Documentation:

* hikey960: update link URLs
 * j7200_evm: Fix OPTEE platform name
 * ti: fix style of examples
 * fix typos
 -----BEGIN PGP SIGNATURE-----
 
 iQIzBAABCAAdFiEEK7wKXt3/btL6/yA+hO4vgnE3U0sFAmVOz18ACgkQhO4vgnE3
 U0vcTw/+IiJgluko4+eeyv4IDw9Irc2w3HRq8ZgrNsyx0gdSsnvo/rRfyB9uggfQ
 AJSXDkEHxyWYmta0kz79Dy6SwM9+ez1rhjr4Hz5MrBWPgV4aNqbpY7TlTUjmtU2O
 +oVc+dDpIDfo5Pje+q4yl+YmsQ/YXl45IL0fVJ0FVVZg5oIhNsMo+u1d/umH0+iU
 1rIYBvx1ncODpJB/XcqYQbPYQ3VH5uaSe/x4FVYycx/RGvWZQvohgtE2drNiBE1l
 wAMswDD0PyLWUjAtZwFyzN8VpCcXIGUn/5pUkJ4XaZaKci65beRnEFi0mZDuo+H7
 nMY7VxzDTXQTXvQCkZMuU6Uqn5YU/gop5T0ew2MbxJI1SRMYXecTtS+oo0Btd2oH
 fJFrX9+OBQaZF7Qdii6EreuSAz3nFgWF3p7n2ffGgImzJCpBCznIjXr7Q1iOO30o
 OAD/JxzFgHeQdaOHxlOUIRqnAQNOQ+svtehga9IKi3B/uIuF4EgHxYb8dNMvVepd
 ZIVX6fA6MNHpfk8e/lzpQSn7sj875perxUIU975ukrAskM2+6hqbOzxQ2v9uHW9n
 HXWpu1hLOBwx2lU6jYv2CDihQy3mEkbRjVKwNw4vESB1m3YflswfwYbOI+0aGW8e
 V0jkaVGt78uGYeLl8BHtD/ZSWrrdYeF3XRk2cpxI67i7Rp+Ld8o=
 =nXZy
 -----END PGP SIGNATURE-----

Merge tag 'doc-2024-01-rc3' of https://source.denx.de/u-boot/custodians/u-boot-efi

Documentation:

* hikey960: update link URLs
* j7200_evm: Fix OPTEE platform name
* ti: fix style of examples
* fix typos
This commit is contained in:
Tom Rini 2023-11-11 09:22:54 -05:00
commit 17e9db18f1
49 changed files with 268 additions and 271 deletions

View file

@ -26,12 +26,12 @@ First get all the sources
> git clone https://github.com/ARM-software/arm-trusted-firmware
> git clone https://github.com/96boards-hikey/OpenPlatformPkg -b testing/hikey960_v1.3.4
> git clone https://github.com/96boards-hikey/l-loader -b testing/hikey960_v1.2
> wget http://snapshots.linaro.org/96boards/reference-platform/components/uefi-staging/latest/hikey960/release/config
> wget http://snapshots.linaro.org/96boards/reference-platform/components/uefi-staging/latest/hikey960/release/hisi-sec_usb_xloader.img
> wget http://snapshots.linaro.org/96boards/reference-platform/components/uefi-staging/latest/hikey960/release/hisi-sec_uce_boot.img
> wget http://snapshots.linaro.org/96boards/reference-platform/components/uefi-staging/latest/hikey960/release/sec_xloader.img
> wget http://snapshots.linaro.org/96boards/reference-platform/components/uefi-staging/latest/hikey960/release/recovery.bin
> wget http://snapshots.linaro.org/96boards/reference-platform/components/uefi-staging/latest/hikey960/release/hikey_idt
> wget http://snapshots.linaro.org/reference-platform/components/uefi-staging/123/hikey960/release/config
> wget http://snapshots.linaro.org/reference-platform/components/uefi-staging/123/hikey960/release/hisi-sec_usb_xloader.img
> wget http://snapshots.linaro.org/reference-platform/components/uefi-staging/123/hikey960/release/hisi-sec_uce_boot.img
> wget http://snapshots.linaro.org/reference-platform/components/uefi-staging/123/hikey960/release/hisi-sec_xloader.img
> wget http://snapshots.linaro.org/reference-platform/components/uefi-staging/123/hikey960/release/recovery.bin
> wget http://snapshots.linaro.org/reference-platform/components/uefi-staging/123/hikey960/release/hikey_idt
Get the SCP_BL2 lpm3.img binary. It is shipped as part of the UEFI source.
The latest version can be obtained from the OpenPlatformPkg repo.
@ -126,7 +126,7 @@ following command
Now, the images can be flashed using fastboot:
> sudo fastboot flash ptable ~/hikey960/bin/prm_ptable.img
> sudo fastboot flash xloader ~/hikey960/bin/sec_xloader.img
> sudo fastboot flash xloader ~/hikey960/bin/hisi-sec_xloader.img
> sudo fastboot flash fastboot ~/hikey960/bin/l-loader.bin
> sudo fastboot flash fip ~/hikey960/bin/fip.bin

View file

@ -40,7 +40,7 @@ The U-Boot FF-A support provides the following parts:
- Sandbox FF-A test cases.
FF-A and SMC specifications
-------------------------------------------
---------------------------
The current implementation of the U-Boot FF-A support relies on
`FF-A v1.0 specification`_ and uses SMC32 calling convention which
@ -56,12 +56,12 @@ Hypervisors are supported if they are configured to trap SMC calls.
The FF-A support uses 64-bit registers as per `SMC Calling Convention v1.2 specification`_.
Supported hardware
--------------------------------
------------------
Aarch64 plaforms
Configuration
----------------------
-------------
CONFIG_ARM_FFA_TRANSPORT
Enables the FF-A support. Turn this on if you want to use FF-A
@ -70,7 +70,7 @@ CONFIG_ARM_FFA_TRANSPORT
When using sandbox, the sandbox FF-A emulator and FF-A sandbox driver will be used.
FF-A ABIs under the hood
---------------------------------------
------------------------
Invoking an FF-A ABI involves providing to the secure world/hypervisor the
expected arguments from the ABI.
@ -89,7 +89,7 @@ The driver reads the response and processes it accordingly.
This methodology applies to all the FF-A ABIs.
FF-A bus discovery on Arm 64-bit platforms
---------------------------------------------
------------------------------------------
When CONFIG_ARM_FFA_TRANSPORT is enabled, the FF-A bus is considered as
an architecture feature and discovered using ARM_SMCCC_FEATURES mechanism.
@ -136,7 +136,7 @@ When one of the above actions fails, probing fails and the driver stays not acti
and can be probed again if needed.
Requirements for clients
-------------------------------------
------------------------
When using the FF-A bus with EFI, clients must query the SPs they are looking for
during EFI boot-time mode using the service UUID.
@ -159,13 +159,13 @@ the 32-bit or 64-bit version of FFA_MSG_SEND_DIRECT_{REQ, RESP}.
The calling convention between U-Boot and the secure world stays the same: SMC32.
Requirements for user drivers
-------------------------------------
-----------------------------
Users who want to implement their custom FF-A device driver while reusing the FF-A Uclass can do so
by implementing their own invoke_ffa_fn() in the user driver.
The bus driver layer
------------------------------
--------------------
FF-A support comes on top of the SMCCC layer and is implemented by the FF-A Uclass drivers/firmware/arm-ffa/arm-ffa-uclass.c
@ -210,7 +210,7 @@ The following features are provided:
- FF-A bus can be compiled and used without EFI
Relationship between the sandbox emulator and the FF-A device
---------------------------------------------------------------
-------------------------------------------------------------
::
@ -222,7 +222,7 @@ Relationship between the sandbox emulator and the FF-A device
ffa 0 [ ] sandbox_arm_ffa `-- sandbox-arm-ffa
The armffa command
-----------------------------------
------------------
armffa is a command showcasing how to use the FF-A bus and how to invoke the driver operations.

View file

@ -1,7 +1,7 @@
.. SPDX-License-Identifier: GPL-2.0+
AE350
======
=====
AE350 is the mainline SoC produced by Andes Technology using AndesV5 CPU core
based on RISC-V architecture.

View file

@ -20,7 +20,7 @@ Though, one can enter ADFU mode and flash debian image(from host machine) where
getting into u-boot prompt is easy.
Enter ADFU Mode
----------------
---------------
Before write the firmware, let the development board entering the ADFU mode: insert
one end of the USB cable to the PC, press and hold the ADFU button, and then connect
@ -28,7 +28,7 @@ the other end of the USB cable to the Mini USB port of the development board, re
the ADFU button, after connecting it will enter the ADFU mode.
Check whether entered ADFU Mode
--------------------------------
-------------------------------
The user needs to run the following command on the PC side to check if the ADFU
device is detected. ID realted to "Actions Semiconductor Co., Ltd" means that

View file

@ -2,7 +2,7 @@
.. Copyright (C) 2020 Amit Singh Tomar <amittomer25@gmail.com>
Actions
========
=======
.. toctree::
:maxdepth: 2

View file

@ -1,7 +1,7 @@
.. SPDX-License-Identifier: GPL-2.0
Arm Ltd
=============
=======
.. toctree::
:maxdepth: 2

View file

@ -1,7 +1,7 @@
.. SPDX-License-Identifier: GPL-2.0+
Mediatek
=========
========
.. toctree::
:maxdepth: 2

View file

@ -36,7 +36,7 @@ Get the ddr firmware
$ cp firmware-imx-8.9/firmware/ddr/synopsys/lpddr4*.bin $(builddir)
Build U-Boot for sd card
--------------------------
------------------------
.. code-block:: bash
@ -54,8 +54,8 @@ Boot
----
Set Boot switch to SD boot
Build U-Boot for qspi flash card
------------------------------------
Build U-Boot for qspi flash card
--------------------------------
.. code-block:: bash
@ -81,7 +81,8 @@ From sd card to memory
$ sf write $loadaddr 0x00 <size_of_flash.bin_in_hex>
Boot from QSPI Flash
-----------------------
--------------------
Set Boot Switch to QSPI Flash
Pin configuration for imx8mm_revC evk to boot from qspi flash

View file

@ -54,7 +54,7 @@ LS1046ARDB board Overview
- ARM JTAG support
Memory map from core's view
----------------------------
---------------------------
================== ================== ================ =====
Start Address End Address Description Size

View file

@ -4,7 +4,7 @@ mx6ul_14x14_evk
===============
How to use U-Boot on Freescale MX6UL 14x14 EVK
-----------------------------------------------
----------------------------------------------
- Build U-Boot for MX6UL 14x14 EVK:

View file

@ -11,14 +11,14 @@ OpenPiton has been verified in both ASIC and multiple Xilinx FPGA prototypes
running full-stack Debian linux.
RISC-V Standard Bootflow
-------------------------
------------------------
Currently, OpenPiton implements RISC-V standard bootflow in the following steps
mover.S -> u-boot-spl -> opensbi -> u-boot -> Linux
This board supports S-mode u-boot as well as M-mode SPL
Building OpenPition
---------------------
-------------------
If you'd like to build OpenPiton, please go to OpenPiton github repo
(at https://github.com/PrincetonUniversity/openpiton) to build from the latest

View file

@ -1,7 +1,7 @@
.. SPDX-License-Identifier: GPL-2.0+
Librem5
==========
=======
U-Boot for the Purism Librem5 phone

View file

@ -2,10 +2,11 @@
.. sectionauthor:: Dzmitry Sankouski <dsankouski@gmail.com>
Snapdragon 845
================
==============
About this
----------
This document describes the information about Qualcomm Snapdragon 845
supported boards and it's usage steps.
@ -17,8 +18,10 @@ Qualcomm's UEFI-based ABL (Android) Bootloader.
Installation
------------
Build
^^^^^
Setup ``CROSS_COMPILE`` for aarch64 and build U-Boot for your board::
$ export CROSS_COMPILE=<aarch64 toolchain prefix>
@ -29,10 +32,12 @@ This will build ``u-boot.bin`` in the configured output directory.
Generate FIT image
^^^^^^^^^^^^^^^^^^
See doc/uImage.FIT for more details
Pack android boot image
^^^^^^^^^^^^^^^^^^^^^^^
We'll assemble android boot image with ``u-boot.bin`` instead of linux kernel,
and FIT image instead of ``initramfs``. Android bootloader expect gzipped kernel
with appended dtb, so let's mimic linux to satisfy stock bootloader.

View file

@ -1,7 +1,7 @@
.. SPDX-License-Identifier: GPL-2.0+
Samsung
========
=======
.. toctree::
:maxdepth: 2

View file

@ -2,7 +2,7 @@
.. sectionauthor:: Patrick Delaunay <patrick.delaunay@foss.st.com>
U-Boot device tree bindings
----------------------------
---------------------------
The U-Boot specific bindings are defined in the U-Boot directory:
doc/device-tree-bindings

View file

@ -2,7 +2,7 @@
.. sectionauthor:: Patrice Chotard <patrice.chotardy@foss.st.com>
STM32 MCU boards
=================
================
This is a quick instruction for setup STM32 MCU boards.

View file

@ -4,7 +4,8 @@ StarFive VisionFive2
====================
JH7110 RISC-V SoC
---------------------
-----------------
The JH7110 is 4+1 64-bit RISC-V SoC from StarFive.
The StarFive VisionFive2 development platform is based on JH7110 and capable

View file

@ -1,7 +1,7 @@
.. SPDX-License-Identifier: GPL-2.0+
T-HEAD
========
======
.. toctree::
:maxdepth: 1

View file

@ -84,8 +84,7 @@ bootable image was not created.
Within the SECDEV package exists an image creation script:
.. prompt:: bash
:prompts: $
.. prompt:: bash $
${TI_SECURE_DEV_PKG}/scripts/create-boot-image.sh
@ -97,8 +96,7 @@ possible.
The script is basically the only required interface to the TI SECDEV
package for creating a bootable SPL image for secure TI devices.
.. prompt:: bash
:prompts: $
.. prompt:: bash $
create-boot-image.sh \
<IMAGE_FLAG> <INPUT_FILE> <OUTPUT_FILE> <SPL_LOAD_ADDR>
@ -184,8 +182,7 @@ The exact details of the how the images are secured is handled by the
SECDEV package. Within the SECDEV package exists a script to process
an input binary image:
.. prompt:: bash
:prompts: $
.. prompt:: bash $
${TI_SECURE_DEV_PKG}/scripts/secure-binary-image.sh
@ -206,8 +203,7 @@ only accessible when the ARM core is operating in the secure mode).
Invoking the secure-binary-image script for Secure Devices
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.. prompt:: bash
:prompts: $
.. prompt:: bash $
secure-binary-image.sh <INPUT_FILE> <OUTPUT_FILE>
@ -247,8 +243,7 @@ into memory, then written to NAND.
2. Flashing NAND via MMC/SD
.. prompt:: bash
:prompts: =>
.. prompt:: bash =>
# select BOOTSEL to MMC/SD boot and boot from MMC/SD card
mmc rescan
@ -334,8 +329,7 @@ had a FAT partition (such as on a Beaglebone Black) it is not enough to
write garbage into the area, you must delete it from the partition table
first.
.. prompt:: bash
:prompts: =>
.. prompt:: bash =>
# Ensure we are able to talk with this mmc device
mmc rescan
@ -366,8 +360,7 @@ the FAT filesystem (only the uImage MUST be for this to function
afterwards) along with a Falcon Mode aware MLO and the FAT partition has
already been created and marked bootable:
.. prompt:: bash
:prompts: =>
.. prompt:: bash =>
mmc rescan
# Load kernel and device tree into memory, perform export
@ -386,8 +379,7 @@ This will print a number of lines and then end with something like:
So then you:
.. prompt:: bash
:prompts: =>
.. prompt:: bash =>
fatwrite mmc 0:1 0x80f80000 args 8928
@ -400,8 +392,7 @@ already located on the NAND somewhere (such as filesystem or mtd partition)
along with a Falcon Mode aware MLO written to the correct locations for
booting and mtdparts have been configured correctly for the board:
.. prompt:: bash
:prompts: =>
.. prompt:: bash =>
nand read ${loadaddr} kernel
load nand rootfs ${fdtaddr} /boot/am335x-evm.dtb
@ -425,8 +416,7 @@ The output of the 'dm tree' command shows which driver is bound to which
device, so the user can easily configure their platform differently from
the command line:
.. prompt:: bash
:prompts: =>
.. prompt:: bash =>
dm tree
@ -444,8 +434,7 @@ the command line:
Typically here any network command performed using the usb_ether
interface would work, while using other gadgets would fail:
.. prompt:: bash
:prompts: =>
.. prompt:: bash =>
fastboot usb 0
@ -462,8 +451,7 @@ least from a bootloader point of view). The solution here would be to
use the unbind command specifying the class and index parameters (as
shown above in the 'dm tree' output) to target the driver to unbind:
.. prompt:: bash
:prompts: =>
.. prompt:: bash =>
unbind ethernet 1
@ -471,8 +459,7 @@ The output of the 'dm tree' command now shows the availability of the
first USB device controller, the fastboot gadget will now be able to
bind with it:
.. prompt:: bash
:prompts: =>
.. prompt:: bash =>
dm tree

View file

@ -55,22 +55,22 @@ Set the variables corresponding to this platform:
.. include:: k3.rst
:start-after: .. k3_rst_include_start_common_env_vars_defn
:end-before: .. k3_rst_include_end_common_env_vars_defn
.. code-block:: bash
.. prompt:: bash $
$ export UBOOT_CFG_CORTEXR="am62x_evm_r5_defconfig beagleplay_r5.config"
$ export UBOOT_CFG_CORTEXA="am62x_evm_a53_defconfig beagleplay_a53.config"
$ export TFA_BOARD=lite
$ # we dont use any extra TFA parameters
$ unset TFA_EXTRA_ARGS
$ export OPTEE_PLATFORM=k3-am62x
$ export OPTEE_EXTRA_ARGS="CFG_WITH_SOFTWARE_PRNG=y"
export UBOOT_CFG_CORTEXR="am62x_evm_r5_defconfig beagleplay_r5.config"
export UBOOT_CFG_CORTEXA="am62x_evm_a53_defconfig beagleplay_a53.config"
export TFA_BOARD=lite
# we dont use any extra TFA parameters
unset TFA_EXTRA_ARGS
export OPTEE_PLATFORM=k3-am62x
export OPTEE_EXTRA_ARGS="CFG_WITH_SOFTWARE_PRNG=y"
.. include:: am62x_sk.rst
:start-after: .. am62x_evm_rst_include_start_build_steps
:end-before: .. am62x_evm_rst_include_end_build_steps
Target Images
--------------
-------------
Copy the below images to an SD card and boot:
* tiboot3-am62x-gp-evm.bin from R5 build as tiboot3.bin
@ -109,7 +109,7 @@ There are multiple storage media options on BeaglePlay, but primarily:
depends on the SD card quality.
Flash to uSD card or how to deal with "bricked" Board
--------------------------------------------------------
-----------------------------------------------------
When deploying or working on Linux, it's common to use the onboard
eMMC. However, avoiding the eMMC and using the uSD card is safer when
@ -174,24 +174,24 @@ boot1 partition depends on A/B update requirements.
The following are the steps from Linux shell to program eMMC:
.. code-block:: bash
.. prompt:: bash #
# # Enable Boot0 boot
# mmc bootpart enable 1 2 /dev/mmcblk0
# mmc bootbus set single_backward x1 x8 /dev/mmcblk0
# mmc hwreset enable /dev/mmcblk0
# Enable Boot0 boot
mmc bootpart enable 1 2 /dev/mmcblk0
mmc bootbus set single_backward x1 x8 /dev/mmcblk0
mmc hwreset enable /dev/mmcblk0
# # Clear eMMC boot0
# echo '0' >> /sys/class/block/mmcblk0boot0/force_ro
# dd if=/dev/zero of=/dev/mmcblk0boot0 count=32 bs=128k
# # Write tiboot3.bin
# dd if=tiboot3.bin of=/dev/mmcblk0boot0 bs=128k
# Clear eMMC boot0
echo '0' >> /sys/class/block/mmcblk0boot0/force_ro
dd if=/dev/zero of=/dev/mmcblk0boot0 count=32 bs=128k
# Write tiboot3.bin
dd if=tiboot3.bin of=/dev/mmcblk0boot0 bs=128k
# # Copy the rest of the boot binaries
# mount /dev/mmcblk0p1 /boot/firmware
# cp tispl.bin /boot/firmware
# cp u-boot.img /boot/firmware
# sync
# Copy the rest of the boot binaries
mount /dev/mmcblk0p1 /boot/firmware
cp tispl.bin /boot/firmware
cp u-boot.img /boot/firmware
sync
.. warning ::

View file

@ -2,7 +2,7 @@
.. sectionauthor:: Vignesh Raghavendra <vigneshr@ti.com>
AM62 Platforms
===============
==============
Introduction:
-------------
@ -76,15 +76,15 @@ Set the variables corresponding to this platform:
.. include:: ../ti/k3.rst
:start-after: .. k3_rst_include_start_common_env_vars_defn
:end-before: .. k3_rst_include_end_common_env_vars_defn
.. code-block:: bash
.. prompt:: bash $
$ export UBOOT_CFG_CORTEXR=am62x_evm_r5_defconfig
$ export UBOOT_CFG_CORTEXA=am62x_evm_a53_defconfig
$ export TFA_BOARD=lite
$ # we dont use any extra TFA parameters
$ unset TFA_EXTRA_ARGS
$ export OPTEE_PLATFORM=k3-am62x
$ export OPTEE_EXTRA_ARGS="CFG_WITH_SOFTWARE_PRNG=y"
export UBOOT_CFG_CORTEXR=am62x_evm_r5_defconfig
export UBOOT_CFG_CORTEXA=am62x_evm_a53_defconfig
export TFA_BOARD=lite
# we dont use any extra TFA parameters
unset TFA_EXTRA_ARGS
export OPTEE_PLATFORM=k3-am62x
export OPTEE_EXTRA_ARGS="CFG_WITH_SOFTWARE_PRNG=y"
.. am62x_evm_rst_include_start_build_steps
@ -117,7 +117,8 @@ Set the variables corresponding to this platform:
.. am62x_evm_rst_include_end_build_steps
Target Images
--------------
-------------
In order to boot we need tiboot3.bin, tispl.bin and u-boot.img. Each SoC
variant (GP, HS-FS, HS-SE) requires a different source for these files.
@ -270,6 +271,6 @@ detailed setup information.
To start OpenOCD and connect to the board
.. code-block:: bash
.. prompt:: bash $
openocd -f board/ti_am625evm.cfg

View file

@ -65,16 +65,16 @@ Set the variables corresponding to this platform:
.. include:: k3.rst
:start-after: .. k3_rst_include_start_common_env_vars_defn
:end-before: .. k3_rst_include_end_common_env_vars_defn
.. code-block:: bash
.. prompt:: bash $
$ export UBOOT_CFG_CORTEXR=am64x_evm_r5_defconfig
$ export UBOOT_CFG_CORTEXA=am64x_evm_a53_defconfig
$ export TFA_BOARD=lite
$ # we dont use any extra TFA parameters
$ unset TFA_EXTRA_ARGS
$ export OPTEE_PLATFORM=k3-am64x
$ # we dont use any extra TFA parameters
$ unset OPTEE_EXTRA_ARGS
export UBOOT_CFG_CORTEXR=am64x_evm_r5_defconfig
export UBOOT_CFG_CORTEXA=am64x_evm_a53_defconfig
export TFA_BOARD=lite
# we dont use any extra TFA parameters
unset TFA_EXTRA_ARGS
export OPTEE_PLATFORM=k3-am64x
# we dont use any extra TFA parameters
unset OPTEE_EXTRA_ARGS
.. am64x_evm_rst_include_start_build_steps
@ -107,7 +107,8 @@ Set the variables corresponding to this platform:
.. am64x_evm_rst_include_end_build_steps
Target Images
--------------
-------------
In order to boot we need tiboot3.bin, tispl.bin and u-boot.img. Each SoC
variant (GP, HS-FS, HS-SE) requires a different source for these files.

View file

@ -75,16 +75,16 @@ Set the variables corresponding to this platform:
.. include:: k3.rst
:start-after: .. k3_rst_include_start_common_env_vars_defn
:end-before: .. k3_rst_include_end_common_env_vars_defn
.. code-block:: bash
.. prompt:: bash $
$ export UBOOT_CFG_CORTEXR=am65x_evm_r5_defconfig
$ export UBOOT_CFG_CORTEXA=am65x_evm_a53_defconfig
$ export TFA_BOARD=generic
$ # we dont use any extra TFA parameters
$ unset TFA_EXTRA_ARGS
$ export OPTEE_PLATFORM=k3-am65x
$ # we dont use any extra OP-TEE parameters
$ unset OPTEE_EXTRA_ARGS
export UBOOT_CFG_CORTEXR=am65x_evm_r5_defconfig
export UBOOT_CFG_CORTEXA=am65x_evm_a53_defconfig
export TFA_BOARD=generic
# we dont use any extra TFA parameters
unset TFA_EXTRA_ARGS
export OPTEE_PLATFORM=k3-am65x
# we dont use any extra OP-TEE parameters
unset OPTEE_EXTRA_ARGS
.. am65x_evm_rst_include_start_build_steps
@ -117,7 +117,8 @@ Set the variables corresponding to this platform:
.. am65x_evm_rst_include_end_build_steps
Target Images
--------------
-------------
In order to boot we need tiboot3.bin, sysfw.itb, tispl.bin and u-boot.img.
Each SoC variant (GP and HS) requires a different source for these files.
@ -159,32 +160,32 @@ The following commands can be used to download tiboot3.bin, tispl.bin,
u-boot.img, and sysfw.itb from an SD card and write them to the eMMC boot0
partition at respective addresses.
.. code-block:: text
.. prompt:: bash =>
=> mmc dev 0 1
=> fatload mmc 1 ${loadaddr} tiboot3.bin
=> mmc write ${loadaddr} 0x0 0x400
=> fatload mmc 1 ${loadaddr} tispl.bin
=> mmc write ${loadaddr} 0x400 0x1000
=> fatload mmc 1 ${loadaddr} u-boot.img
=> mmc write ${loadaddr} 0x1400 0x2000
=> fatload mmc 1 ${loadaddr} sysfw.itb
=> mmc write ${loadaddr} 0x3600 0x800
mmc dev 0 1
fatload mmc 1 ${loadaddr} tiboot3.bin
mmc write ${loadaddr} 0x0 0x400
fatload mmc 1 ${loadaddr} tispl.bin
mmc write ${loadaddr} 0x400 0x1000
fatload mmc 1 ${loadaddr} u-boot.img
mmc write ${loadaddr} 0x1400 0x2000
fatload mmc 1 ${loadaddr} sysfw.itb
mmc write ${loadaddr} 0x3600 0x800
To give the ROM access to the boot partition, the following commands must be
used for the first time:
.. code-block:: text
.. prompt:: bash =>
=> mmc partconf 0 1 1 1
=> mmc bootbus 0 1 0 0
mmc partconf 0 1 1 1
mmc bootbus 0 1 0 0
To create a software partition for the rootfs, the following command can be
used:
.. code-block:: text
.. prompt:: bash =>
=> gpt write mmc 0 ${partitions}
gpt write mmc 0 ${partitions}
eMMC layout:
@ -194,11 +195,11 @@ eMMC layout:
Kernel image and DT are expected to be present in the /boot folder of rootfs.
To boot kernel from eMMC, use the following commands:
.. code-block:: text
.. prompt:: bash =>
=> setenv mmcdev 0
=> setenv bootpart 0
=> boot
setenv mmcdev 0
setenv bootpart 0
boot
OSPI:
-----
@ -210,17 +211,17 @@ Below commands can be used to download tiboot3.bin, tispl.bin, u-boot.img,
and sysfw.itb over tftp and then flash those to OSPI at their respective
addresses.
.. code-block:: text
.. prompt:: bash =>
=> sf probe
=> tftp ${loadaddr} tiboot3.bin
=> sf update $loadaddr 0x0 $filesize
=> tftp ${loadaddr} tispl.bin
=> sf update $loadaddr 0x80000 $filesize
=> tftp ${loadaddr} u-boot.img
=> sf update $loadaddr 0x280000 $filesize
=> tftp ${loadaddr} sysfw.itb
=> sf update $loadaddr 0x6C0000 $filesize
sf probe
tftp ${loadaddr} tiboot3.bin
sf update $loadaddr 0x0 $filesize
tftp ${loadaddr} tispl.bin
sf update $loadaddr 0x80000 $filesize
tftp ${loadaddr} u-boot.img
sf update $loadaddr 0x280000 $filesize
tftp ${loadaddr} sysfw.itb
sf update $loadaddr 0x6C0000 $filesize
Flash layout for OSPI:
@ -233,10 +234,10 @@ ospi.rootfs just like in SD card case. U-Boot looks for UBI volume named
To boot kernel from OSPI, at the U-Boot prompt:
.. code-block:: text
.. prompt:: bash =>
=> setenv boot ubi
=> boot
setenv boot ubi
boot
UART:
-----
@ -280,19 +281,19 @@ is fully loaded (from sysfw.itb) and started.
Example bash script sequence for running on a Linux host PC feeding all boot
artifacts needed to the device:
.. code-block:: text
.. prompt:: bash $
MCU_DEV=/dev/ttyUSB1
MAIN_DEV=/dev/ttyUSB0
MCU_DEV=/dev/ttyUSB1
MAIN_DEV=/dev/ttyUSB0
stty -F $MCU_DEV 115200 cs8 -cstopb -parenb
stty -F $MAIN_DEV 115200 cs8 -cstopb -parenb
stty -F $MCU_DEV 115200 cs8 -cstopb -parenb
stty -F $MAIN_DEV 115200 cs8 -cstopb -parenb
sb --xmodem tiboot3.bin > $MCU_DEV < $MCU_DEV
sb --ymodem sysfw.itb > $MCU_DEV < $MCU_DEV
sb --ymodem tispl.bin > $MAIN_DEV < $MAIN_DEV
sleep 1
sb --xmodem u-boot.img > $MAIN_DEV < $MAIN_DEV
sb --xmodem tiboot3.bin > $MCU_DEV < $MCU_DEV
sb --ymodem sysfw.itb > $MCU_DEV < $MCU_DEV
sb --ymodem tispl.bin > $MAIN_DEV < $MAIN_DEV
sleep 1
sb --xmodem u-boot.img > $MAIN_DEV < $MAIN_DEV
Debugging U-Boot
----------------
@ -314,6 +315,6 @@ detailed setup information.
To start OpenOCD and connect to the board
.. code-block:: bash
.. prompt:: bash $
openocd -f board/ti_am654evm.cfg

View file

@ -71,8 +71,7 @@ example we load MLO and u-boot.img from the build into DDR and then use
'mmc bootbus' to set the required rate (see TRM) and 'mmc partconfig' to
set boot0 as the boot device.
.. prompt:: bash
:prompts: =>
.. prompt:: bash =>
setenv autoload no
usb start

View file

@ -64,16 +64,16 @@ Set the variables corresponding to this platform:
.. include:: k3.rst
:start-after: .. k3_rst_include_start_common_env_vars_defn
:end-before: .. k3_rst_include_end_common_env_vars_defn
.. code-block:: bash
.. prompt:: bash $
$ export UBOOT_CFG_CORTEXR=j7200_evm_r5_defconfig
$ export UBOOT_CFG_CORTEXA=j7200_evm_a72_defconfig
$ export TFA_BOARD=generic
$ # we dont use any extra TFA parameters
$ unset TFA_EXTRA_ARGS
$ export OPTEE_PLATFORM=k3-j7200
$ # we dont use any extra OP-TEE parameters
$ unset OPTEE_EXTRA_ARGS
export UBOOT_CFG_CORTEXR=j7200_evm_r5_defconfig
export UBOOT_CFG_CORTEXA=j7200_evm_a72_defconfig
export TFA_BOARD=generic
# we dont use any extra TFA parameters
unset TFA_EXTRA_ARGS
export OPTEE_PLATFORM=k3-j7200
# we dont use any extra OP-TEE parameters
unset OPTEE_EXTRA_ARGS
.. j7200_evm_rst_include_start_build_steps
@ -106,7 +106,8 @@ Set the variables corresponding to this platform:
.. j7200_evm_rst_include_end_build_steps
Target Images
--------------
-------------
In order to boot we need tiboot3.bin, tispl.bin and u-boot.img. Each SoC
variant (GP, HS-FS, HS-SE) requires a different source for these files.
@ -225,6 +226,6 @@ detailed setup information.
To start OpenOCD and connect to the board
.. code-block:: bash
.. prompt:: bash $
openocd -f board/ti_j7200evm.cfg

View file

@ -69,16 +69,16 @@ Set the variables corresponding to this platform:
.. include:: k3.rst
:start-after: .. k3_rst_include_start_common_env_vars_defn
:end-before: .. k3_rst_include_end_common_env_vars_defn
.. code-block:: bash
.. prompt:: bash $
$ export UBOOT_CFG_CORTEXR=j721e_evm_r5_defconfig
$ export UBOOT_CFG_CORTEXA=j721e_evm_a72_defconfig
$ export TFA_BOARD=generic
$ # we dont use any extra TFA parameters
$ unset TFA_EXTRA_ARGS
$ export OPTEE_PLATFORM=k3-j721e
$ # we dont use any extra OP-TEE parameters
$ unset OPTEE_EXTRA_ARGS
export UBOOT_CFG_CORTEXR=j721e_evm_r5_defconfig
export UBOOT_CFG_CORTEXA=j721e_evm_a72_defconfig
export TFA_BOARD=generic
# we dont use any extra TFA parameters
unset TFA_EXTRA_ARGS
export OPTEE_PLATFORM=k3-j721e
# we dont use any extra OP-TEE parameters
unset OPTEE_EXTRA_ARGS
.. j721e_evm_rst_include_start_build_steps
@ -111,7 +111,8 @@ Set the variables corresponding to this platform:
.. j721e_evm_rst_include_end_build_steps
Target Images
--------------
-------------
In order to boot we need tiboot3.bin, sysfw.itb, tispl.bin and u-boot.img.
Each SoC variant (GP, HS-FS and HS-SE) requires a different source for these
files.
@ -202,17 +203,17 @@ Below commands can be used to download tiboot3.bin, tispl.bin, u-boot.img,
and sysfw.itb over tftp and then flash those to OSPI at their respective
addresses.
.. code-block:: text
.. prompt:: bash =>
=> sf probe
=> tftp ${loadaddr} tiboot3.bin
=> sf update $loadaddr 0x0 $filesize
=> tftp ${loadaddr} tispl.bin
=> sf update $loadaddr 0x80000 $filesize
=> tftp ${loadaddr} u-boot.img
=> sf update $loadaddr 0x280000 $filesize
=> tftp ${loadaddr} sysfw.itb
=> sf update $loadaddr 0x6C0000 $filesize
sf probe
tftp ${loadaddr} tiboot3.bin
sf update $loadaddr 0x0 $filesize
tftp ${loadaddr} tispl.bin
sf update $loadaddr 0x80000 $filesize
tftp ${loadaddr} u-boot.img
sf update $loadaddr 0x280000 $filesize
tftp ${loadaddr} sysfw.itb
sf update $loadaddr 0x6C0000 $filesize
Flash layout for OSPI:
@ -254,6 +255,6 @@ detailed setup information.
To start OpenOCD and connect to the board
.. code-block:: bash
.. prompt:: bash $
openocd -f board/ti_j721eevm.cfg

View file

@ -6,6 +6,7 @@ J721S2 and AM68 Platforms
Introduction:
-------------
The J721S2 family of SoCs are part of K3 Multicore SoC architecture platform
targeting automotive applications. They are designed as a low power, high
performance and highly integrated device architecture, adding significant
@ -38,6 +39,7 @@ Platform information:
Boot Flow:
----------
Below is the pictorial representation of boot flow:
.. image:: img/boot_diagram_k3_current.svg
@ -60,6 +62,7 @@ Sources:
Build procedure:
----------------
0. Setup the environment variables:
.. include:: k3.rst
@ -75,15 +78,15 @@ Set the variables corresponding to this platform:
.. include:: k3.rst
:start-after: .. k3_rst_include_start_common_env_vars_defn
:end-before: .. k3_rst_include_end_common_env_vars_defn
.. code-block:: bash
.. prompt:: bash $
$ export UBOOT_CFG_CORTEXR=j721s2_evm_r5_defconfig
$ export UBOOT_CFG_CORTEXA=j721s2_evm_a72_defconfig
$ export TFA_BOARD=generic
$ export TFA_EXTRA_ARGS="K3_USART=0x8"
$ # The following is not a typo, j784s4 is the OP-TEE platform for j721s2
$ export OPTEE_PLATFORM=k3-j784s4
$ export OPTEE_EXTRA_ARGS="CFG_CONSOLE_UART=0x8"
export UBOOT_CFG_CORTEXR=j721s2_evm_r5_defconfig
export UBOOT_CFG_CORTEXA=j721s2_evm_a72_defconfig
export TFA_BOARD=generic
export TFA_EXTRA_ARGS="K3_USART=0x8"
# The following is not a typo, j784s4 is the OP-TEE platform for j721s2
export OPTEE_PLATFORM=k3-j784s4
export OPTEE_EXTRA_ARGS="CFG_CONSOLE_UART=0x8"
.. j721s2_evm_rst_include_start_build_steps
@ -120,7 +123,8 @@ Set the variables corresponding to this platform:
.. j721s2_evm_rst_include_end_build_steps
Target Images
--------------
-------------
In order to boot we need tiboot3.bin, tispl.bin and u-boot.img. Each SoC
variant (GP, HS-FS, HS-SE) requires a different source for these files.
@ -296,7 +300,7 @@ Debugging U-Boot on J721S2-EVM
To start OpenOCD and connect to the board
.. code-block:: bash
.. prompt:: bash $
openocd -f board/ti_j721s2evm.cfg

View file

@ -197,7 +197,7 @@ All of that to say you will need both a 32bit and 64bit cross compiler
.. k3_rst_include_end_common_env_vars_desc
.. k3_rst_include_start_common_env_vars_defn
.. prompt:: bash
.. prompt:: bash $
export CC32=arm-linux-gnueabihf-
export CC64=aarch64-linux-gnu-
@ -238,7 +238,7 @@ other build sources. we shall use the following, in the build descriptions below
.. k3_rst_include_end_board_env_vars_desc
Building tiboot3.bin
^^^^^^^^^^^^^^^^^^^^^
^^^^^^^^^^^^^^^^^^^^
1. To generate the U-Boot SPL for the wakeup domain, use the following
commands, substituting :code:`{SOC}` for the name of your device (eg:
@ -247,7 +247,7 @@ Building tiboot3.bin
uses the split binary flow)
.. k3_rst_include_start_build_steps_spl_r5
.. prompt:: bash
.. prompt:: bash $
# inside u-boot source
make $UBOOT_CFG_CORTEXR
@ -273,7 +273,7 @@ domain of your K3 SoC.
UBoot SPL will only look for and load the files with these names.
Building tispl.bin
^^^^^^^^^^^^^^^^^^^
^^^^^^^^^^^^^^^^^^
The `tispl.bin` is a standard fitImage combining the firmware need for
the main domain to function properly as well as Device Management (DM)
@ -283,7 +283,7 @@ firmware if your device using a split firmware.
application cores on the main domain.
.. k3_rst_include_start_build_steps_tfa
.. prompt:: bash
.. prompt:: bash $
# inside trusted-firmware-a source
make CROSS_COMPILE=$CC64 ARCH=aarch64 PLAT=k3 SPD=opteed $TFA_EXTRA_ARGS \
@ -299,7 +299,7 @@ use the `lite` option.
using the TrustZone technology built into the core.
.. k3_rst_include_start_build_steps_optee
.. prompt:: bash
.. prompt:: bash $
# inside optee_os source
make CROSS_COMPILE=$CC32 CROSS_COMPILE64=$CC64 CFG_ARM64_core=y $OPTEE_EXTRA_ARGS \
@ -311,7 +311,7 @@ use the `lite` option.
64bit core in the main domain.
.. k3_rst_include_start_build_steps_uboot
.. prompt:: bash
.. prompt:: bash $
# inside u-boot source
make $UBOOT_CFG_CORTEXA
@ -410,14 +410,14 @@ and the same can be extended to other platforms
be passing to mkimage for signing the fitImage and embedding the key in
the u-boot dtb.
.. prompt:: bash
.. prompt:: bash $
mkimage -r -f fitImage.its -k $UBOOT_PATH/board/ti/keys -K
$UBOOT_PATH/build/a72/dts/dt.dtb
For signing a secondary platform, pass the -K parameter to that DTB
.. prompt:: bash
.. prompt:: bash $
mkimage -f fitImage.its -k $UBOOT_PATH/board/ti/keys -K
$UBOOT_PATH/build/a72/arch/arm/dts/k3-j721e-sk.dtb
@ -476,8 +476,7 @@ then the saveenv command and can be used across various bootmodes too.
**Writing to MMC/EMMC**
.. prompt:: bash
:prompts: =>
.. prompt:: bash =>
env export -t $loadaddr <list of variables>
fatwrite mmc ${mmcdev} ${loadaddr} ${bootenvfile} ${filesize}
@ -490,8 +489,7 @@ mmcdev) and set the environments.
If manually needs to be done then the environment can be read from the
filesystem and then imported
.. prompt:: bash
:prompts: =>
.. prompt:: bash =>
fatload mmc ${mmcdev} ${loadaddr} ${bootenvfile}
env import -t ${loadaddr} ${filesize}
@ -551,7 +549,7 @@ Refer to the release notes corresponding to the `OpenOCD version
box support by OpenOCD. The board-specific documentation will
cover the details and any adapter/dongle recommendations.
.. prompt:: bash
.. prompt:: bash $
openocd -v
@ -569,7 +567,7 @@ systems, but equivalent instructions should exist for systems with
other package managers. Please refer to the `OpenOCD Documentation
<https://openocd.org/>`_ for more recent installation steps.
.. prompt:: bash
.. prompt:: bash $
# Check the packages to be installed: needs deb-src in sources.list
sudo apt build-dep openocd
@ -599,7 +597,7 @@ The step is not necessary if the distribution supports the OpenOCD, but
if building from a source, ensure that the udev rules are installed
correctly to ensure a sane system.
.. prompt:: bash
.. prompt:: bash $
# Go to the OpenOCD source directory
cd openocd
@ -617,7 +615,7 @@ Step 2: Setup GDB
Most systems come with gdb-multiarch package.
.. prompt:: bash
.. prompt:: bash $
# Install gdb-multiarch package
sudo apt-get install gdb-multiarch
@ -833,7 +831,7 @@ Startup OpenOCD to debug the platform as follows:
.. k3_rst_include_start_openocd_cfg_XDS110
.. prompt:: bash
.. prompt:: bash $
openocd -f board/{board_of_choice}.cfg
@ -847,7 +845,7 @@ Startup OpenOCD to debug the platform as follows:
<https://github.com/openocd-org/openocd/blob/master/tcl/target/ti_k3.cfg#L59>`_
to decide if the SoC is supported or not.
.. prompt:: bash
.. prompt:: bash $
openocd -f openocd_connect.cfg
@ -922,13 +920,13 @@ To debug using this server, use GDB directly or your preferred
GDB-based IDE. To start up GDB in the terminal, run the following
command.
.. prompt:: bash
.. prompt:: bash $
gdb-multiarch
To connect to your desired core, run the following command within GDB:
.. code-block:: bash
.. prompt:: bash (gdb)
target extended-remote localhost:{port for desired core}
@ -945,13 +943,13 @@ To load symbols:
* Prior to relocation:
.. code-block:: bash
.. prompt:: bash (gdb)
symbol-file {path to elf file}
* After relocation:
.. code-block:: bash
.. prompt:: bash (gdb)
# Drop old symbol file
symbol-file
@ -962,7 +960,7 @@ To load symbols:
In the above example of AM625,
.. code-block:: bash
.. prompt:: bash (gdb)
target extended-remote localhost:3338 <- R5F (Wakeup Domain)
target extended-remote localhost:3334 <- A53 (Main Domain)
@ -982,7 +980,7 @@ breakpoints. To exit the debug loop added above, add any breakpoints
needed and run the following GDB commands to step out of the debug
loop set in the ``board_init_f`` function.
.. code-block:: bash
.. prompt:: bash (gdb)
set x = 0
continue

View file

@ -122,8 +122,7 @@ Don't forget to add CROSS_COMPILE.
To build u-boot.bin, u-boot-spi.gph, MLO:
.. prompt:: bash
:prompts: $
.. prompt:: bash $
make k2hk_evm_defconfig
make
@ -197,8 +196,7 @@ instructions:
4. Free Run the target as described earlier (step 4) to get U-Boot prompt
5. At the U-Boot console type following to setup U-Boot environment variables.
.. prompt:: bash
:prompts: =>
.. prompt:: bash =>
setenv addr_uboot 0x87000000
setenv filesize <size in hex of u-boot-spi.gph rounded to hex 0x10000>
@ -226,8 +224,7 @@ instructions:
4. Free Run the target as described earlier (step 4) to get U-Boot prompt
5. At the U-Boot console type following to setup U-Boot environment variables.
.. prompt:: bash
:prompts: =>
.. prompt:: bash =>
setenv filesize <size in hex of MLO rounded to hex 0x10000>
run burn_uboot_nand
@ -249,10 +246,10 @@ Open BMC and regular UART terminals.
1. On the regular UART port start xmodem transfer of the u-boot.bin
2. Using BMC terminal set the ARM-UART bootmode and reboot the EVM
.. prompt:: bash
.. prompt:: bash BMC>
BMC> bootmode #4
MBC> reboot
bootmode #4
reboot
3. When xmodem is complete you should see the U-Boot starts on the UART port

View file

@ -2,7 +2,7 @@
.. (C) Copyright 2019 Xilinx, Inc.
U-Boot device tree bindings
----------------------------
---------------------------
All the device tree bindings used in U-Boot are specified in Linux
kernel. Please refer dt bindings from below specified paths in Linux

2
doc/build/gcc.rst vendored
View file

@ -66,7 +66,7 @@ For building U-Boot on Alpine Linux at least the following packages are needed:
Depending on the build target further packages may be needed:
* sandbox with lcd: sdl2-dev
* riscv64 S-mode targests: opensbi
* riscv64 S-mode targets: opensbi
* some arm64 targets: arm-trusted-firmware
Prerequisites

View file

@ -1,5 +1,5 @@
Obtaining the source
=====================
====================
The source of the U-Boot project is maintained in a Git repository.

View file

@ -1,5 +1,5 @@
Ethernet Driver Guide
=======================
=====================
The networking stack in Das U-Boot is designed for multiple network devices
to be easily added and controlled at runtime. This guide is meant for people
@ -14,7 +14,7 @@ Some drivers are still using the old Ethernet interface, differences between
the two and hints about porting will be handled at the end.
Driver framework
------------------
----------------
A network driver following the driver model must declare itself using
the UCLASS_ETH .id field in the U-Boot driver struct:
@ -67,7 +67,7 @@ bus. Also it would take care of any special PHY setup (power rails, enable
bits for internal PHYs, etc.).
Driver methods
----------------
--------------
The real work will be done in the driver method functions the driver provides
by defining the members of struct eth_ops:
@ -158,7 +158,7 @@ So the call graph at this stage would look something like:
CONFIG_PHYLIB / CONFIG_CMD_MII
--------------------------------
------------------------------
If your device supports banging arbitrary values on the MII bus (pretty much
every device does), you should add support for the mii command. Doing so is
@ -193,7 +193,7 @@ should logically follow.
................................................................
Legacy network drivers
------------------------
----------------------
!!! WARNING !!!
@ -221,7 +221,7 @@ instructions on how to port this over. For the records, the old way of
initialising a network driver is as follows:
Old network driver registration
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
When U-Boot initializes, it will call the common function eth_initialize().
This will in turn call the board-specific board_eth_init() (or if that fails,

View file

@ -100,7 +100,7 @@ Maintainers should submit patches switching over to using CONFIG_DM_I2C and
other base driver model options in time for inclusion in the 2021.10 release.
CFG_SYS_TIMER_RATE and CFG_SYS_TIMER_COUNTER
--------------------------------------------------
--------------------------------------------
Deadline: 2023.01
These are legacy options which have been replaced by driver model.

View file

@ -1,7 +1,7 @@
.. SPDX-License-Identifier: GPL-2.0+
NVM XIP Block Storage Emulation Driver
=======================================
======================================
Summary
-------
@ -54,12 +54,12 @@ The NVMXIP Uclass provides the following drivers:
The implementation is generic and can be used by different platforms.
Supported hardware
--------------------------------
------------------
Any plaform supporting readq().
Configuration
----------------------
-------------
config NVMXIP
This option allows the emulation of a block storage device
@ -77,7 +77,7 @@ config NVMXIP_QSPI
write their own driver (same as nvmxip_qspi in addition to the custom settings).
Device Tree nodes
--------------------
-----------------
Multiple QSPI XIP flash devices can be used at the same time by describing them through DT
nodes.

View file

@ -218,7 +218,7 @@ DM tells you. The name is not quite right. So in this case we would use:
Write of_to_plat() [for device tree only]
-------------------------------------------------
-----------------------------------------
This method will convert information in the device tree node into a C
structure in your driver (called platform data). If you are not using

View file

@ -220,7 +220,7 @@ setting the GPIO (on twister GPIO 55 is used) to kernel mode.
The kernel is loaded directly by the SPL without passing through U-Boot.
Example with FDT: a3m071 board
-------------------------------
------------------------------
To boot the Linux kernel from the SPL, the DT blob (fdt) needs to get
prepared/patched first. U-Boot usually inserts some dynamic values into

View file

@ -1,7 +1,7 @@
.. SPDX-License-Identifier: GPL-2.0+:
askenv command
===============
==============
Synopsis
--------

View file

@ -76,7 +76,7 @@ name is provided, all hunters are run.
bootdev select
~~~~~~~~~~~~~~~~~
~~~~~~~~~~~~~~
Use this to select a particular bootdev. You can select it by the sequence
number or name, as shown in `bootdev list`.
@ -89,7 +89,7 @@ unselected.
bootdev info
~~~~~~~~~~~~~~~
~~~~~~~~~~~~
This shows information on the current bootdev, with the format looking like
this:

View file

@ -1,7 +1,7 @@
.. SPDX-License-Identifier: GPL-2.0+:
cat command
===============
===========
Synopsis
--------

View file

@ -21,7 +21,7 @@ environment variables stdin, stdout, stderr which contain a comma separated
list of device names.
Example
--------
-------
.. code-block:: console

View file

@ -1,7 +1,7 @@
.. SPDX-License-Identifier: GPL-2.0+:
mmc command
============
===========
Synopsis
--------

View file

@ -1,7 +1,7 @@
.. SPDX-License-Identifier: GPL-2.0+:
part command
===============
============
Synopis
-------

View file

@ -15,7 +15,7 @@ Synopsis
Description
-----------
The *qfw* command is used to retrieve information form the QEMU firmware.
The *qfw* command is used to retrieve information from the QEMU firmware.
The *qfw list* sub-command displays the QEMU firmware files.

View file

@ -1,7 +1,7 @@
.. SPDX-License-Identifier: GPL-2.0+:
wdt command
============
===========
Synopsis
--------

View file

@ -1,7 +1,7 @@
.. SPDX-License-Identifier: GPL-2.0+:
xxd command
===============
===========
Synopsis
--------

View file

@ -86,7 +86,7 @@ c. You will now have a U-Boot image::
Step 2: Build Linux
--------------------
-------------------
a. Find the kernel image ('Image') and device tree (.dtb) file you plan to
use. In our case it is am335x-boneblack.dtb and it is built with the kernel.

View file

@ -1,7 +1,7 @@
.. SPDX-License-Identifier: GPL-2.0+
Measured Boot
=====================
=============
U-Boot can perform a measured boot, the process of hashing various components
of the boot process, extending the results in the TPM and logging the
@ -16,7 +16,7 @@ TPM PCRs match the contents of the event log. This can further be checked
against the hash results of previous boots.
Requirements
---------------------
------------
* A hardware TPM 2.0 supported by the U-Boot drivers
* CONFIG_TPM=y

View file

@ -1,5 +1,5 @@
Binman Entry Documentation
===========================
==========================
This file describes the entry types supported by binman. These entry types can
be placed in an image one by one to build up a final firmware image. It is