ddr: altera: Implement universal scc_mgr_set_all_ranks()

Implement universal scc_mgr_set_all_ranks() function and convert
various ad-hoc implementations of similar functionality to use
this single function. Document the function in kerneldoc.

Signed-off-by: Marek Vasut <marex@denx.de>
This commit is contained in:
Marek Vasut 2015-07-12 23:25:21 +02:00
parent 162d60ef73
commit 0b69b807d8

View file

@ -361,77 +361,64 @@ static void scc_mgr_load_dm(uint32_t dm)
writel(dm, &sdr_scc_mgr->dm_ena);
}
static void scc_mgr_set_dqs_en_phase_all_ranks(uint32_t read_group,
uint32_t phase)
/**
* scc_mgr_set_all_ranks() - Set SCC Manager register for all ranks
* @off: Base offset in SCC Manager space
* @grp: Read/Write group
* @val: Value to be set
* @update: If non-zero, trigger SCC Manager update for all ranks
*
* This function sets the SCC Manager (Scan Chain Control Manager) register
* and optionally triggers the SCC update for all ranks.
*/
static void scc_mgr_set_all_ranks(const u32 off, const u32 grp, const u32 val,
const int update)
{
uint32_t r;
u32 r;
for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
r += NUM_RANKS_PER_SHADOW_REG) {
scc_mgr_set_dqs_en_phase(read_group, phase);
scc_mgr_set(off, grp, val);
/*
* USER although the h/w doesn't support different phases per
* shadow register, for simplicity our scc manager modeling
* keeps different phase settings per shadow reg, and it's
* important for us to keep them in sync to match h/w.
* for efficiency, the scan chain update should occur only
* once to sr0.
*/
if (r == 0) {
writel(read_group, &sdr_scc_mgr->dqs_ena);
if (update || (r == 0)) {
writel(grp, &sdr_scc_mgr->dqs_ena);
writel(0, &sdr_scc_mgr->update);
}
}
}
static void scc_mgr_set_dqs_en_phase_all_ranks(u32 read_group, u32 phase)
{
/*
* USER although the h/w doesn't support different phases per
* shadow register, for simplicity our scc manager modeling
* keeps different phase settings per shadow reg, and it's
* important for us to keep them in sync to match h/w.
* for efficiency, the scan chain update should occur only
* once to sr0.
*/
scc_mgr_set_all_ranks(SCC_MGR_DQS_EN_PHASE_OFFSET,
read_group, phase, 0);
}
static void scc_mgr_set_dqdqs_output_phase_all_ranks(uint32_t write_group,
uint32_t phase)
{
uint32_t r;
for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
r += NUM_RANKS_PER_SHADOW_REG) {
scc_mgr_set_dqdqs_output_phase(write_group, phase);
/*
* USER although the h/w doesn't support different phases per
* shadow register, for simplicity our scc manager modeling
* keeps different phase settings per shadow reg, and it's
* important for us to keep them in sync to match h/w.
* for efficiency, the scan chain update should occur only
* once to sr0.
*/
if (r == 0) {
writel(write_group, &sdr_scc_mgr->dqs_ena);
writel(0, &sdr_scc_mgr->update);
}
}
/*
* USER although the h/w doesn't support different phases per
* shadow register, for simplicity our scc manager modeling
* keeps different phase settings per shadow reg, and it's
* important for us to keep them in sync to match h/w.
* for efficiency, the scan chain update should occur only
* once to sr0.
*/
scc_mgr_set_all_ranks(SCC_MGR_DQDQS_OUT_PHASE_OFFSET,
write_group, phase, 0);
}
static void scc_mgr_set_dqs_en_delay_all_ranks(uint32_t read_group,
uint32_t delay)
{
uint32_t r;
for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
r += NUM_RANKS_PER_SHADOW_REG) {
scc_mgr_set_dqs_en_delay(read_group, delay);
/*
* In shadow register mode, the T11 settings are stored in
* registers in the core, which are updated by the DQS_ENA
* signals. Not issuing the SCC_MGR_UPD command allows us to
* save lots of rank switching overhead, by calling
* select_shadow_regs_for_update with update_scan_chains
* set to 0.
*/
writel(read_group, &sdr_scc_mgr->dqs_ena);
writel(0, &sdr_scc_mgr->update);
}
/*
* In shadow register mode, the T11 settings are stored in
* registers in the core, which are updated by the DQS_ENA
@ -440,6 +427,8 @@ static void scc_mgr_set_dqs_en_delay_all_ranks(uint32_t read_group,
* select_shadow_regs_for_update with update_scan_chains
* set to 0.
*/
scc_mgr_set_all_ranks(SCC_MGR_DQS_EN_DELAY_OFFSET,
read_group, delay, 1);
writel(0, &sdr_scc_mgr->update);
}