE_READ_CMD;
int i;
OUTW (dev, EE_ENB & ~EE_CS, SCBeeprom);
OUTW (dev, EE_ENB, SCBeeprom);
/* Shift the read command bits out. */
for (i = 12; i >= 0; i--) {
short dataval = (read_cmd & (1 << i)) ? EE_DATA_WRITE : 0;
OUTW (dev, EE_ENB | dataval, SCBeeprom);
udelay (1);
OUTW (dev, EE_ENB | dataval | EE_SHIFT_CLK, SCBeeprom);
udelay (1);
}
OUTW (dev, EE_ENB, SCBeeprom);
for (i = 15; i >= 0; i--) {
OUTW (dev, EE_ENB | EE_SHIFT_CLK, SCBeeprom);
udelay (1);
retval = (retval << 1) |
((INW (dev, SCBeeprom) & EE_DATA_READ) ? 1 : 0);
OUTW (dev, EE_ENB, SCBeeprom);
udelay (1);
}
/* Terminate the EEPROM access. */
OUTW (dev, EE_ENB & ~EE_CS, SCBeeprom);
return retval;
}
#ifdef CONFIG_EEPRO100_SROM_WRITE
int eepro100_write_eeprom (struct eth_device* dev, int location, int addr_len, unsigned short data)
{
unsigned short dataval;
int enable_cmd = 0x3f | EE_EWENB_CMD;
int write_cmd = location | EE_WRITE_CMD;
int i;
unsigned long datalong, tmplong;
OUTW(dev, EE_ENB & ~EE_CS, SCBeeprom);
udelay(1);
OUTW(dev, EE_ENB, SCBeeprom);
/* Shift the enable command bits out. */
for (i = (addr_len+EE_CMD_BITS-1); i >= 0; i--)
{
dataval = (enable_cmd & (1 << i)) ? EE_DATA_WRITE : 0;
OUTW(dev, EE_ENB | dataval, SCBeeprom);
udelay(1);
OUTW(dev, EE_ENB | dataval | EE_SHIFT_CLK, SCBeeprom);
udelay(1);
}
OUTW(dev, EE_ENB, SCBeeprom);
udelay(1);
OUTW(dev, EE_ENB & ~EE_CS, SCBeeprom);
udelay(1);
OUTW(dev, EE_ENB, SCBeeprom);
/* Shift the write command bits out. */
for (i = (addr_len+EE_CMD_BITS-1); i >= 0; i--)
{
dataval = (write_cmd & (1 << i)) ? EE_DATA_WRITE : 0;
OUTW(dev, EE_ENB | dataval, SCBeeprom);
udelay(1);
OUTW(dev, EE_ENB | dataval | EE_SHIFT_CLK, SCBeeprom);
udelay(1);
}
/* Write the data */
datalong= (unsigned long) ((((data) & 0x00ff) << 8) | ( (data) >> 8));
for (i = 0; i< EE_DATA_BITS; i++)
{
/* Extract and move data bit to bit DI */
dataval = ((datalong & 0x8000)>>13) ? EE_DATA_WRITE : 0;
OUTW(dev, EE_ENB | dataval, SCBeeprom);
udelay(1);
OUTW(dev, EE_ENB | dataval | EE_SHIFT_CLK, SCBeeprom);
udelay(1);
OUTW(dev, EE_ENB | dataval, SCBeeprom);
udelay(1);
datalong = datalong << 1; /* Adjust significant data bit*/
}
/* Finish up command (toggle CS) */
OUTW(dev, EE_ENB & ~EE_CS, SCBeeprom);
udelay(1); /* delay for more than 250 ns */
OUTW(dev, EE_ENB, SCBeeprom);
/* Wait for programming ready (D0 = 1) */
tmplong = 10;
do
{
dataval = INW(dev, SCBeeprom);
if (dataval & EE_DATA_READ)
break;
udelay(10000);
}
while (-- tmplong);
if (tmplong == 0)
{
printf ("Write i82559 eeprom timed out (100 ms waiting for data ready.\n");
return -1;
}
/* Terminate the EEPROM access. */
OUTW(dev, EE_ENB & ~EE_CS, SCBeeprom);
return 0;
}
#endif
static void init_rx_ring (struct eth_device *dev)
{
int i;
for (i = 0; i < NUM_RX_DESC; i++) {
rx_ring[i].status = 0;
rx_ring[i].control =
(i == NUM_RX_DESC - 1) ? cpu_to_le16 (RFD_CONTROL_S) : 0;
rx_ring[i].link =
cpu_to_le32 (phys_to_bus
((u32) & rx_ring[(i + 1) % NUM_RX_DESC]));
rx_ring[i].rx_buf_addr = 0xffffffff;
rx_ring[i].count = cpu_to_le32 (PKTSIZE_ALIGN << 16);
}
rx_next = 0;
}
static void purge_tx_ring (struct eth_device *dev)
{
int i;
tx_next = 0;
tx_threshold = 0x01208000;
for (i = 0; i < NUM_TX_DESC; i++) {
tx_ring[i].status = 0;
tx_ring[i].command = 0;
tx_ring[i].link = 0;
tx_ring[i].tx_desc_addr = 0;
tx_ring[i].count = 0;
tx_ring[i].tx_buf_addr0 = 0;
tx_ring[i].tx_buf_size0 = 0;
tx_ring[i].tx_buf_addr1 = 0;
tx_ring[i].tx_buf_size1 = 0;
}
}
static void read_hw_addr (struct eth_device *dev, bd_t * bis)
{
u16 eeprom[0x40];
u16 sum = 0;
int i, j;
int addr_len = read_eeprom (dev, 0, 6) == 0xffff ? 8 : 6;
for (j = 0, i = 0; i < 0x40; i++) {
u16 value = read_eeprom (dev, i, addr_len);
eeprom[i] = value;
sum += value;
if (i < 3) {
dev->enetaddr[j++] = value;
dev->enetaddr[j++] = value >> 8;
}
}
if (sum != 0xBABA) {
memset (dev->enetaddr, 0, ETH_ALEN);
#ifdef DEBUG
printf ("%s: Invalid EEPROM checksum %#4.4x, "
"check settings before activating this device!\n",
dev->name, sum);
#endif
}
}
#endif

799
drivers/sym53c8xx.c Normal file
View file

@ -0,0 +1,799 @@
/*
* (C) Copyright 2001
* Denis Peter, MPL AG Switzerland, d.peter@mpl.ch.
*
* See file CREDITS for list of people who contributed to this
* project.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of
* the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston,
* MA 02111-1307 USA
* partly derived from
* linux/drivers/scsi/sym53c8xx.c
*
*/
/*
* SCSI support based on the chip sym53C810.
*
* 09-19-2001 Andreas Heppel, Sysgo RTS GmbH <aheppel@sysgo.de>
* The local version of this driver for the BAB750 board does not
* use interrupts but polls the chip instead (see the call of
* 'handle_scsi_int()' in 'scsi_issue()'.
*/
#include <common.h>
#ifdef CONFIG_SCSI_SYM53C8XX
#include <command.h>
#include <cmd_boot.h>
#include <pci.h>
#include <asm/processor.h>
#include <sym53c8xx.h>
#include <scsi.h>
#undef SYM53C8XX_DEBUG
#ifdef SYM53C8XX_DEBUG
#define PRINTF(fmt,args...) printf (fmt ,##args)
#else
#define PRINTF(fmt,args...)
#endif
#if (CONFIG_COMMANDS & CFG_CMD_SCSI) && defined(CONFIG_SCSI_SYM53C8XX)
#undef SCSI_SINGLE_STEP
/*
* Single Step is only used for debug purposes
*/
#ifdef SCSI_SINGLE_STEP
static unsigned long start_script_select;
static unsigned long start_script_msgout;
static unsigned long start_script_msgin;
static unsigned long start_script_msg_ext;
static unsigned long start_script_cmd;
static unsigned long start_script_data_in;
static unsigned long start_script_data_out;
static unsigned long start_script_status;
static unsigned long start_script_complete;
static unsigned long start_script_error;
static unsigned long start_script_reselection;
static unsigned int len_script_select;
static unsigned int len_script_msgout;
static unsigned int len_script_msgin;
static unsigned int len_script_msg_ext;
static unsigned int len_script_cmd;
static unsigned int len_script_data_in;
static unsigned int len_script_data_out;
static unsigned int len_script_status;
static unsigned int len_script_complete;
static unsigned int len_script_error;
static unsigned int len_script_reselection;
#endif
static unsigned short scsi_int_mask; /* shadow register for SCSI related interrupts */
static unsigned char script_int_mask; /* shadow register for SCRIPT related interrupts */
static unsigned long script_select[8]; /* script for selection */
static unsigned long script_msgout[8]; /* script for message out phase (NOT USED) */
static unsigned long script_msgin[14]; /* script for message in phase */
static unsigned long script_msg_ext[32]; /* script for message in phase when more than 1 byte message */
static unsigned long script_cmd[18]; /* script for command phase */
static unsigned long script_data_in[8]; /* script for data in phase */
static unsigned long script_data_out[8]; /* script for data out phase */
static unsigned long script_status[6]; /* script for status phase */
static unsigned long script_complete[10]; /* script for complete */
static unsigned long script_reselection[4]; /* script for reselection (NOT USED) */
static unsigned long script_error[2]; /* script for error handling */
static unsigned long int_stat[3]; /* interrupt status */
static unsigned long scsi_mem_addr; /* base memory address =SCSI_MEM_ADDRESS; */
#define bus_to_phys(a) pci_mem_to_phys(busdevfunc, (unsigned long) (a))
#define phys_to_bus(a) pci_phys_to_mem(busdevfunc, (unsigned long) (a))
#define SCSI_MAX_RETRY 3 /* number of retries in scsi_issue() */
#define SCSI_MAX_RETRY_NOT_READY 10 /* number of retries when device is not ready */
#define SCSI_NOT_READY_TIME_OUT 500 /* timeout per retry when not ready */
/*********************************************************************************
* forward declerations
*/
void scsi_chip_init(void);
void handle_scsi_int(void);
/********************************************************************************
* reports SCSI errors to the user
*/
void scsi_print_error(ccb *pccb)
{
int i;
printf("SCSI Error: Target %d LUN %d Command %02X\n",pccb->target, pccb->lun, pccb->cmd[0]);
printf(" CCB: ");
for(i=0;i<pccb->cmdlen;i++)
printf("%02X ",pccb->cmd[i]);
printf("(len=%d)\n",pccb->cmdlen);
printf(" Cntrl: ");
switch(pccb->contr_stat) {
case SIR_COMPLETE: printf("Complete (no Error)\n"); break;
case SIR_SEL_ATN_NO_MSG_OUT: printf("Selected with ATN no MSG out phase\n"); break;
case SIR_CMD_OUT_ILL_PH: printf("Command out illegal phase\n"); break;
case SIR_MSG_RECEIVED: printf("MSG received Error\n"); break;
case SIR_DATA_IN_ERR: printf("Data in Error\n"); break;
case SIR_DATA_OUT_ERR: printf("Data out Error\n"); break;
case SIR_SCRIPT_ERROR: printf("Script Error\n"); break;
case SIR_MSG_OUT_NO_CMD: printf("MSG out no Command phase\n"); break;
case SIR_MSG_OVER7: printf("MSG in over 7 bytes\n"); break;
case INT_ON_FY: printf("Interrupt on fly\n"); break;
case SCSI_SEL_TIME_OUT: printf("SCSI Selection Timeout\n"); break;
case SCSI_HNS_TIME_OUT: printf("SCSI Handshake Timeout\n"); break;
case SCSI_MA_TIME_OUT: printf("SCSI Phase Error\n"); break;
case SCSI_UNEXP_DIS: printf("SCSI unexpected disconnect\n"); break;
default: printf("unknown status %lx\n",pccb->contr_stat); break;
}
printf(" Sense: SK %x (",pccb->sense_buf[2]&0x0f);
switch(pccb->sense_buf[2]&0xf) {
case SENSE_NO_SENSE: printf("No Sense)"); break;
case SENSE_RECOVERED_ERROR: printf("Recovered Error)"); break;
case SENSE_NOT_READY: printf("Not Ready)"); break;
case SENSE_MEDIUM_ERROR: printf("Medium Error)"); break;
case SENSE_HARDWARE_ERROR: printf("Hardware Error)"); break;
case SENSE_ILLEGAL_REQUEST: printf("Illegal request)"); break;
case SENSE_UNIT_ATTENTION: printf("Unit Attention)"); break;
case SENSE_DATA_PROTECT: printf("Data Protect)"); break;
case SENSE_BLANK_CHECK: printf("Blank check)"); break;
case SENSE_VENDOR_SPECIFIC: printf("Vendor specific)"); break;
case SENSE_COPY_ABORTED: printf("Copy aborted)"); break;
case SENSE_ABORTED_COMMAND: printf("Aborted Command)"); break;
case SENSE_VOLUME_OVERFLOW: printf("Volume overflow)"); break;
case SENSE_MISCOMPARE: printf("Misscompare\n"); break;
default: printf("Illegal Sensecode\n"); break;
}
printf(" ASC %x ASCQ %x\n",pccb->sense_buf[12],pccb->sense_buf[13]);
printf(" Status: ");
switch(pccb->status) {
case S_GOOD : printf("Good\n"); break;
case S_CHECK_COND: printf("Check condition\n"); break;
case S_COND_MET: printf("Condition Met\n"); break;
case S_BUSY: printf("Busy\n"); break;
case S_INT: printf("Intermediate\n"); break;
case S_INT_COND_MET: printf("Intermediate condition met\n"); break;
case S_CONFLICT: printf("Reservation conflict\n"); break;
case S_TERMINATED: printf("Command terminated\n"); break;
case S_QUEUE_FULL: printf("Task set full\n"); break;
default: printf("unknown: %02X\n",pccb->status); break;
}
}
/******************************************************************************
* sets-up the SCSI controller
* the base memory address is retrived via the pci_read_config_dword
*/
void scsi_low_level_init(int busdevfunc)
{
unsigned int cmd;
unsigned int addr;
unsigned char vec;
pci_read_config_byte(busdevfunc, PCI_INTERRUPT_LINE, &vec);
pci_read_config_dword(busdevfunc, PCI_BASE_ADDRESS_1, &addr);
addr = bus_to_phys(addr & ~0xf);
/*
* Enable bus mastering in case this has not been done, yet.
*/
pci_read_config_dword(busdevfunc, PCI_COMMAND, &cmd);
cmd |= PCI_COMMAND_MASTER;
pci_write_config_dword(busdevfunc, PCI_COMMAND, cmd);
scsi_mem_addr = addr;
scsi_chip_init();
scsi_bus_reset();
}
/************************************************************************************
* Low level Part of SCSI Driver
*/
/*
* big-endian -> little endian conversion for the script
*/
unsigned long swap_script(unsigned long val)
{
unsigned long tmp;
tmp = ((val>>24)&0xff) | ((val>>8)&0xff00) | ((val<<8)&0xff0000) | ((val<<24)&0xff000000);
return tmp;
}
void scsi_write_byte(ulong offset,unsigned char val)
{
out8(scsi_mem_addr+offset,val);
}
unsigned char scsi_read_byte(ulong offset)
{
return(in8(scsi_mem_addr+offset));
}
/********************************************************************************
* interrupt handler
*/
void handle_scsi_int(void)
{
unsigned char stat,stat1,stat2;
unsigned short sstat;
int i;
#ifdef SCSI_SINGLE_STEP
unsigned long tt;
#endif
stat=scsi_read_byte(ISTAT);
if((stat & DIP)==DIP) { /* DMA Interrupt pending */
stat1=scsi_read_byte(DSTAT);
#ifdef SCSI_SINGLE_STEP
if((stat1 & SSI)==SSI)
{
tt=in32r(scsi_mem_addr+DSP);
if(((tt)>=start_script_select) && ((tt)<start_script_select+len_script_select)) {
printf("select %d\n",(tt-start_script_select)>>2);
goto end_single;
}
if(((tt)>=start_script_msgout) && ((tt)<start_script_msgout+len_script_msgout)) {
printf("msgout %d\n",(tt-start_script_msgout)>>2);
goto end_single;
}
if(((tt)>=start_script_msgin) && ((tt)<start_script_msgin+len_script_msgin)) {
printf("msgin %d\n",(tt-start_script_msgin)>>2);
goto end_single;
}
if(((tt)>=start_script_msg_ext) && ((tt)<start_script_msg_ext+len_script_msg_ext)) {
printf("msgin_ext %d\n",(tt-start_script_msg_ext)>>2);
goto end_single;
}
if(((tt)>=start_script_cmd) && ((tt)<start_script_cmd+len_script_cmd)) {
printf("cmd %d\n",(tt-start_script_cmd)>>2);
goto end_single;
}
if(((tt)>=start_script_data_in) && ((tt)<start_script_data_in+len_script_data_in)) {
printf("data_in %d\n",(tt-start_script_data_in)>>2);
goto end_single;
}
if(((tt)>=start_script_data_out) && ((tt)<start_script_data_out+len_script_data_out)) {
printf("data_out %d\n",(tt-start_script_data_out)>>2);
goto end_single;
}
if(((tt)>=start_script_status) && ((tt)<start_script_status+len_script_status)) {
printf("status %d\n",(tt-start_script_status)>>2);
goto end_single;
}
if(((tt)>=start_script_complete) && ((tt)<start_script_complete+len_script_complete)) {
printf("complete %d\n",(tt-start_script_complete)>>2);
goto end_single;
}
if(((tt)>=start_script_error) && ((tt)<start_script_error+len_script_error)) {
printf("error %d\n",(tt-start_script_error)>>2);
goto end_single;
}
if(((tt)>=start_script_reselection) && ((tt)<start_script_reselection+len_script_reselection)) {
printf("reselection %d\n",(tt-start_script_reselection)>>2);
goto end_single;
}
printf("sc: %lx\n",tt);
end_single:
stat2=scsi_read_byte(DCNTL);
stat2|=STD;
scsi_write_byte(DCNTL,stat2);
}
#endif
if((stat1 & SIR)==SIR) /* script interrupt */
{
int_stat[0]=in32(scsi_mem_addr+DSPS);
}
if((stat1 & DFE)==0) { /* fifo not epmty */
scsi_write_byte(CTEST3,CLF); /* Clear DMA FIFO */
stat2=scsi_read_byte(STEST3);
scsi_write_byte(STEST3,(stat2 | CSF)); /* Clear SCSI FIFO */
}
}
if((stat & SIP)==SIP) { /* scsi interrupt */
sstat = (unsigned short)scsi_read_byte(SIST+1);
sstat <<=8;
sstat |= (unsigned short)scsi_read_byte(SIST);
for(i=0;i<3;i++) {
if(int_stat[i]==0)
break; /* found an empty int status */
}
int_stat[i]=SCSI_INT_STATE | sstat;
stat1=scsi_read_byte(DSTAT);
if((stat1 & DFE)==0) { /* fifo not epmty */
scsi_write_byte(CTEST3,CLF); /* Clear DMA FIFO */
stat2=scsi_read_byte(STEST3);
scsi_write_byte(STEST3,(stat2 | CSF)); /* Clear SCSI FIFO */
}
}
if((stat & INTF)==INTF) { /* interrupt on Fly */
scsi_write_byte(ISTAT,stat); /* clear it */
for(i=0;i<3;i++) {
if(int_stat[i]==0)
break; /* found an empty int status */
}
int_stat[i]=INT_ON_FY;
}
}
void scsi_bus_reset(void)
{
unsigned char t;
int i;
int end = CFG_SCSI_SPIN_UP_TIME*1000;
t=scsi_read_byte(SCNTL1);
scsi_write_byte(SCNTL1,(t | CRST));
udelay(50);
scsi_write_byte(SCNTL1,t);
puts("waiting for devices to spin up");
for(i=0;i<end;i++) {
udelay(1000); /* give the devices time to spin up */
if (i % 1000 == 0)
putc('.');
}
putc('\n');
scsi_chip_init(); /* reinit the chip ...*/
}
void scsi_int_enable(void)
{
scsi_write_byte(SIEN,(unsigned char)scsi_int_mask);
scsi_write_byte(SIEN+1,(unsigned char)(scsi_int_mask>>8));
scsi_write_byte(DIEN,script_int_mask);
}
void scsi_write_dsp(unsigned long start)
{
unsigned long val;
#ifdef SCSI_SINGLE_STEP
unsigned char t;
#endif
val = start;
out32r(scsi_mem_addr + DSP,start);
#ifdef SCSI_SINGLE_STEP
t=scsi_read_byte(DCNTL);
t|=STD;
scsi_write_byte(DCNTL,t);
#endif
}
/* only used for debug purposes */
void scsi_print_script(void)
{
printf("script_select @ 0x%08lX\n",(unsigned long)&script_select[0]);
printf("script_msgout @ 0x%08lX\n",(unsigned long)&script_msgout[0]);
printf("script_msgin @ 0x%08lX\n",(unsigned long)&script_msgin[0]);
printf("script_msgext @ 0x%08lX\n",(unsigned long)&script_msg_ext[0]);
printf("script_cmd @ 0x%08lX\n",(unsigned long)&script_cmd[0]);
printf("script_data_in @ 0x%08lX\n",(unsigned long)&script_data_in[0]);
printf("script_data_out @ 0x%08lX\n",(unsigned long)&script_data_out[0]);
printf("script_status @ 0x%08lX\n",(unsigned long)&script_status[0]);
printf("script_complete @ 0x%08lX\n",(unsigned long)&script_complete[0]);
printf("script_error @ 0x%08lX\n",(unsigned long)&script_error[0]);
}
void scsi_set_script(ccb *pccb)
{
int busdevfunc = pccb->priv;
int i;
i=0;
script_select[i++]=swap_script(SCR_REG_REG(GPREG, SCR_AND, 0xfe));
script_select[i++]=0; /* LED ON */
script_select[i++]=swap_script(SCR_CLR(SCR_TRG)); /* select initiator mode */
script_select[i++]=0;
/* script_select[i++]=swap_script(SCR_SEL_ABS_ATN | pccb->target << 16); */
script_select[i++]=swap_script(SCR_SEL_ABS | pccb->target << 16);
script_select[i++]=swap_script(phys_to_bus(&script_cmd[4])); /* error handling */
script_select[i++]=swap_script(SCR_JUMP); /* next section */
/* script_select[i++]=swap_script((unsigned long)&script_msgout[0]); */ /* message out */
script_select[i++]=swap_script(phys_to_bus(&script_cmd[0])); /* command out */
#ifdef SCSI_SINGLE_STEP
start_script_select=(unsigned long)&script_select[0];
len_script_select=i*4;
#endif
i=0;
script_msgout[i++]=swap_script(SCR_INT ^ IFFALSE (WHEN (SCR_MSG_OUT)));
script_msgout[i++]=SIR_SEL_ATN_NO_MSG_OUT;
script_msgout[i++]=swap_script( SCR_MOVE_ABS(1) ^ SCR_MSG_OUT);
script_msgout[i++]=swap_script(phys_to_bus(&pccb->msgout[0]));
script_msgout[i++]=swap_script(SCR_JUMP ^ IFTRUE (WHEN (SCR_COMMAND))); /* if Command phase */
script_msgout[i++]=swap_script(phys_to_bus(&script_cmd[0])); /* switch to command */
script_msgout[i++]=swap_script(SCR_INT); /* interrupt if not */
script_msgout[i++]=SIR_MSG_OUT_NO_CMD;
#ifdef SCSI_SINGLE_STEP
start_script_msgout=(unsigned long)&script_msgout[0];
len_script_msgout=i*4;
#endif
i=0;
script_cmd[i++]=swap_script(SCR_MOVE_ABS(pccb->cmdlen) ^ SCR_COMMAND);
script_cmd[i++]=swap_script(phys_to_bus(&pccb->cmd[0]));
script_cmd[i++]=swap_script(SCR_JUMP ^ IFTRUE (WHEN (SCR_MSG_IN))); /* message in ? */
script_cmd[i++]=swap_script(phys_to_bus(&script_msgin[0]));
script_cmd[i++]=swap_script(SCR_JUMP ^ IFTRUE (IF (SCR_DATA_OUT))); /* data out ? */
script_cmd[i++]=swap_script(phys_to_bus(&script_data_out[0]));
script_cmd[i++]=swap_script(SCR_JUMP ^ IFTRUE (IF (SCR_DATA_IN))); /* data in ? */
script_cmd[i++]=swap_script(phys_to_bus(&script_data_in[0]));
script_cmd[i++]=swap_script(SCR_JUMP ^ IFTRUE (IF (SCR_STATUS))); /* status ? */
script_cmd[i++]=swap_script(phys_to_bus(&script_status[0]));
script_cmd[i++]=swap_script(SCR_JUMP ^ IFTRUE (IF (SCR_COMMAND))); /* command ? */
script_cmd[i++]=swap_script(phys_to_bus(&script_cmd[0]));
script_cmd[i++]=swap_script(SCR_JUMP ^ IFTRUE (IF (SCR_MSG_OUT))); /* message out ? */
script_cmd[i++]=swap_script(phys_to_bus(&script_msgout[0]));
script_cmd[i++]=swap_script(SCR_JUMP ^ IFTRUE (IF (SCR_MSG_IN))); /* just for error handling message in ? */
script_cmd[i++]=swap_script(phys_to_bus(&script_msgin[0]));
script_cmd[i++]=swap_script(SCR_INT); /* interrupt if not */
script_cmd[i++]=SIR_CMD_OUT_ILL_PH;
#ifdef SCSI_SINGLE_STEP
start_script_cmd=(unsigned long)&script_cmd[0];
len_script_cmd=i*4;
#endif
i=0;
script_data_out[i++]=swap_script(SCR_MOVE_ABS(pccb->datalen)^ SCR_DATA_OUT); /* move */
script_data_out[i++]=swap_script(phys_to_bus(pccb->pdata)); /* pointer to buffer */
script_data_out[i++]=swap_script(SCR_JUMP ^ IFTRUE (WHEN (SCR_STATUS)));
script_data_out[i++]=swap_script(phys_to_bus(&script_status[0]));
script_data_out[i++]=swap_script(SCR_INT);
script_data_out[i++]=SIR_DATA_OUT_ERR;
#ifdef SCSI_SINGLE_STEP
start_script_data_out=(unsigned long)&script_data_out[0];
len_script_data_out=i*4;
#endif
i=0;
script_data_in[i++]=swap_script(SCR_MOVE_ABS(pccb->datalen)^ SCR_DATA_IN); /* move */
script_data_in[i++]=swap_script(phys_to_bus(pccb->pdata)); /* pointer to buffer */
script_data_in[i++]=swap_script(SCR_JUMP ^ IFTRUE (WHEN (SCR_STATUS)));
script_data_in[i++]=swap_script(phys_to_bus(&script_status[0]));
script_data_in[i++]=swap_script(SCR_INT);
script_data_in[i++]=SIR_DATA_IN_ERR;
#ifdef SCSI_SINGLE_STEP
start_script_data_in=(unsigned long)&script_data_in[0];
len_script_data_in=i*4;
#endif
i=0;
script_msgin[i++]=swap_script(SCR_MOVE_ABS (1) ^ SCR_MSG_IN);
script_msgin[i++]=swap_script(phys_to_bus(&pccb->msgin[0]));
script_msgin[i++]=swap_script(SCR_JUMP ^ IFTRUE (DATA (M_COMPLETE)));
script_msgin[i++]=swap_script(phys_to_bus(&script_complete[0]));
script_msgin[i++]=swap_script(SCR_JUMP ^ IFTRUE (DATA (M_DISCONNECT)));
script_msgin[i++]=swap_script(phys_to_bus(&script_complete[0]));
script_msgin[i++]=swap_script(SCR_JUMP ^ IFTRUE (DATA (M_SAVE_DP)));
script_msgin[i++]=swap_script(phys_to_bus(&script_complete[0]));
script_msgin[i++]=swap_script(SCR_JUMP ^ IFTRUE (DATA (M_RESTORE_DP)));
script_msgin[i++]=swap_script(phys_to_bus(&script_complete[0]));
script_msgin[i++]=swap_script(SCR_JUMP ^ IFTRUE (DATA (M_EXTENDED)));
script_msgin[i++]=swap_script(phys_to_bus(&script_msg_ext[0]));
script_msgin[i++]=swap_script(SCR_INT);
script_msgin[i++]=SIR_MSG_RECEIVED;
#ifdef SCSI_SINGLE_STEP
start_script_msgin=(unsigned long)&script_msgin[0];
len_script_msgin=i*4;
#endif
i=0;
script_msg_ext[i++]=swap_script(SCR_CLR (SCR_ACK)); /* clear ACK */
script_msg_ext[i++]=0;
script_msg_ext[i++]=swap_script(SCR_MOVE_ABS (1) ^ SCR_MSG_IN); /* assuming this is the msg length */
script_msg_ext[i++]=swap_script(phys_to_bus(&pccb->msgin[1]));
script_msg_ext[i++]=swap_script(SCR_JUMP ^ IFFALSE (IF (SCR_MSG_IN)));
script_msg_ext[i++]=swap_script(phys_to_bus(&script_complete[0])); /* no more bytes */
script_msg_ext[i++]=swap_script(SCR_MOVE_ABS (1) ^ SCR_MSG_IN); /* next */
script_msg_ext[i++]=swap_script(phys_to_bus(&pccb->msgin[2]));
script_msg_ext[i++]=swap_script(SCR_JUMP ^ IFFALSE (IF (SCR_MSG_IN)));
script_msg_ext[i++]=swap_script(phys_to_bus(&script_complete[0])); /* no more bytes */
script_msg_ext[i++]=swap_script(SCR_MOVE_ABS (1) ^ SCR_MSG_IN); /* next */
script_msg_ext[i++]=swap_script(phys_to_bus(&pccb->msgin[3]));
script_msg_ext[i++]=swap_script(SCR_JUMP ^ IFFALSE (IF (SCR_MSG_IN)));
script_msg_ext[i++]=swap_script(phys_to_bus(&script_complete[0])); /* no more bytes */
script_msg_ext[i++]=swap_script(SCR_MOVE_ABS (1) ^ SCR_MSG_IN); /* next */
script_msg_ext[i++]=swap_script(phys_to_bus(&pccb->msgin[4]));
script_msg_ext[i++]=swap_script(SCR_JUMP ^ IFFALSE (IF (SCR_MSG_IN)));
script_msg_ext[i++]=swap_script(phys_to_bus(&script_complete[0])); /* no more bytes */
script_msg_ext[i++]=swap_script(SCR_MOVE_ABS (1) ^ SCR_MSG_IN); /* next */
script_msg_ext[i++]=swap_script(phys_to_bus(&pccb->msgin[5]));
script_msg_ext[i++]=swap_script(SCR_JUMP ^ IFFALSE (IF (SCR_MSG_IN)));
script_msg_ext[i++]=swap_script(phys_to_bus(&script_complete[0])); /* no more bytes */
script_msg_ext[i++]=swap_script(SCR_MOVE_ABS (1) ^ SCR_MSG_IN); /* next */
script_msg_ext[i++]=swap_script(phys_to_bus(&pccb->msgin[6]));
script_msg_ext[i++]=swap_script(SCR_JUMP ^ IFFALSE (IF (SCR_MSG_IN)));
script_msg_ext[i++]=swap_script(phys_to_bus(&script_complete[0])); /* no more bytes */
script_msg_ext[i++]=swap_script(SCR_MOVE_ABS (1) ^ SCR_MSG_IN); /* next */
script_msg_ext[i++]=swap_script(phys_to_bus(&pccb->msgin[7]));
script_msg_ext[i++]=swap_script(SCR_JUMP ^ IFFALSE (IF (SCR_MSG_IN)));
script_msg_ext[i++]=swap_script(phys_to_bus(&script_complete[0])); /* no more bytes */
script_msg_ext[i++]=swap_script(SCR_INT);
script_msg_ext[i++]=SIR_MSG_OVER7;
#ifdef SCSI_SINGLE_STEP
start_script_msg_ext=(unsigned long)&script_msg_ext[0];
len_script_msg_ext=i*4;
#endif
i=0;
script_status[i++]=swap_script(SCR_MOVE_ABS (1) ^ SCR_STATUS);
script_status[i++]=swap_script(phys_to_bus(&pccb->status));
script_status[i++]=swap_script(SCR_JUMP ^ IFTRUE (WHEN (SCR_MSG_IN)));
script_status[i++]=swap_script(phys_to_bus(&script_msgin[0]));
script_status[i++]=swap_script(SCR_INT);
script_status[i++]=SIR_STATUS_ILL_PH;
#ifdef SCSI_SINGLE_STEP
start_script_status=(unsigned long)&script_status[0];
len_script_status=i*4;
#endif
i=0;
script_complete[i++]=swap_script(SCR_REG_REG (SCNTL2, SCR_AND, 0x7f));
script_complete[i++]=0;
script_complete[i++]=swap_script(SCR_CLR (SCR_ACK|SCR_ATN));
script_complete[i++]=0;
script_complete[i++]=swap_script(SCR_WAIT_DISC);
script_complete[i++]=0;
script_complete[i++]=swap_script(SCR_REG_REG(GPREG, SCR_OR, 0x01));
script_complete[i++]=0; /* LED OFF */
script_complete[i++]=swap_script(SCR_INT);
script_complete[i++]=SIR_COMPLETE;
#ifdef SCSI_SINGLE_STEP
start_script_complete=(unsigned long)&script_complete[0];
len_script_complete=i*4;
#endif
i=0;
script_error[i++]=swap_script(SCR_INT); /* interrupt if error */
script_error[i++]=SIR_SCRIPT_ERROR;
#ifdef SCSI_SINGLE_STEP
start_script_error=(unsigned long)&script_error[0];
len_script_error=i*4;
#endif
i=0;
script_reselection[i++]=swap_script(SCR_CLR (SCR_TRG)); /* target status */
script_reselection[i++]=0;
script_reselection[i++]=swap_script(SCR_WAIT_RESEL);
script_reselection[i++]=swap_script(phys_to_bus(&script_select[0])); /* len = 4 */
#ifdef SCSI_SINGLE_STEP
start_script_reselection=(unsigned long)&script_reselection[0];
len_script_reselection=i*4;
#endif
}
void scsi_issue(ccb *pccb)
{
int busdevfunc = pccb->priv;
int i;
unsigned short sstat;
int retrycnt; /* retry counter */
for(i=0;i<3;i++)
int_stat[i]=0; /* delete all int status */
/* struct pccb must be set-up correctly */
retrycnt=0;
PRINTF("ID %d issue cmd %02X\n",pccb->target,pccb->cmd[0]);
pccb->trans_bytes=0; /* no bytes transfered yet */
scsi_set_script(pccb); /* fill in SCRIPT */
scsi_int_mask=STO | UDC | MA; /* | CMP; / * Interrupts which are enabled */
script_int_mask=0xff; /* enable all Ints */
scsi_int_enable();
scsi_write_dsp(phys_to_bus(&script_select[0])); /* start script */
/* now we have to wait for IRQs */
retry:
/*
* This version of the driver is _not_ interrupt driven,
* but polls the chip's interrupt registers (ISTAT, DSTAT).
*/
while(int_stat[0]==0)
handle_scsi_int();
if(int_stat[0]==SIR_COMPLETE) {
if(pccb->msgin[0]==M_DISCONNECT) {
PRINTF("Wait for reselection\n");
for(i=0;i<3;i++)
int_stat[i]=0; /* delete all int status */
scsi_write_dsp(phys_to_bus(&script_reselection[0])); /* start reselection script */
goto retry;
}
pccb->contr_stat=SIR_COMPLETE;
return;
}
if((int_stat[0] & SCSI_INT_STATE)==SCSI_INT_STATE) { /* scsi interrupt */
sstat=(unsigned short)int_stat[0];
if((sstat & STO)==STO) { /* selection timeout */
pccb->contr_stat=SCSI_SEL_TIME_OUT;
scsi_write_byte(GPREG,0x01);
PRINTF("ID: %X Selection Timeout\n",pccb->target);
return;
}
if((sstat & UDC)==UDC) { /* unexpected disconnect */
pccb->contr_stat=SCSI_UNEXP_DIS;
scsi_write_byte(GPREG,0x01);
PRINTF("ID: %X Unexpected Disconnect\n",pccb->target);
return;
}
if((sstat & RSL)==RSL) { /* reselection */
pccb->contr_stat=SCSI_UNEXP_DIS;
scsi_write_byte(GPREG,0x01);
PRINTF("ID: %X Unexpected Disconnect\n",pccb->target);
return;
}
if(((sstat & MA)==MA)||((sstat & HTH)==HTH)) { /* phase missmatch */
if(retrycnt<SCSI_MAX_RETRY) {
pccb->trans_bytes=pccb->datalen -
((unsigned long)scsi_read_byte(DBC) |
((unsigned long)scsi_read_byte(DBC+1)<<8) |
((unsigned long)scsi_read_byte(DBC+2)<<16));
for(i=0;i<3;i++)
int_stat[i]=0; /* delete all int status */
retrycnt++;
PRINTF("ID: %X Phase Missmatch Retry %d Phase %02X transfered %lx\n",
pccb->target,retrycnt,scsi_read_byte(SBCL),pccb->trans_bytes);
scsi_write_dsp(phys_to_bus(&script_cmd[4])); /* start retry script */
goto retry;
}
if((sstat & MA)==MA)
pccb->contr_stat=SCSI_MA_TIME_OUT;
else
pccb->contr_stat=SCSI_HNS_TIME_OUT;
PRINTF("Phase Missmatch stat %lx\n",pccb->contr_stat);
return;
} /* no phase int */
/* if((sstat & CMP)==CMP) {
pccb->contr_stat=SIR_COMPLETE;
return;
}
*/
PRINTF("SCSI INT %lX\n",int_stat[0]);
pccb->contr_stat=int_stat[0];
return;
} /* end scsi int */
PRINTF("SCRIPT INT %lX phase %02X\n",int_stat[0],scsi_read_byte(SBCL));
pccb->contr_stat=int_stat[0];
return;
}
int scsi_exec(ccb *pccb)
{
unsigned char tmpcmd[16],tmpstat;
int i,retrycnt,t;
unsigned long transbytes,datalen;
unsigned char *tmpptr;
retrycnt=0;
retry:
scsi_issue(pccb);
if(pccb->contr_stat!=SIR_COMPLETE)
return FALSE;
if(pccb->status==S_GOOD)
return TRUE;
if(pccb->status==S_CHECK_COND) { /* check condition */
for(i=0;i<16;i++)
tmpcmd[i]=pccb->cmd[i];
pccb->cmd[0]=SCSI_REQ_SENSE;
pccb->cmd[1]=pccb->lun<<5;
pccb->cmd[2]=0;
pccb->cmd[3]=0;
pccb->cmd[4]=14;
pccb->cmd[5]=0;
pccb->cmdlen=6;
pccb->msgout[0]=SCSI_IDENTIFY;
transbytes=pccb->trans_bytes;
tmpptr=pccb->pdata;
pccb->pdata=&pccb->sense_buf[0];
datalen=pccb->datalen;
pccb->datalen=14;
tmpstat=pccb->status;
scsi_issue(pccb);
for(i=0;i<16;i++)
pccb->cmd[i]=tmpcmd[i];
pccb->trans_bytes=transbytes;
pccb->pdata=tmpptr;
pccb->datalen=datalen;
pccb->status=tmpstat;
PRINTF("Request_sense sense key %x ASC %x ASCQ %x\n",pccb->sense_buf[2]&0x0f,
pccb->sense_buf[12],pccb->sense_buf[13]);
switch(pccb->sense_buf[2]&0xf) {
case SENSE_NO_SENSE:
case SENSE_RECOVERED_ERROR:
/* seems to be ok */
return TRUE;
break;
case SENSE_NOT_READY:
if((pccb->sense_buf[12]!=0x04)||(pccb->sense_buf[13]!=0x01)) {
/* if device is not in process of becoming ready */
return FALSE;
break;
} /* else fall through */
case SENSE_UNIT_ATTENTION:
if(retrycnt<SCSI_MAX_RETRY_NOT_READY) {
PRINTF("Target %d not ready, retry %d\n",pccb->target,retrycnt);
for(t=0;t<SCSI_NOT_READY_TIME_OUT;t++)
udelay(1000); /* 1sec wait */
retrycnt++;
goto retry;
}
PRINTF("Target %d not ready, %d retried\n",pccb->target,retrycnt);
return FALSE;
default:
return FALSE;
}
}
PRINTF("Status = %X\n",pccb->status);
return FALSE;
}
void scsi_chip_init(void)
{
/* first we issue a soft reset */
scsi_write_byte(ISTAT,SRST);
udelay(1000);
scsi_write_byte(ISTAT,0);
/* setup chip */
scsi_write_byte(SCNTL0,0xC0); /* full arbitration no start, no message, parity disabled, master */
scsi_write_byte(SCNTL1,0x00);
scsi_write_byte(SCNTL2,0x00);
#ifndef CFG_SCSI_SYM53C8XX_CCF /* config value for none 40 mhz clocks */
scsi_write_byte(SCNTL3,0x13); /* synchronous clock 40/4=10MHz, asynchronous 40MHz */
#else
scsi_write_byte(SCNTL3,CFG_SCSI_SYM53C8XX_CCF); /* config value for none 40 mhz clocks */
#endif
scsi_write_byte(SCID,0x47); /* ID=7, enable reselection */
scsi_write_byte(SXFER,0x00); /* synchronous transfer period 10MHz, asynchronous */
scsi_write_byte(SDID,0x00); /* targed SCSI ID = 0 */
scsi_int_mask=0x0000; /* no Interrupt is enabled */
script_int_mask=0x00;
scsi_int_enable();
scsi_write_byte(GPREG,0x01); /* GPIO0 is LED (off) */
scsi_write_byte(GPCNTL,0x0E); /* GPIO0 is Output */
scsi_write_byte(STIME0,0x08); /* handshake timer disabled, selection timeout 512msec */
scsi_write_byte(RESPID,0x80); /* repond only to the own ID (reselection) */
scsi_write_byte(STEST1,0x00); /* not isolated, SCLK is used */
scsi_write_byte(STEST2,0x00); /* no Lowlevel Mode? */
scsi_write_byte(STEST3,0x80); /* enable tolerANT */
scsi_write_byte(CTEST3,0x04); /* clear FIFO */
scsi_write_byte(CTEST4,0x00);
scsi_write_byte(CTEST5,0x00);
#ifdef SCSI_SINGLE_STEP
/* scsi_write_byte(DCNTL,IRQM | SSM); */
scsi_write_byte(DCNTL,IRQD | SSM);
scsi_write_byte(DMODE,MAN);
#else
/* scsi_write_byte(DCNTL,IRQM); */
scsi_write_byte(DCNTL,IRQD);
scsi_write_byte(DMODE,0x00);
#endif
}
#endif /* (CONFIG_COMMANDS & CFG_CMD_SCSI) */
#endif /* CONFIG_SCSI_SYM53C8XX */

226
drivers/w83c553f.c Normal file
View file

@ -0,0 +1,226 @@
/*
* (C) Copyright 2001 Sysgo Real-Time Solutions, GmbH <www.elinos.com>
* Andreas Heppel <aheppel@sysgo.de>
*
* See file CREDITS for list of people who contributed to this
* project.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of
* the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston,
* MA 02111-1307 USA
*/
/*
* Initialisation of the PCI-to-ISA bridge and disabling the BIOS
* write protection (for flash) in function 0 of the chip.
* Enabling function 1 (IDE controller of the chip.
*/
#include <common.h>
#include <config.h>
#ifdef CFG_WINBOND_83C553
#include <asm/io.h>
#include <pci.h>
#include <w83c553f.h>
#define out8(addr,val) do { \
out_8((u8*) (addr),(val)); udelay(1); \
} while (0)
#define out16(addr,val) do { \
out_be16((u16*) (addr),(val)); udelay(1); \
} while (0)
extern uint ide_bus_offset[CFG_IDE_MAXBUS];
void initialise_pic(void);
void initialise_dma(void);
void initialise_w83c553f(void)
{
pci_dev_t devbusfn;
unsigned char reg8;
unsigned short reg16;
unsigned int reg32;
devbusfn = pci_find_device(W83C553F_VID, W83C553F_DID, 0);
if (devbusfn == -1)
{
printf("Error: Cannot find W83C553F controller on any PCI bus.");
return;
}
pci_read_config_word(devbusfn, PCI_COMMAND, &reg16);
reg16 |= PCI_COMMAND_MASTER | PCI_COMMAND_IO | PCI_COMMAND_MEMORY;
pci_write_config_word(devbusfn, PCI_COMMAND, reg16);
pci_read_config_byte(devbusfn, WINBOND_IPADCR, &reg8);
/* 16 MB ISA memory space */
reg8 |= (IPADCR_IPATOM4 | IPADCR_IPATOM5 | IPADCR_IPATOM6 | IPADCR_IPATOM7);
reg8 &= ~IPADCR_MBE512;
pci_write_config_byte(devbusfn, WINBOND_IPADCR, reg8);
pci_read_config_byte(devbusfn, WINBOND_CSCR, &reg8);
/* switch off BIOS write protection */
reg8 |= CSCR_UBIOSCSE;
reg8 &= ~CSCR_BIOSWP;
pci_write_config_byte(devbusfn, WINBOND_CSCR, reg8);
/*
* Interrupt routing:
* - IDE -> IRQ 9/0
* - INTA -> IRQ 10
* - INTB -> IRQ 11
* - INTC -> IRQ 14
* - INTD -> IRQ 15
*/
pci_write_config_byte(devbusfn, WINBOND_IDEIRCR, 0x90);
pci_write_config_word(devbusfn, WINBOND_PCIIRCR, 0xABEF);
/*
* Read IDE bus offsets from function 1 device.
* We must unmask the LSB indicating that ist is an IO address.
*/
devbusfn |= PCI_BDF(0,0,1);
/*
* Switch off legacy IRQ for IDE and IDE port 1.
*/
pci_write_config_byte(devbusfn, 0x09, 0x8F);
pci_read_config_dword(devbusfn, WINDOND_IDECSR, &reg32);
reg32 &= ~(IDECSR_LEGIRQ | IDECSR_P1EN | IDECSR_P1F16);
pci_write_config_dword(devbusfn, WINDOND_IDECSR, reg32);
pci_read_config_dword(devbusfn, PCI_BASE_ADDRESS_0, &ide_bus_offset[0]);
ide_bus_offset[0] &= ~1;
#if CFG_IDE_MAXBUS > 1
pci_read_config_dword(devbusfn, PCI_BASE_ADDRESS_2, &ide_bus_offset[1]);
ide_bus_offset[1] &= ~1;
#endif
/*
* Enable function 1, IDE -> busmastering and IO space access
*/
pci_read_config_word(devbusfn, PCI_COMMAND, &reg16);
reg16 |= PCI_COMMAND_MASTER | PCI_COMMAND_IO;
pci_write_config_word(devbusfn, PCI_COMMAND, reg16);
/*
* Initialise ISA interrupt controller
*/
initialise_pic();
/*
* Initialise DMA controller
*/
initialise_dma();
}
void initialise_pic(void)
{
out8(W83C553F_PIC1_ICW1, 0x11);
out8(W83C553F_PIC1_ICW2, 0x08);
out8(W83C553F_PIC1_ICW3, 0x04);
out8(W83C553F_PIC1_ICW4, 0x01);
out8(W83C553F_PIC1_OCW1, 0xfb);
out8(W83C553F_PIC1_ELC, 0x20);
out8(W83C553F_PIC2_ICW1, 0x11);
out8(W83C553F_PIC2_ICW2, 0x08);
out8(W83C553F_PIC2_ICW3, 0x02);
out8(W83C553F_PIC2_ICW4, 0x01);
out8(W83C553F_PIC2_OCW1, 0xff);
out8(W83C553F_PIC2_ELC, 0xce);
out8(W83C553F_TMR1_CMOD, 0x74);
out8(W83C553F_PIC2_OCW1, 0x20);
out8(W83C553F_PIC1_OCW1, 0x20);
out8(W83C553F_PIC2_OCW1, 0x2b);
out8(W83C553F_PIC1_OCW1, 0x2b);
}
void initialise_dma(void)
{
unsigned int channel;
unsigned int rvalue1, rvalue2;
/* perform a H/W reset of the devices */
out8(W83C553F_DMA1 + W83C553F_DMA1_MC, 0x00);
out16(W83C553F_DMA2 + W83C553F_DMA2_MC, 0x0000);
/* initialise all channels to a sane state */
for (channel = 0; channel < 4; channel++) {
/*
* dependent upon the channel, setup the specifics:
*
* demand
* address-increment
* autoinitialize-disable
* verify-transfer
*/
switch (channel) {
case 0:
rvalue1 = (W83C553F_MODE_TM_DEMAND|W83C553F_MODE_CH0SEL|W83C553F_MODE_TT_VERIFY);
rvalue2 = (W83C553F_MODE_TM_CASCADE|W83C553F_MODE_CH0SEL);
break;
case 1:
rvalue1 = (W83C553F_MODE_TM_DEMAND|W83C553F_MODE_CH1SEL|W83C553F_MODE_TT_VERIFY);
rvalue2 = (W83C553F_MODE_TM_DEMAND|W83C553F_MODE_CH1SEL|W83C553F_MODE_TT_VERIFY);
break;
case 2:
rvalue1 = (W83C553F_MODE_TM_DEMAND|W83C553F_MODE_CH2SEL|W83C553F_MODE_TT_VERIFY);
rvalue2 = (W83C553F_MODE_TM_DEMAND|W83C553F_MODE_CH2SEL|W83C553F_MODE_TT_VERIFY);
break;
case 3:
rvalue1 = (W83C553F_MODE_TM_DEMAND|W83C553F_MODE_CH3SEL|W83C553F_MODE_TT_VERIFY);
rvalue2 = (W83C553F_MODE_TM_DEMAND|W83C553F_MODE_CH3SEL|W83C553F_MODE_TT_VERIFY);
break;
default:
rvalue1 = 0x00;
rvalue2 = 0x00;
break;
}
/* write to write mode registers */
out8(W83C553F_DMA1 + W83C553F_DMA1_WM, rvalue1 & 0xFF);
out16(W83C553F_DMA2 + W83C553F_DMA2_WM, rvalue2 & 0x00FF);
}
/* enable all channels */
out8(W83C553F_DMA1 + W83C553F_DMA1_CM, 0x00);
out16(W83C553F_DMA2 + W83C553F_DMA2_CM, 0x0000);
/*
* initialize the global DMA configuration
*
* DACK# active low
* DREQ active high
* fixed priority
* channel group enable
*/
out8(W83C553F_DMA1 + W83C553F_DMA1_CS, 0x00);
out16(W83C553F_DMA2 + W83C553F_DMA2_CS, 0x0000);
}
#endif /* CFG_WINBOND_83C553 */

69
include/i8042.h Normal file
View file

@ -0,0 +1,69 @@
/*
* (C) Copyright 2002 ELTEC Elektronik AG
* Frank Gottschling <fgottschling@eltec.de>
*
* See file CREDITS for list of people who contributed to this
* project.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of
* the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston,
* MA 02111-1307 USA
*/
/* i8042.h - Intel 8042 keyboard driver header */
#ifndef _I8042_H_
#define _I8042_H_
/* defines */
#define I8042_DATA_REG (CFG_ISA_IO + 0x0060) /* keyboard i/o buffer */
#define I8042_STATUS_REG (CFG_ISA_IO + 0x0064) /* keyboard status read */
#define I8042_COMMAND_REG (CFG_ISA_IO + 0x0064) /* keyboard ctrl write */
#define KBD_US 0 /* default US layout */
#define KBD_GER 1 /* german layout */
#define KBD_TIMEOUT 1000 /* 1 sec */
#define KBD_RESET_TRIES 3
#define AS 0 /* normal character index */
#define SH 1 /* shift index */
#define CN 2 /* control index */
#define NM 3 /* numeric lock index */
#define AK 4 /* right alt key */
#define CP 5 /* capslock index */
#define ST 6 /* stop output index */
#define EX 7 /* extended code index */
#define ES 8 /* escape and extended code index */
#define NORMAL 0x0000 /* normal key */
#define STP 0x0001 /* scroll lock stop output*/
#define NUM 0x0002 /* numeric lock */
#define CAPS 0x0004 /* capslock */
#define SHIFT 0x0008 /* shift */
#define CTRL 0x0010 /* control*/
#define EXT 0x0020 /* extended scan code 0xe0 */
#define ESC 0x0040 /* escape key press */
#define E1 0x0080 /* extended scan code 0xe1 */
#define BRK 0x0100 /* make break flag for keyboard */
#define ALT 0x0200 /* right alt */
/* exports */
int i8042_kbd_init(void);
int i8042_tstc(void);
int i8042_getc(void);
#endif /* _I8042_H_ */

1445
include/linux_logo.h Normal file

File diff suppressed because it is too large Load diff

158
include/mpc106.h Normal file
View file

@ -0,0 +1,158 @@
/*
* (C) Copyright 2001 Sysgo Real-Time Solutions, GmbH <www.elinos.com>
* Andreas Heppel <aheppel@sysgo.de>
*
* See file CREDITS for list of people who contributed to this
* project.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of
* the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston,
* MA 02111-1307 USA
*/
#ifndef _MPC106_PCI_H
#define _MPC106_PCI_H
/*
* Defines for the MPC106 PCI Config address and data registers followed by
* defines for the standard PCI device configuration header.
*/
#define PCIDEVID_MPC106 0x0
/*
* MPC106 Registers
*/
#define MPC106_REG 0x80000000
#ifdef CFG_ADDRESS_MAP_A
#define MPC106_REG_ADDR 0x80000cf8
#define MPC106_REG_DATA 0x80000cfc
#define MPC106_ISA_IO_PHYS 0x80000000
#define MPC106_ISA_IO_BUS 0x00000000
#define MPC106_ISA_IO_SIZE 0x00800000
#define MPC106_PCI_IO_PHYS 0x81000000
#define MPC106_PCI_IO_BUS 0x01000000
#define MPC106_PCI_IO_SIZE 0x3e800000
#define MPC106_PCI_MEM_PHYS 0xc0000000
#define MPC106_PCI_MEM_BUS 0x00000000
#define MPC106_PCI_MEM_SIZE 0x3f000000
#define MPC106_PCI_MEMORY_PHYS 0x00000000
#define MPC106_PCI_MEMORY_BUS 0x80000000
#define MPC106_PCI_MEMORY_SIZE 0x80000000
#else
#define MPC106_REG_ADDR 0xfec00cf8
#define MPC106_REG_DATA 0xfee00cfc
#define MPC106_ISA_MEM_PHYS 0xfd000000
#define MPC106_ISA_MEM_BUS 0x00000000
#define MPC106_ISA_MEM_SIZE 0x01000000
#define MPC106_ISA_IO_PHYS 0xfe000000
#define MPC106_ISA_IO_BUS 0x00000000
#define MPC106_ISA_IO_SIZE 0x00800000
#define MPC106_PCI_IO_PHYS 0xfe800000
#define MPC106_PCI_IO_BUS 0x00800000
#define MPC106_PCI_IO_SIZE 0x00400000
#define MPC106_PCI_MEM_PHYS 0x80000000
#define MPC106_PCI_MEM_BUS 0x80000000
#define MPC106_PCI_MEM_SIZE 0x7d000000
#define MPC106_PCI_MEMORY_PHYS 0x00000000
#define MPC106_PCI_MEMORY_BUS 0x00000000
#define MPC106_PCI_MEMORY_SIZE 0x40000000
#endif
#define CMD_SERR 0x0100
#define PCI_CMD_MASTER 0x0004
#define PCI_CMD_MEMEN 0x0002
#define PCI_CMD_IOEN 0x0001
#define PCI_STAT_NO_RSV_BITS 0xffff
#define PCI_BUSNUM 0x40
#define PCI_SUBBUSNUM 0x41
#define PCI_DISCOUNT 0x42
#define PCI_PICR1 0xA8
#define PICR1_CF_CBA(value) ((value & 0xff) << 24)
#define PICR1_CF_BREAD_WS(value) ((value & 0x3) << 22)
#define PICR1_PROC_TYPE_603 0x40000
#define PICR1_PROC_TYPE_604 0x60000
#define PICR1_MCP_EN 0x800
#define PICR1_CF_DPARK 0x200
#define PICR1_CF_LOOP_SNOOP 0x10
#define PICR1_CF_L2_COPY_BACK 0x2
#define PICR1_CF_L2_CACHE_MASK 0x3
#define PICR1_CF_APARK 0x8
#define PICR1_ADDRESS_MAP 0x10000
#define PICR1_XIO_MODE 0x80000
#define PICR1_CF_CACHE_1G 0x200000
#define PCI_PICR2 0xAC
#define PICR2_CF_SNOOP_WS(value) ((value & 0x3) << 18)
#define PICR2_CF_FLUSH_L2 0x10000000
#define PICR2_CF_L2_HIT_DELAY(value) ((value & 0x3) << 9)
#define PICR2_CF_APHASE_WS(value) ((value & 0x3) << 2)
#define PICR2_CF_INV_MODE 0x00001000
#define PICR2_CF_MOD_HIGH 0x00020000
#define PICR2_CF_HIT_HIGH 0x00010000
#define PICR2_L2_SIZE_256K 0x00000000
#define PICR2_L2_SIZE_512K 0x00000010
#define PICR2_L2_SIZE_1MB 0x00000020
#define PICR2_L2_EN 0x40000000
#define PICR2_L2_UPDATE_EN 0x80000000
#define PICR2_CF_ADDR_ONLY_DISABLE 0x00004000
#define PICR2_CF_FAST_CASTOUT 0x00000080
#define PICR2_CF_WDATA 0x00000001
#define PICR2_CF_DATA_RAM_PBURST 0x00400000
/*
* Memory controller
*/
#define MPC106_MCCR1 0xF0
#define MCCR1_TYPE_EDO 0x00020000
#define MCCR1_BK0_9BITS 0x0
#define MCCR1_BK0_10BITS 0x1
#define MCCR1_BK0_11BITS 0x2
#define MCCR1_BK0_12BITS 0x3
#define MCCR1_BK1_9BITS 0x0
#define MCCR1_BK1_10BITS 0x4
#define MCCR1_BK1_11BITS 0x8
#define MCCR1_BK1_12BITS 0xC
#define MCCR1_BK2_9BITS 0x00
#define MCCR1_BK2_10BITS 0x10
#define MCCR1_BK2_11BITS 0x20
#define MCCR1_BK2_12BITS 0x30
#define MCCR1_BK3_9BITS 0x00
#define MCCR1_BK3_10BITS 0x40
#define MCCR1_BK3_11BITS 0x80
#define MCCR1_BK3_12BITS 0xC0
#define MCCR1_MEMGO 0x00080000
#define MPC106_MCCR2 0xF4
#define MPC106_MCCR3 0xF8
#define MPC106_MCCR4 0xFC
#define MPC106_MSAR1 0x80
#define MPC106_EMSAR1 0x88
#define MPC106_EMSAR2 0x8C
#define MPC106_MEAR1 0x90
#define MPC106_EMEAR1 0x98
#define MPC106_EMEAR2 0x9C
#define MPC106_MBER 0xA0
#define MBER_BANK0 0x1
#define MBER_BANK1 0x2
#define MBER_BANK2 0x4
#define MBER_BANK3 0x8
#endif

207
rtc/mk48t59.c Normal file
View file

@ -0,0 +1,207 @@
/*
* (C) Copyright 2001 Sysgo Real-Time Solutions, GmbH <www.elinos.com>
* Andreas Heppel <aheppel@sysgo.de>
*
* See file CREDITS for list of people who contributed to this
* project.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of
* the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston,
* MA 02111-1307 USA
*/
/*
* Date & Time support for the MK48T59 RTC
*/
#undef RTC_DEBUG
#include <common.h>
#include <command.h>
#include <config.h>
#include <rtc.h>
#include <mk48t59.h>
#if defined(CONFIG_RTC_MK48T59)
#if defined(CONFIG_BAB7xx)
static uchar rtc_read (short reg)
{
out8(RTC_PORT_ADDR0, reg & 0xFF);
out8(RTC_PORT_ADDR1, (reg>>8) & 0xFF);
return in8(RTC_PORT_DATA);
}
static void rtc_write (short reg, uchar val)
{
out8(RTC_PORT_ADDR0, reg & 0xFF);
out8(RTC_PORT_ADDR1, (reg>>8) & 0xFF);
out8(RTC_PORT_DATA, val);
}
#elif defined(CONFIG_PCIPPC2)
#include "../board/pcippc2/pcippc2.h"
static uchar rtc_read (short reg)
{
return in8(RTC(reg));
}
static void rtc_write (short reg, uchar val)
{
out8(RTC(reg),val);
}
#else
# error Board specific rtc access functions should be supplied
#endif
static unsigned bcd2bin (uchar n)
{
return ((((n >> 4) & 0x0F) * 10) + (n & 0x0F));
}
static unsigned char bin2bcd (unsigned int n)
{
return (((n / 10) << 4) | (n % 10));
}
/* ------------------------------------------------------------------------- */
void *nvram_read(void *dest, const short src, size_t count)
{
uchar *d = (uchar *) dest;
short s = src;
while (count--)
*d++ = rtc_read(s++);
return dest;
}
void nvram_write(short dest, const void *src, size_t count)
{
short d = dest;
uchar *s = (uchar *) src;
while (count--)
rtc_write(d++, *s++);
}
#if (CONFIG_COMMANDS & CFG_CMD_DATE)
/* ------------------------------------------------------------------------- */
void rtc_get (struct rtc_time *tmp)
{
uchar save_ctrl_a;
uchar sec, min, hour, mday, wday, mon, year;
/* Simple: freeze the clock, read it and allow updates again */
save_ctrl_a = rtc_read(RTC_CONTROLA);
/* Set the register to read the value. */
save_ctrl_a |= RTC_CA_READ;
rtc_write(RTC_CONTROLA, save_ctrl_a);
sec = rtc_read (RTC_SECONDS);
min = rtc_read (RTC_MINUTES);
hour = rtc_read (RTC_HOURS);
mday = rtc_read (RTC_DAY_OF_MONTH);
wday = rtc_read (RTC_DAY_OF_WEEK);
mon = rtc_read (RTC_MONTH);
year = rtc_read (RTC_YEAR);
/* re-enable update */
save_ctrl_a &= ~RTC_CA_READ;
rtc_write(RTC_CONTROLA, save_ctrl_a);
#ifdef RTC_DEBUG
printf ( "Get RTC year: %02x mon/cent: %02x mday: %02x wday: %02x "
"hr: %02x min: %02x sec: %02x\n",
year, mon, mday, wday,
hour, min, sec );
#endif
tmp->tm_sec = bcd2bin (sec & 0x7F);
tmp->tm_min = bcd2bin (min & 0x7F);
tmp->tm_hour = bcd2bin (hour & 0x3F);
tmp->tm_mday = bcd2bin (mday & 0x3F);
tmp->tm_mon = bcd2bin (mon & 0x1F);
tmp->tm_year = bcd2bin (year);
tmp->tm_wday = bcd2bin (wday & 0x07);
if(tmp->tm_year<70)
tmp->tm_year+=2000;
else
tmp->tm_year+=1900;
tmp->tm_yday = 0;
tmp->tm_isdst= 0;
#ifdef RTC_DEBUG
printf ( "Get DATE: %4d-%02d-%02d (wday=%d) TIME: %2d:%02d:%02d\n",
tmp->tm_year, tmp->tm_mon, tmp->tm_mday, tmp->tm_wday,
tmp->tm_hour, tmp->tm_min, tmp->tm_sec);
#endif
}
void rtc_set (struct rtc_time *tmp)
{
uchar save_ctrl_a;
#ifdef RTC_DEBUG
printf ( "Set DATE: %4d-%02d-%02d (wday=%d) TIME: %2d:%02d:%02d\n",
tmp->tm_year, tmp->tm_mon, tmp->tm_mday, tmp->tm_wday,
tmp->tm_hour, tmp->tm_min, tmp->tm_sec);
#endif
save_ctrl_a = rtc_read(RTC_CONTROLA);
save_ctrl_a |= RTC_CA_WRITE;
rtc_write(RTC_CONTROLA, save_ctrl_a); /* disables the RTC to update the regs */
rtc_write (RTC_YEAR, bin2bcd(tmp->tm_year % 100));
rtc_write (RTC_MONTH, bin2bcd(tmp->tm_mon));
rtc_write (RTC_DAY_OF_WEEK, bin2bcd(tmp->tm_wday));
rtc_write (RTC_DAY_OF_MONTH, bin2bcd(tmp->tm_mday));
rtc_write (RTC_HOURS, bin2bcd(tmp->tm_hour));
rtc_write (RTC_MINUTES, bin2bcd(tmp->tm_min ));
rtc_write (RTC_SECONDS, bin2bcd(tmp->tm_sec ));
save_ctrl_a &= ~RTC_CA_WRITE;
rtc_write(RTC_CONTROLA, save_ctrl_a); /* enables the RTC to update the regs */
}
void rtc_reset (void)
{
uchar control_b;
/*
* Start oscillator here.
*/
control_b = rtc_read(RTC_CONTROLB);
control_b &= ~RTC_CB_STOP;
rtc_write(RTC_CONTROLB, control_b);
}
void rtc_set_watchdog(short multi, short res)
{
uchar wd_value;
wd_value = RTC_WDS | ((multi & 0x1F) << 2) | (res & 0x3);
rtc_write(RTC_WATCHDOG, wd_value);
}
#endif /* (CONFIG_COMMANDS & CFG_CMD_DATE) */
#endif /* CONFIG_RTC_MK48T59 */